Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Chiral Azepines: In silico Potential in Cancer and Neurodegenerative Diseases, a Chemical Analysis

Author(s): Hisami Rodríguez-Matsui, David M. Aparicio-Solano, María L. Orea, Alan Carrasco-Carballo* and Joel L. Terán*

Volume 21, Issue 11, 2024

Published on: 20 September, 2023

Page: [2148 - 2162] Pages: 15

DOI: 10.2174/1570180820666230710163705

Price: $65

Abstract

Background: Chiral azepines are synthesized with remarkable diastereoselectivity, but their biological activity has not been investigated. However, benzazepines have demonstrated notable effects, particularly on the central nervous system (CNS) and infections. This characteristic attracts the interest of bioinformatic investigations in this new family, as their structural similarity can confirm their potential based on their kinship or discovering new options for biological potential.

Objective: Possible interaction targets of previously synthesized chiral azepines are investigated. This study involves examining the interaction between these targets, conducting molecular docking analysis, ADME (administration, distribution, metabolism, excretion), and toxicology prediction to assess biological potential.

Methods: Modeling 3D-optimized structural, virtual screening, molecular docking, ADME, and toxicological studies were performed.

Results: Structural analysis demonstrated potential against neurodegenerative diseases and cancer. In Molecular docking against cancer, pathways dependent on MAP2K1 and COX-2 exhibited energetically superior inhibitors than reference drugs, namely azepines 1, 3, and 6. Additionally, azepines 1 and 8 exhibited selective impacts against GSK3 and HMG-CoA-Reductase, respectively. Azepine 6 demonstrated an effect on CNS vs. GSK3 and HMG-CoA-Reductase, as well as potential against Alzheimer's disease; however, with a lower energy level with subunit 33 GABA-receptor. ADMETx investigations indicated satisfactory results for azepines. However, the opening of the cycle results in adverse effects and increased bioaccumulation, indicating the importance of preserving the integrity of azepine to propose its biological effect.

Conclusion: Chiral azepines exhibit significant biological potential, particularly azepine 6 with a methyl substituent, which demonstrates multitarget potential. In addition, p-nitro phenyl substituent makes it highly selective towards CNS diseases. These findings indicate a strong relationship between biological activity and the stability of chiral azepines.

[1]
Kumari, S.; Maddeboina, K.; Devi Bachu, R.; Boddu, S.; Trippier, P. C.; Tiwari, A. K. Pivotal role of nitrogen heterocycles in Alzheimer’s disease drug discovery. Drug Discov. Today., 2022, S1359-6446(22), 00292-6.
[http://dx.doi.org/10.1016/j.drudis.2022.07.007]
[2]
Suliman, R.S.; Alghamdi, S.S.; Ali, R.; Rahman, I.; Alqahtani, T.; Frah, I.K.; Aljatli, D.A.; Huwaizi, S.; Algheribe, S.; Alehaideb, Z.; Islam, I. Distinct mechanisms of cytotoxicity in novel nitrogenous heterocycles: future directions for a new anti-cancer agent. Molecules, 2022, 27(8), 2409.
[http://dx.doi.org/10.3390/molecules27082409] [PMID: 35458609]
[3]
Prakash, G.; Paul, N.; Oliver, G.A.; Werz, D.B.; Maiti, D. C–H deuteration of organic compounds and potential drug candidates. Chem. Soc. Rev., 2022, 51(8), 3123-3163.
[http://dx.doi.org/10.1039/D0CS01496F] [PMID: 35320331]
[4]
Palillero-Cisneros, A.; Gordillo-Guerra, P.G.; Aparicio-Solano, D.M.; Gnecco, D.; Mendoza, A.; Juárez, J.R.; Terán, J.L. 7-endo cyclization of 2,3-epoxyamides and 2,3-aziridine carboxamides by intramolecular Friedel–Crafts reaction. Tetrahedron Asymmetry, 2015, 26(2-3), 95-101.
[http://dx.doi.org/10.1016/j.tetasy.2014.12.004]
[5]
Ritter, N.; Korff, M.; Markus, A.; Schepmann, D.; Seebohm, G.; Schreiber, J.A.; Wünsch, B. Deconstruction – reconstruction: Analysis of the crucial structural elements of GluN2B-selective, negative allosteric NMDA receptor modulators with 3-benzazepine scaffold. Cell. Physiol. Biochem., 2020, 55(S3), 1-13.
[http://dx.doi.org/10.33594/000000335] [PMID: 33656308]
[6]
Guo, Z.; Zhang, Z.; Zhang, Y.; Wang, G.; Huang, Z.; Zhang, Q.; Li, J. Design, synthesis and biological evaluation of brain penetrant benzazepine-based histone deacetylase 6 inhibitors for alleviating stroke-induced brain infarction. Eur. J. Med. Chem., 2021, 218, 113383.
[http://dx.doi.org/10.1016/j.ejmech.2021.113383] [PMID: 33799069]
[7]
Orimi, F.G.; Mirza, B.; Hossaini, Z. Production of benzazepine derivatives via four-component reaction of isatins: study of antioxidant activity. Mol. Divers., 2021, 25(4), 2171-2182.
[http://dx.doi.org/10.1007/s11030-020-10110-5] [PMID: 32524218]
[8]
Elangovan, S.; Afanasenko, A.; Haupenthal, J.; Sun, Z.; Liu, Y.; Hirsch, A.K.H.; Barta, K. From wood to tetrahydro-2-benzazepines in three waste-free steps: modular synthesis of biologically active lignin-derived scaffolds. ACS Cent. Sci., 2019, 5(10), 1707-1716.
[http://dx.doi.org/10.1021/acscentsci.9b00781] [PMID: 31660439]
[9]
Fordyce, E.A.F.; Fraser Hunt, S.; Crepin, D.; Onions, S.T.; Parra, G.F.; Sleigh, C.J.; King-Underwood, J.; Finch, H.; Murray, J. Conformationally restricted benzothienoazepine respiratory syncytial virus inhibitors: their synthesis, structural analysis and biological activities. Med Chem Comm, 2018, 9(3), 583-589.
[http://dx.doi.org/10.1039/C8MD00033F] [PMID: 30108949]
[10]
Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res., 2019, 47(W1), W357-W364.
[http://dx.doi.org/10.1093/nar/gkz382] [PMID: 31106366]
[11]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[12]
Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Druzhilovskii, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the biological activity spectra of organic compounds using the pass online web resource. Chem. Heterocycl. Compd., 2014, 50(3), 444-457.
[http://dx.doi.org/10.1007/s10593-014-1496-1]
[13]
Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res., 2021, 49(D1), D605-D612.
[http://dx.doi.org/10.1093/nar/gkaa1074] [PMID: 33237311]
[14]
LigPrep; Schrödinger, LLC: New York, NY, 2021.
[15]
Carrasco-Carballo, A.; Mendoza-Lara, D.F.; Rojas-Morales, J.A.; Alatriste, V.; Luna, F.; Sandoval-Ramirez, J. In silico study of coumarins derivatives with potential use in systemic diseases. Biointerface Res. Appl. Chem., 2022, 13(3), 240.
[http://dx.doi.org/10.33263/BRIAC133.240]
[16]
Ghosh, D.; Griswold, J.; Erman, M.; Pangborn, W. Structural basis for androgen specificity and oestrogen synthesis in human aromatase. Nature, 2009, 457(7226), 219-223.
[http://dx.doi.org/10.1038/nature07614] [PMID: 19129847]
[17]
Mapelli, M.; Massimiliano, L.; Crovace, C.; Seeliger, M.A.; Tsai, L.H.; Meijer, L.; Musacchio, A. Mechanism of CDK5/p25 binding by CDK inhibitors. J. Med. Chem., 2005, 48(3), 671-679.
[http://dx.doi.org/10.1021/jm049323m] [PMID: 15689152]
[18]
Orlando, B.J.; Malkowski, M.G. Crystal structure of rofecoxib bound to human cyclooxygenase-2. Acta Crystallogr. F Struct. Biol. Commun., 2016, 72(10), 772-776.
[http://dx.doi.org/10.1107/S2053230X16014230] [PMID: 27710942]
[19]
Ohren, J.F.; Chen, H.; Pavlovsky, A.; Whitehead, C.; Zhang, E.; Kuffa, P.; Yan, C.; McConnell, P.; Spessard, C.; Banotai, C.; Mueller, W.T.; Delaney, A.; Omer, C.; Sebolt-Leopold, J.; Dudley, D.T.; Leung, I.K.; Flamme, C.; Warmus, J.; Kaufman, M.; Barrett, S.; Tecle, H.; Hasemann, C.A. Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nat. Struct. Mol. Biol., 2004, 11(12), 1192-1197.
[http://dx.doi.org/10.1038/nsmb859] [PMID: 15543157]
[20]
Masiulis, S.; Desai, R.; Uchański, T.; Serna Martin, I.; Laverty, D.; Karia, D.; Malinauskas, T.; Zivanov, J.; Pardon, E.; Kotecha, A.; Steyaert, J.; Miller, K.W.; Aricescu, A.R. GABAA receptor signalling mechanisms revealed by structural pharmacology. Nature, 2019, 565(7740), 454-459.
[http://dx.doi.org/10.1038/s41586-018-0832-5] [PMID: 30602790]
[21]
Liu, S.; Xu, L.; Guan, F.; Liu, Y.T.; Cui, Y.; Zhang, Q.; Zheng, X.; Bi, G.Q.; Zhou, Z.H.; Zhang, X.; Ye, S. Cryo-EM structure of the human α5β3 GABAA receptor. Cell Res., 2018, 28(9), 958-961.
[http://dx.doi.org/10.1038/s41422-018-0077-8] [PMID: 30140029]
[22]
Bertrand, J.A.; Thieffine, S.; Vulpetti, A.; Cristiani, C.; Valsasina, B.; Knapp, S.; Kalisz, H.M.; Flocco, M. Structural characterization of the GSK-3β active site using selective and non-selective ATP-mimetic inhibitors. J. Mol. Biol., 2003, 333(2), 393-407.
[http://dx.doi.org/10.1016/j.jmb.2003.08.031] [PMID: 14529625]
[23]
Pfefferkorn, J.A.; Song, Y.; Sun, K.L.; Miller, S.R.; Trivedi, B.K.; Choi, C.; Sorenson, R.J.; Bratton, L.D.; Unangst, P.C.; Larsen, S.D.; Poel, T.J.; Cheng, X.M.; Lee, C.; Erasga, N.; Auerbach, B.; Askew, V.; Dillon, L.; Hanselman, J.C.; Lin, Z.; Lu, G.; Robertson, A.; Olsen, K.; Mertz, T.; Sekerke, C.; Pavlovsky, A.; Harris, M.S.; Bainbridge, G.; Caspers, N.; Chen, H.; Eberstadt, M. Design and synthesis of hepatoselective, pyrrole-based HMG-CoA reductase inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(16), 4538-4544.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.096] [PMID: 17574412]
[24]
Hoang, Q.Q.; Wu, C.X.; Liao, J.; Park, Y. Dimeric structure of LRRK2 GTPase domain; RCSB PDB., 2019.
[25]
Röhm, S.; Schröder, M.; Dwyer, J.E.; Widdowson, C.S.; Chaikuad, A.; Berger, B.T.; Joerger, A.C.; Krämer, A.; Harbig, J.; Dauch, D.; Kudolo, M.; Laufer, S.; Bagley, M.C.; Knapp, S. Selective targeting of the αC and DFG-out pocket in p38 MAPK. Eur. J. Med. Chem., 2020, 208, 112721.
[http://dx.doi.org/10.1016/j.ejmech.2020.112721] [PMID: 33035818]
[26]
Zak, M.; Mendonca, R.; Balazs, M.; Barrett, K.; Bergeron, P.; Blair, W.S.; Chang, C.; Deshmukh, G.; DeVoss, J.; Dragovich, P.S.; Eigenbrot, C.; Ghilardi, N.; Gibbons, P.; Gradl, S.; Hamman, C.; Hanan, E.J.; Harstad, E.; Hewitt, P.R.; Hurley, C.A.; Jin, T.; Johnson, A.; Johnson, T.; Kenny, J.R.; Koehler, M.F.T.; Bir Kohli, P.; Kulagowski, J.J.; Labadie, S.; Liao, J.; Liimatta, M.; Lin, Z.; Lupardus, P.J.; Maxey, R.J.; Murray, J.M.; Pulk, R.; Rodriguez, M.; Savage, S.; Shia, S.; Steffek, M.; Ubhayakar, S.; Ultsch, M.; van Abbema, A.; Ward, S.I.; Xiao, L.; Xiao, Y. Discovery and optimization of C-2 methyl imidazopyrrolopyridines as potent and orally bioavailable JAK1 inhibitors with selectivity over JAK2. J. Med. Chem., 2012, 55(13), 6176-6193.
[http://dx.doi.org/10.1021/jm300628c] [PMID: 22698084]
[27]
Boggon, T.J.; Li, Y.; Manley, P.W.; Eck, M.J. Crystal structure of the Jak3 kinase domain in complex with a staurosporine analog. Blood, 2005, 106(3), 996-1002.
[http://dx.doi.org/10.1182/blood-2005-02-0707] [PMID: 15831699]
[28]
Release, S. 2021-3: Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY, 2021; Impact, Schrödinger, LLC, New York, NY; Prime, Schrödinger, LLC: New York, NY, 2021.
[29]
Glide, S. Glide; Schrödinger, LLC: New York, NY., 2021.
[30]
Schrödinger, 2021. Available from: https://www.schrodinger.com/products/qikprop
[31]
Lagunin, A.; Zakharov, A.; Filimonov, D.; Poroikov, V. QSAR sis of PASS prediction. Mol. Inform., 2011, 30(2-3), 241-250.
[http://dx.doi.org/10.1002/minf.201000151] [PMID: 27466777]
[32]
Filimonov, D.A.; Zakharov, A.V.; Lagunin, A.A.; Poroikov, V.V. QNA-based ‘Star Track’ QSAR approach. SAR QSAR Environ. Res., 2009, 20(7-8), 679-709.
[http://dx.doi.org/10.1080/10629360903438370] [PMID: 20024804]
[33]
Chen, D.; Lan, G.; Li, R.; Mei, Y.; Shui, X.; Gu, X.; Wang, L.; Zhang, T.; Gan, C.L.; Xia, Y.; Hu, L.; Tian, Y.; Zhang, M.; Lee, T.H. Melatonin ameliorates tau-related pathology via the miR-504-3p and CDK5 axis in Alzheimer’s disease. Transl. Neurodegener., 2022, 11(1), 27.
[http://dx.doi.org/10.1186/s40035-022-00302-4] [PMID: 35527277]
[34]
Gorla, U.S.; Rao, G.S.N.K.; Alavala, R.R.; Manne, R.; Harshitha, K. In silico analysis of selected phytocompounds of cocculus hirsutus as potent inhibitors of tau aggregation in Alzheimer’s Disease. Adv Pharmacol Pharm, 2022, 10(2), 77-83.
[http://dx.doi.org/10.13189/app.2022.100201]
[35]
Bare, Y.; Krisnamurti, G.C.; Elizabeth, A.; Tribakti, Y. The potential role of caffeic acid in coffee as cyclooxygenase-2 (COX-2) inhibitor: in silico study. Biointerface Res. Appl. Chem., 2019, 9(5), 4424-4427.
[http://dx.doi.org/10.33263/BRIAC95.424427]
[36]
Kaur, B.; Singh, P. Inflammation: Biochemistry, cellular targets, anti-inflammatory agents and challenges with special emphasis on cyclooxygenase-2. Bioorg. Chem., 2022, 121, 105663.
[http://dx.doi.org/10.1016/j.bioorg.2022.105663] [PMID: 35180488]
[37]
Evans, J.; Kargman, S. Cancer and cyclooxygenase-2 (COX-2) inhibition. Curr. Pharm. Des., 2004, 10(6), 627-634.
[http://dx.doi.org/10.2174/1381612043453126] [PMID: 14965325]
[38]
Baatjes, K.; Peeters, A.; McCaul, M.; Conradie, M.M.; Apffelstaedt, J.; Conradie, M.; Kotze, M.J. CYP19A1 rs10046 pharmacogenetics in postmenopausal breast cancer patients treated with aromatase inhibitors: one-year follow-up. Curr. Pharm. Des., 2020, 26(46), 6007-6012.
[http://dx.doi.org/10.2174/1381612826666200908141858] [PMID: 32900345]
[39]
Ma, W.L.; Chang, N.; Yu, Y.; Su, Y.T.; Chen, G.Y.; Cheng, W.C.; Wu, Y.C.; Li, C.C.; Chang, W.C.; Yang, J.C. Ursolic acid silences CYP19A1/aromatase to suppress gastric cancer growth. Cancer Med., 2022, 11(14), 2824-2835.
[http://dx.doi.org/10.1002/cam4.4536] [PMID: 35545835]
[40]
Guengerich, F.P. Inhibition of cytochrome p450 enzymes by drugs-molecular basis and practical applications. Biomol. Ther., 2022, 30(1), 1-18.
[http://dx.doi.org/10.4062/biomolther.2021.102] [PMID: 34475272]
[41]
Wang, L.; Yuan, L.; Du, X.; Zhou, K.; Yang, Y.; Qin, Q.; Yang, L.; Xiang, Y.; Qu, X.; Liu, H.; Qin, X.; Liu, C. A risk model composed of complete blood count, BRAF V600E and MAP2K1 predicts inferior prognosis of langerhans cell histiocytosis in children. Front. Oncol., 2022, 12, 800786.
[http://dx.doi.org/10.3389/fonc.2022.800786] [PMID: 35186740]
[42]
Zeng, Q.X.; Wei, W.; Fan, T.Y.; Deng, H.B.; Guo, X.X.; Zhao, L.P.; Zhang, X.T.; Tang, S.; Jiang, J.D.; Li, Y.H.; Wang, Y.X.; Song, D.Q. Capture and identification of dual specificity mitogen-activated protein kinase kinase 7 as a direct proteomic target of berberine to affect the c-junn-terminal kinase pathway. CCS Chem., 2022, 4(5), 1535-1544.
[http://dx.doi.org/10.31635/ccschem.021.202100986]
[43]
Galic, V.; Coleman, R.; Herzog, T. Unmet needs in ovarian cancer: dividing histologic subtypes to exploit novel targets and pathways. Curr. Cancer Drug Targets, 2013, 13(6), 698-707.
[http://dx.doi.org/10.2174/15680096113139990002] [PMID: 23675882]
[44]
Gowtham Kumar, G.; Paul, S.F.D.; Molia, C.; Manickavasagam, M.; Ramya, R.; Usha Rani, G.; Ganesan, N.; Andrea Mary, F. The association between CYP17A1, CYP19A1, and HSD17B1 gene polymorphisms of estrogen synthesis pathway and ovarian cancer predisposition. Meta Gene, 2022, 31, 100985.
[http://dx.doi.org/10.1016/j.mgene.2021.100985]
[45]
Gou, P.; Wang, Z.; Yang, J.; Wang, X.; Qiu, X. Comparative transcriptome analysis of differentially expressed genes in the testis and ovary of sea urchin Strongylocentrotus intermedius. Fishes, 2022, 7(4), 152.
[http://dx.doi.org/10.3390/fishes7040152]
[46]
Chapouthier, G.; Venault, P. GABA-A receptor complex and memory processes. Curr. Top. Med. Chem., 2002, 2(8), 841-851.
[http://dx.doi.org/10.2174/1568026023393552] [PMID: 12171575]
[47]
Gajcy, K.; Lochyński, S.; Librowski, T. A role of GABA analogues in the treatment of neurological diseases. Curr. Med. Chem., 2010, 17(22), 2338-2347.
[http://dx.doi.org/10.2174/092986710791698549] [PMID: 20491640]
[48]
Aranđelović, J.; Santrač, A.; Batinić, B.; Todorović, L.; Stevanović, V.; Tiruveedhula, V.V.N.P.B.; Sharmin, D.; Rashid, F.; Stanojević, B.; Cook, J.M.; Savić, M.M. Effects of α5 GABA A receptor modulation on social interaction, memory, and neuroinflammation in a mouse model of Alzheimer’s disease. CNS Neurosci. Ther., 2022, 28(11), 1767-1778.
[http://dx.doi.org/10.1111/cns.13914] [PMID: 35822698]
[49]
Auta, J.; Locci, A.; Guidotti, A.; Davis, J.M.; Dong, H. Sex-dependent sensitivity to positive allosteric modulation of GABA action in an APP knock-in mouse model of Alzheimer’s disease: Potential epigenetic regulation. Current Research in Neurobiology, 2022, 3, 100025.
[http://dx.doi.org/10.1016/j.crneur.2021.100025] [PMID: 36518344]
[50]
Amar, S.; Belmaker, R.H.; Agam, G. The possible involvement of glycogen synthase kinase-3 (GSK-3) in diabetes, cancer and central nervous system diseases. Curr. Pharm. Des., 2011, 17(22), 2264-2277.
[http://dx.doi.org/10.2174/138161211797052484] [PMID: 21736545]
[51]
Fan, R. Ketamine promotes alzheimer’s-like neurodegeneration by activating glycogen synthase kinase 3 beta and inhibiting protein phosphatase 2A. Indian J. Pharm. Sci., 2022, 84(3), 569-574.
[http://dx.doi.org/10.36468/pharmaceutical-sciences.951]
[52]
Yan, N.; Shi, X.L.; Tang, L.Q.; Wang, D.F.; Li, X.; Liu, C.; Liu, Z.P. Synthesis and biological evaluation of thieno[3,2- c]pyrazol-3-amine derivatives as potent glycogen synthase kinase 3β inhibitors for Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 1724-1736.
[http://dx.doi.org/10.1080/14756366.2022.2086867] [PMID: 35698879]
[53]
Ram, H.; Jaipal, N.; Charan, J.; Kashyap, P. Efficacy of small molecule phytochemicals of petroleum ether pod extract of prosopis cineraria (l.) druce on hmg-coa reductase and biomarker indices of lipoproteins: In-vitro, In-vivo and In-silico Study. Biointerface Res. Appl. Chem., 2021, 12(3), 2988-3001.
[http://dx.doi.org/10.33263/BRIAC123.29883001]
[54]
Singh, N.; Tamariz, J.; Chamorro, G.; Medina-Franco, J. Inhibitors of HMG-CoA reductase: current and future prospects. Mini Rev. Med. Chem., 2009, 9(11), 1272-1283.
[http://dx.doi.org/10.2174/138955709789878105] [PMID: 19929805]
[55]
Azeggagh, S.; Berwick, D.C. The development of inhibitors of leucine‐rich repeat kinase 2 (LRRK2) as a therapeutic strategy for Parkinson’s disease: the current state of play. Br. J. Pharmacol., 2022, 179(8), 1478-1495.
[http://dx.doi.org/10.1111/bph.15575] [PMID: 34050929]
[56]
Vancraenenbroeck, R.; Lobbestael, E.; De Maeyer, M.; Baekelandt, V.; Taymans, J.M. Kinases as targets for Parkinson’s disease: from genetics to therapy. CNS Neurol. Disord. Drug Targets, 2011, 10(6), 724-740.
[http://dx.doi.org/10.2174/187152711797247858] [PMID: 21838679]
[57]
Duan, C.; Li, Y.; Dong, X.; Xu, W.; Ma, Y. Network pharmacology and reverse molecular docking-based prediction of the molecular targets and pathways for avicularin against cancer. Comb. Chem. High Throughput Screen., 2019, 22(1), 4-12.
[http://dx.doi.org/10.2174/1386207322666190206163409] [PMID: 30727880]
[58]
Lopez-Castillo, G.N.; Alatriste, V.; Sandoval-Ramírez, J.; Luna, F.; Carrasco-Carballo, A. Molecular docking studies of spirostans as MAPK14 (P38α) inhibitors and their potential use against cancer. J Molecul Docking, 2021, 1(2), 59-67.
[http://dx.doi.org/10.33084/jmd.v1i2.2904]
[59]
Vermani, A.; Kouznetsova, V.; Tsigelny, I. New inhibitors of the P38 mitogen-activated protein kinase: Repurposing existing drugs with deep learning. Biointerface Res. Appl. Chem., 2021, 12(4), 5384-5404.
[http://dx.doi.org/10.33263/BRIAC124.53845404]
[60]
Li, Y.; Huang, X.; Fowler, C.; Lim, Y.Y.; Laws, S.M.; Faux, N.; Doecke, J.D.; Trounson, B.; Pertile, K.; Rumble, R.; Doré, V.; Villemagne, V.L.; Rowe, C.C.; Wiley, J.S.; Maruff, P.; Masters, C.L.; Gu, B.J. Identification of leukocyte surface P2X7 as a biomarker associated with Alzheimer’s Disease. Int. J. Mol. Sci., 2022, 23(14), 7867.
[http://dx.doi.org/10.3390/ijms23147867] [PMID: 35887215]
[61]
Rague, A.; Tidgewell, K. Pharmacophore based virtual screening and docking of different aryl sulfonamide derivatives of 5HT 7. Mini Rev. Med. Chem., 2018, 18(7), 552-560.
[http://dx.doi.org/10.2174/1389557517666170913111533] [PMID: 28901854]
[62]
Guo, S.; Zhang, C.; Bratton, M.; Mottamal, M.; Liu, J.; Ma, P.; Zheng, S.; Zhong, Q.; Yang, L.; Wiese, T.E.; Wu, Y.; Ellis, M.J.; Matossian, M.; Burow, M.E.; Miele, L.; Houtman, R.; Wang, G. ZB716, a steroidal selective estrogen receptor degrader (SERD), is orally efficacious in blocking tumor growth in mouse xenograft models. Oncotarget, 2018, 9(6), 6924-6937.
[http://dx.doi.org/10.18632/oncotarget.24023] [PMID: 29467940]
[63]
Hawkesford, M.J.; Buchner, P. Molecular Analysis of Plant Adaptation to the Environment; Springer: Dordrecht, 2001.
[http://dx.doi.org/10.1007/978-94-015-9783-8]
[64]
Daoud, S.; Taha, M.O. Design and synthesis of new JAK1 inhibitors based on sulfonamide- triazine conjugates. Curr. Computeraided Drug Des., 2021, 17(7), 916-926.
[http://dx.doi.org/10.2174/1573409916666201224152253] [PMID: 33357183]
[65]
Abu Rmaileh, A.; Solaimuthu, B.; Khatib, A.; Lavi, S.; Tanna, M.; Hayashi, A.; Ben Yosef, M.; Lichtenstein, M.; Pillar, N.; Shaul, Y.D. DPYSL2 interacts with JAK1 to mediate breast cancer cell migration. J. Cell Biol., 2022, 221(7), e202106078.
[http://dx.doi.org/10.1083/jcb.202106078] [PMID: 35575798]
[66]
Su, W.; Chen, Z.; Liu, M.; He, R.; Liu, C.; Li, R.; Gao, M.; Zheng, M.; Tu, Z.; Zhang, Z.; Xu, T. Design, synthesis and structure-activity relationship studies of pyrido[2,3-d]pyrimidin-7-ones as potent Janus Kinase 3 (JAK3) covalent inhibitors. Bioorg. Med. Chem. Lett., 2022, 64, 128680.
[http://dx.doi.org/10.1016/j.bmcl.2022.128680] [PMID: 35306167]
[67]
Dai, J.; Yang, L.; Addison, G. Current status in the discovery of covalent janus kinase 3 (JAK3) inhibitors. Mini Rev. Med. Chem., 2019, 19(18), 1531-1543.
[http://dx.doi.org/10.2174/1389557519666190617152011] [PMID: 31288716]
[68]
Taylor, C.M.; Hardré, R.; Edwards, P.J.B.; Park, J.H. Factors affecting conformation in proline-containing peptides. Org. Lett., 2003, 5(23), 4413-4416.
[http://dx.doi.org/10.1021/ol035711r] [PMID: 14602013]
[69]
Qadir, M.; Cobb, J.; Sheldrake, P.W.; Whittall, N.; White, A.J.P.; Hii, K.K.M.; Horton, P.N.; Hursthouse, M.B. Conformation analyses, dynamic behavior, and amide bond distortions of medium-sized heterocycles. 2. Partially and fully reduced 1-benzazocines, benzazonines, and benzazecines. J. Org. Chem., 2005, 70(5), 1552-1557.
[http://dx.doi.org/10.1021/jo048117j] [PMID: 15730273]
[70]
Dumy, P.; Keller, M.; Ryan, D.E.; Rohwedder, B.; Wöhr, T.; Mutter, M. Pseudo-Prolines as a molecular hinge: Reversible induction of cis amide bonds into peptide Backbones. J. Am. Chem. Soc., 1997, 119(5), 918-925.
[http://dx.doi.org/10.1021/ja962780a]
[71]
Kang, Y.K. Cis−trans isomerization and puckering of pseudoproline dipeptides. J. Phys. Chem. B, 2002, 106(8), 2074-2082.
[http://dx.doi.org/10.1021/jp013608i]
[72]
Gordillo, P.G.; Aparicio, D.M.; Flores, M.; Mendoza, A.; Orea, L.; Juárez, J.R.; Huelgas, G.; Gnecco, D.; Terán, J.L. Oxazolidine sulfur ylides derived from phenylglycinol for the specific and highly diastereoselective synthesis of aryl and alkyl trans -Epoxyamides. Eur. J. Org. Chem., 2013, 2013(25), 5561-5565.
[http://dx.doi.org/10.1002/ejoc.201300732]

© 2025 Bentham Science Publishers | Privacy Policy