Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

A Comparative Study of Using Poly (D, L, Lactide-co-Glycolic Acid) and Chitosan Nanoparticle as Vaccine Delivery System for a Recombinant Fusion Protein of Newcastle Disease Virus

Author(s): Kanagaraj Vijayarani, Sundaram Arul* and Kathaperumal Kumanan

Volume 21, Issue 11, 2024

Published on: 13 July, 2023

Page: [2102 - 2110] Pages: 9

DOI: 10.2174/1570180820666230524154107

Price: $65

Abstract

Introduction: The more effective method of preventing many infectious diseases is vaccination. Numerous infectious diseases that affect both humans and animals have significantly decreased as a result of routine immunization.

Aim: The present study aimed to compare the efficacy of in-house built chitosan and Polylactide coglycolic acid (PLGA) nanoparticles coupled with Pichia pastoris expressed immunogenic fusion (F) protein of Newcastle disease (ND).

Objectives: Synthesis of biodegradable nanoparticles such as PLGA and chitosan offers a promising opportunity as a vaccine delivery system.

Methods: Chitosan nanoparticles and PLGA nanoparticles were synthesized by ionic gelation, and double emulsion solvent evaporation, respectively, and the size was 38.6± 0.84 nm and 320 ±1.5nm, respectively. They demonstrated good epitope integrity of recombinant fusion protein and in vitro release kinetics studies have proved consistent release profile of protein.

Results: In vivo pathogenicity assay of separately injected nanoparticles has proved no abnormal signs and mortality in chickens. Specific pathogen-free (SPF) chicks were vaccinated with chitosan and PLGA nanoparticles and a recombinant fusion protein of the ND virus. It was demonstrated that PLGA nanoparticles coupled with a fusion protein of Newcastle disease virus conferred a marginally better immune response than chitosan nanoparticles. Comparative study-based results showed that PLGA-based nanoparticles proved a better vaccine delivery vehicle and generated an effective immune response without needing further adjuvants.

Conclusion: The present study is a scientific platform for developing the PLGA-based vaccine delivery vehicle to improve immune responses against many infectious diseases.

[1]
Nixon, D.F.; Hioe, C.; Chen, P.; Bian, Z.; Kuebler, P.; Li, M.L.; Qiu, H.; Li, X.M.; Singh, M.; Richardson, J.; McGee, P.; Zamb, T.; Koff, W.; Wang, C.Y.; O’Hagan, D. Synthetic peptides entrapped in microparticles can elicit cytotoxic T cell activity. Vaccine, 1996, 14(16), 1523-1530.
[http://dx.doi.org/10.1016/S0264-410X(96)00099-0] [PMID: 9014294]
[2]
Danhier, F.; Ansorena, E.; Silva, J.M.; Coco, R.; Le Breton, A.; Préat, V. PLGA-based nanoparticles: An overview of biomedical applications. J. Control. Release, 2012, 161(2), 505-522.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.043] [PMID: 22353619]
[3]
Brooking, J.; Davis, S.S.; Illum, L. Transport of nanoparticles across the rat nasal mucosa. J. Drug Target., 2001, 9(4), 267-279.
[http://dx.doi.org/10.3109/10611860108997935] [PMID: 11697030]
[4]
Bouissou, C.; Rouse, J.J.; Price, R.; van der Walle, C.F. The influence of surfactant on PLGA microsphere glass transition and water sorption: Remodeling the surface morphology to attenuate the burst release. Pharm. Res., 2006, 23(6), 1295-1305.
[http://dx.doi.org/10.1007/s11095-006-0180-2] [PMID: 16715359]
[5]
Gupta, P.N.; Khatri, K.; Goyal, A.K.; Mishra, N.; Vyas, S.P. M-cell targeted biodegradable PLGA nanoparticles for oral immunization against hepatitis B. J. Drug Target., 2007, 15(10), 701-713.
[http://dx.doi.org/10.1080/10611860701637982] [PMID: 18041638]
[6]
Sanganagouda, K.; Naveen, A.N.; Shivaraj, M.; Dhinakarraj, G. Humoral immune response induced by PLGA micro particle coupled Newcastle disease virus vaccine in chickens. Poultry Science Journal., 2014, 2(1), 15-24.
[7]
Singla, A.K.; Chawla, M. Chitosan: Some pharmaceutical and biological aspects - an update. J. Pharm. Pharmacol., 2010, 53(8), 1047-1067.
[http://dx.doi.org/10.1211/0022357011776441] [PMID: 11518015]
[8]
McNeela, E.; O’Connor, D.; Jabbal-Gill, I.; Illum, L.; Davis, S.S.; Pizza, M.; Peppoloni, S.; Rappuoli, R.; Mills, K.H. A mucosal vaccine against diphtheria: Formulation of cross reacting material (CRM197) of diphtheria toxin with chitosan enhances local and systemic antibody and Th2 responses following nasal delivery. Vaccine, 2000, 19(9-10), 1188-1198.
[http://dx.doi.org/10.1016/S0264-410X(00)00309-1] [PMID: 11137256]
[9]
Calvo, P.; Remuñán-López, C.; Vila-Jato, J.L.; Alonso, M.J. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J. Appl. Polym. Sci., 1997, 63, 125-132.
[http://dx.doi.org/10.1002/(SICI)1097-4628(19970103)63:1<125::AID-APP13>3.0.CO;2-4]
[10]
Alexander, D.J. Newcastle disease and other avian paramyxovirus. Rev. Sci. Tech., 2000, 19(2), 443-462.
[http://dx.doi.org/10.20506/rst.19.2.1231] [PMID: 10935273]
[11]
Hillaireau, H.; Couvreur, P. Nanocarriers’ entry into the cell: Relevance to drug delivery. Cell. Mol. Life Sci., 2009, 66(17), 2873-2896.
[http://dx.doi.org/10.1007/s00018-009-0053-z] [PMID: 19499185]
[12]
Lee, Y.J.; Sung, H.W.; Choi, J.G.; Lee, E.K.; Yoon, H.; Kim, J.H.; Song, C.S. Protection of chickens from Newcastle disease with a recombinant baculovirus subunit vaccine expressing the fusion and hemagglutinin-neuraminidase proteins. J. Vet. Sci., 2008, 9(3), 301-308.
[http://dx.doi.org/10.4142/jvs.2008.9.3.301] [PMID: 18716451]
[13]
Perozo, F.; Villegas, P.; Estevez, C.; Alvarado, I.R.; Purvis, L.B.; Saume, E. Avian adeno-associated virus-based expression of Newcastle disease virus hemagglutinin-neuraminidase protein for poultry vaccination. Avian Dis., 2008, 52(2), 253-259.
[http://dx.doi.org/10.1637/8123-100207-Reg.1] [PMID: 18646454]
[14]
Naohiro, K.; Masahiro, N.; Mitsuru, O.; Chieko, K.; Yoshiharu, M.; Takeshi, M. Protective effect of individual glycoproteins of Newcastle disease virus expressed in insect cells: The fusion protein derived from an avirulent strain had lower protective efficacy. Virus Res., 1994, 32(3), 373-379.
[http://dx.doi.org/10.1016/0168-1702(94)90085-X] [PMID: 8079517]
[15]
Prego, C.; Paolicelli, P.; Díaz, B.; Vicente, S.; Sánchez, A.; González-Fernández, Á.; Alonso, M.J. Chitosan-based nanoparticles for improving immunization against hepatitis B infection. Vaccine, 2010, 28(14), 2607-2614.
[http://dx.doi.org/10.1016/j.vaccine.2010.01.011] [PMID: 20096389]
[16]
Xu, Y.; Du, Y. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. Int. J. Pharm., 2003, 250(1), 215-226.
[http://dx.doi.org/10.1016/S0378-5173(02)00548-3] [PMID: 12480287]

© 2024 Bentham Science Publishers | Privacy Policy