Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

Prospects and Challenges of Different Geometries of TFET Devices for IoT Applications

Author(s): Sweta Chander, Sanjeet Kumar Sinha* and Rekha Chaudhary

Volume 13, Issue 4, 2023

Published on: 15 June, 2023

Article ID: e160523216987 Pages: 10

DOI: 10.2174/2210681213666230516162511

Price: $65

Abstract

Background: The applications bas ed on IoT are nearly boundless, and the integration of the cyber world and the physical world can be done effortlessly. TFET Based IoT applications may be the future alternative to existing MOSFET-based IoT because of the faster switching speed of TFET devices.

Objectives: Prospects and challenges in a simulation study of different Geometries of TFET devices for IoT Applications.

Methods: In this manuscript, the detailed study of IoT evolution, IoT applications and challenges faced by IoT industries based on different TFET geometries have been elaborated and analyzed.

Results: The Internet of Things (IoT) is a new prototype that provides a set of new services for newgeneration technological innovations. IoT has seized the entire technological world as it can be used in every application like health, security, environmental and biomedical applications etc. The semiconductor TFET devices operating at low supply voltage and consuming the least power are most suitable for IoT applications. The devices like digital inverter, memory, adiabatic circuit, and different shaped TFET are explained as well as compared in tabular form thoroughly.

Conclusion: In next-generation devices, TFET can be widely used for low-power IoT applications because of the superior switching characteristics performance.

Graphical Abstract

[1]
Asghari, P.; Rahmani, A.M.; Javadi, H.H.S. Internet of things applications: A systematic review. Comput. Netw., 2019, 148, 241-261.
[http://dx.doi.org/10.1016/j.comnet.2018.12.008]
[2]
Aktas, F.; Ceken, C.; Erdemli, Y.E. IoT-based healthcare framework for biomedical applications. J. Med. Biol. Eng., 2018, 38(6), 966-979.
[http://dx.doi.org/10.1007/s40846-017-0349-7]
[3]
Lao, L.; Li, Z.; Hou, S.; Xiao, B.; Guo, S.; Yang, Y. A survey of IoT applications in blockchain systems: Architecture, consensus, and traffic modeling. ACM Comput. Surv., 2021, 53(1), 1-32.
[http://dx.doi.org/10.1145/3372136]
[4]
Khoi, N.M.; Saguna, S.; Mitra, K.; Ǻhlund, C. IReHMo: An efficient IoT-based remote health monitoring system for smart regions. 17th International Conference on E-health Networking, Application & Services (HealthCom); Boston, MA, USA, 2016, pp. 563-568.
[http://dx.doi.org/10.1109/HealthCom.2015.7454565]
[5]
Chander, S.; Sinha, S.K.; Chaudhary, R.; Goswami, R. Effect of noise components on L-shaped and T-shaped heterojunction tunnel field effect transistors. Semicond. Sci. Technol., 2022, 37(7), 075011.
[http://dx.doi.org/10.1088/1361-6641/ac696e]
[6]
Zhuo, C.; Luo, S.; Gan, H.; Hu, J.; Shi, Z. Noise-aware DVFS for efficient transitions on battery-powered IoT devices. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst., 2020, 39(7), 1498-1510.
[http://dx.doi.org/10.1109/TCAD.2019.2917844]
[7]
Ionescu, A.M.; Riel, H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature, 2011, 479(7373), 329-337.
[http://dx.doi.org/10.1038/nature10679] [PMID: 22094693]
[8]
Chander, S.; Sinha, S.K.; Chaudhary, R. Comprehensive review on electrical noise analysis of TFET structures. Superlattices Microstruct., 2022, 161, 107101.
[http://dx.doi.org/10.1016/j.spmi.2021.107101]
[9]
Kim, S.W.; Kim, J.H.; Liu, T.J.K.; Choi, W.Y.; Park, B.G. Demonstration of L-shaped tunnel field-effect transistors. IEEE Trans. Electron Dev., 2016, 63(4), 1774-1778.
[http://dx.doi.org/10.1109/TED.2015.2472496]
[10]
Yang, Z. Tunnel field-effect transistor with an L-shaped gate. IEEE Electron Device Lett., 2016, 37(7), 839-842.
[http://dx.doi.org/10.1109/LED.2016.2574821]
[11]
Chander, S.; Sinha, S.K.; Chaudhary, R.; Singh, A. Ge-source based L-shaped tunnel field effect transistor for low power switching application. Silicon, 2022, 14, 7435-7448.
[http://dx.doi.org/10.1007/s12633-021-01475-9]
[12]
Li, W.; Liu, H.; Wang, S.; Chen, S.; Yang, Z. Design of high performance Si/SiGe heterojunction tunneling FETs with a T-shaped gate. Nanoscale Res. Lett., 2017, 12(1), 1-8.
[http://dx.doi.org/10.1186/s11671-016-1773-2] [PMID: 28050875]
[13]
Singh, A.; Sinha, S.K.; Chander, S. Impact of fe material thickness on performance of raised source overlapped negative capacitance tunnel field effect transistor (NCTFET). Silicon, 2022, 14, 9083-9090.
[http://dx.doi.org/10.1007/s12633-022-01696-6]
[14]
Yun, S.; Oh, J.; Kang, S.; Kim, Y.; Kim, J.H.; Kim, G.; Kim, S. F-shaped tunnel field-effect transistor (tfet) for the low-power application. Micromachines, 2019, 10(11), 760.
[http://dx.doi.org/10.3390/mi10110760] [PMID: 31717540]
[15]
Neves, F.S.; Agopian, P.G.D.; Martino, J.A.; Cretu, B.; Rooyackers, R.; Vandooren, A.; Simoen, E.; Thean, A.V-Y.; Claeys, C. Low-frequency noise analysis and modeling in vertical tunnel FETs with Ge source. IEEE Trans. Electron Dev., 2016, 63(4), 1658-1665.
[http://dx.doi.org/10.1109/TED.2016.2533360]
[16]
Sinha, S.K.; Chander, S.; Chaudhary, R. Investigation of noise characteristics in gate-source overlap tunnel field-effect transistor. Silicon, 2022, 14, 10661-10668.
[http://dx.doi.org/10.1007/s12633-022-01806-4]
[17]
Vidhyadharan, S.; Yadav, R.; Hariprasad, S.; Dan, S.S. An advanced adiabatic logic using Gate Overlap Tunnel FET (GOTFET) devices for ultra-low power VLSI sensor applications. Analog Integr. Circuits Signal Process., 2020, 102(1), 111-123.
[http://dx.doi.org/10.1007/s10470-019-01561-4]
[18]
Khanna, A.; Kaur, S. Internet of things (IoT), applications and challenges: A comprehensive review. Wirel. Pers. Commun., 2020, 114(2), 1687-1762.
[http://dx.doi.org/10.1007/s11277-020-07446-4]
[19]
Díaz, M.; Martín, C.; Rubio, B. State-of-the-art, challenges, and open issues in the integration of Internet of things and cloud computing. J. Netw. Comput. Appl., 2016, 67, 99-117.
[http://dx.doi.org/10.1016/j.jnca.2016.01.010]
[20]
Whitmore, A.; Agarwal, A.; Da Xu, L. The Internet of Things—A survey of topics and trends. Inf. Syst. Front., 2015, 17(2), 261-274.
[http://dx.doi.org/10.1007/s10796-014-9489-2]
[21]
Elkhodr, M.; Shahrestani, S.; Cheung, H. The Internet of Things: Vision & challenges. IEEE 2013 Tencon - Spring; Sydney, NSW, Australia, 2013, pp. 218-222.
[http://dx.doi.org/10.1109/TENCONSpring.2013.6584443]
[22]
Ferrández-Pastor, F.; García-Chamizo, J.; Nieto-Hidalgo, M.; Mora-Pascual, J.; Mora-Martínez, J. Developing ubiquitous sensor network platform using internet of things: Application in precision agriculture. Sensors, 2016, 16(7), 1141.
[http://dx.doi.org/10.3390/s16071141] [PMID: 27455265]
[23]
Gan, G.; Lu, Z.; Jiang, J. Internet of things security analysis. International conference on internet technology and applications., Wuhan, China2011, pp. 1-4.
[http://dx.doi.org/10.1109/ITAP.2011.6006307]
[24]
Gonzalez, G.R.; Organero, M.M.; Kloos, C.D. Early infrastructure of an internet of things in spaces for learning. 2008 Eighth IEEE International Conference on Advanced Learning Technologies., Santander, Spain 2008, p. 210.
[http://dx.doi.org/10.1109/ICALT.2008.210]
[25]
Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst., 2013, 29(7), 1645-1660.
[http://dx.doi.org/10.1016/j.future.2013.01.010]
[26]
He, D.; Kumar, N.; Lee, J.H. Secure pseudonym-based near field communication protocol for the consumer internet of things. IEEE Trans. Consum. Electron., 2015, 61(1), 56-62.
[http://dx.doi.org/10.1109/TCE.2015.7064111]
[27]
Hodges, S.; Taylor, S.; Villar, N.; Scott, J.; Bial, D.; Fischer, P.T. Prototyping connected devices for the internet of things. Computer, 2013, 46(2), 26-34.
[http://dx.doi.org/10.1109/MC.2012.394]
[28]
Jayaraman, P.; Yavari, A.; Georgakopoulos, D.; Morshed, A.; Zaslavsky, A. Internet of things platform for smart farming: Experiences and lessons learnt. Sensors, 2016, 16(11), 1884.
[http://dx.doi.org/10.3390/s16111884] [PMID: 27834862]
[29]
Jia, X.; Feng, Q.; Fan, T.; Lei, Q. RFID technology and its applications in Internet of Things (IoT). International conference on consumer electronics, communications and networks (CECNet); Yichang, China, 2012, p. 6201508.
[http://dx.doi.org/10.1109/CECNet.2012.6201508]
[30]
Razzaque, M.A.; Milojevic-Jevric, M.; Palade, A.; Clarke, S. Middleware for internet of things: A survey. IEEE Internet Things J., 2016, 3(1), 70-95.
[http://dx.doi.org/10.1109/JIOT.2015.2498900]
[31]
Juels, A.; Rivest, R.L.; Szydlo, M. The blocker tag: Selective blocking of RFID tags for consumer privacy. Proceedings of the 10th ACM conference on Computer and communications security, New York, NY, United States 2003, pp. 103-111.
[http://dx.doi.org/10.1145/948109.948126]
[32]
Kaloxylos, A.; Eigenmann, R.; Teye, F.; Politopoulou, Z.; Wolfert, S.; Shrank, C.; Dillinger, M.; Lampropoulou, I.; Antoniou, E.; Pesonen, L.; Nicole, H.; Thomas, F.; Alonistioti, N.; Kormentzas, G. Farm management systems and the Future Internet era. Comput. Electron. Agric., 2012, 89, 130-144.
[http://dx.doi.org/10.1016/j.compag.2012.09.002]
[33]
Baravelli, E.; Gnani, E.; Gnudi, A.; Reggiani, S.; Baccarani, G. TFET inverters with n-/p-devices on the same technology platform for low-voltage/low-power applications. IEEE Trans. Electron Dev., 2014, 61(2), 473-478.
[http://dx.doi.org/10.1109/TED.2013.2294792]
[34]
Mitra, S.K.; Goswami, R.; Bhowmick, B. A hetero-dielectric stack gate SOI-TFET with back gate and its application as a digital inverter. Superlattices Microstruct., 2016, 92, 37-51.
[http://dx.doi.org/10.1016/j.spmi.2016.01.040]
[35]
Wang, Q.; Wang, S.; Liu, H.; Li, W.; Chen, S. Analog/RF performance of L- and U-shaped channel tunneling field-effect transistors and their application as digital inverters. Jpn. J. Appl. Phys., 2017, 56(6), 064102.
[http://dx.doi.org/10.7567/JJAP.56.064102]
[36]
Singh, A.K.; Tripathy, M.R.; Singh, P.K.; Baral, K.; Chander, S.; Jit, S. Deep insight into DC/RF and linearity parameters of a novel back gated ferroelectric TFET on SELBOX substrate for ultra low power applications. Silicon, 2021, 13(11), 3853-3863.
[http://dx.doi.org/10.1007/s12633-020-00672-2]
[37]
Luong, G.V.; Narimani, K.; Tiedemann, A.T.; Bernardy, P.; Trellenkamp, S.; Zhao, Q.T.; Mantl, S. Complementary strained Si GAA nanowire TFET inverter with suppressed ambipolarity. IEEE Electron Device Lett., 2016, 37(8), 950-953.
[http://dx.doi.org/10.1109/LED.2016.2582041]
[38]
Aswathy, M.; Biju, N.M.; Komaragiri, R. Comparison of a 30nm tunnel field effect transistor and CMOS inverter characteristics. 2013 Third International Conference on Advances in Computing and Communications., Cochin, India 2013, p. 36.
[http://dx.doi.org/10.1109/ICACC.2013.36]
[39]
Wangkheirakpam, V.D.; Bhowmick, B.; Pukhrambam, P.D. Investigation of N+ pocket-doped junctionless vertical TFET and its digital inverter application in the presence of true noises. Appl. Phys., A Mater. Sci. Process., 2020, 126(10), 798.
[http://dx.doi.org/10.1007/s00339-020-03983-8]
[40]
Vanlalawmpuia, K.; Saha, R.; Bhowmick, B. Performance evaluation of hetero-stacked TFET for variation in lateral straggle and its application as digital inverter. Appl. Phys., A Mater. Sci. Process., 2018, 124(10), 701.
[http://dx.doi.org/10.1007/s00339-018-2121-4]
[41]
Khalid, U.; Mastrandrea, A.; Olivieri, M. Effect of NBTI/PBTI aging and process variations on write failures in MOSFET and FinFET flip-flops. Microelectron. Reliab., 2015, 55(12), 2614-2626.
[http://dx.doi.org/10.1016/j.microrel.2015.07.050]
[42]
Alioto, M.; Consoli, E.; Palumbo, G. Analysis and comparison in the energy-delay-area domain of nanometer CMOS flip-flops: Part I-methodology and design strategies, IEEE Transactions on Very Large Scale Integration (VLSI). IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2011, 19(5), 725-736.
[http://dx.doi.org/10.1109/TVLSI.2010.2041376]
[43]
Alioto, M.; Consoli, E.; Palumbo, G. Analysis and comparison in the energy-delay-area domain of nanometer CMOS flip-flops: Part II—Results and figures of merit. IEEE Transactions on Very Large Scale Integration (VLSI). IEEE Trans. Very Large Scale Integr. (VLSI). Syst., 2011, 19(5), 737-750.
[http://dx.doi.org/10.1109/TVLSI.2010.2041377]
[44]
Abrishami, H.; Hatami, S.; Pedram, M. Design and multicorner optimization of the energy-delay product of CMOS flip-flops under the negative bias temperature instability effect. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst., 2013, 32(6), 869-881.
[http://dx.doi.org/10.1109/TCAD.2012.2237227]
[45]
Alioto, M.; Consoli, E.; Palumbo, G. Variations in nanometer CMOS flip-flops: Part II—energy variability and impact of other sources of variations. IEEE Trans. Circuits Syst. I Regul. Pap., 2015, 62(3), 835-843.
[http://dx.doi.org/10.1109/TCSI.2014.2366813]
[46]
Gupta, N.; Makosiej, A.; Vladimirescu, A.; Amara, A.; Anghel, C. Ultra-low-power compact TFET flip-flop design for high-performance low-voltage applications. International Symposium on Quality Electronic Design (ISQED), Santa Clara, CA, USA 2016, pp. 107-112.
[http://dx.doi.org/10.1109/ISQED.2016.7479184]
[47]
Cotter, M.; Liu, H.; Datta, S.; Narayanan, V. Evaluation of tunnel FET-based flip-flop designs for low power, high performance applications. International Symposium on Quality Electronic Design, 2013 Santa Clara, CA, USA, pp. 430-437.
[http://dx.doi.org/10.1109/ISQED.2013.6523647]
[48]
Pandey, S.; Yadav, S.; Nigam, K.; Sharma, D.; Kondekar, P.N. Realization of junctionless TFET-based power efficient 6T SRAM memory cell for internet of things applications. International Conference on Smart System, Innovations and Computing, 2018, pp. 515-523.
[http://dx.doi.org/10.1007/978-981-10-5828-8_49]
[49]
Ahmad, S.; Alam, N.; Hasan, M. Robust TFET SRAM cell for ultra-low power IoT applications. AEU Int. J. Electron. Commun., 2018, 89, 70-76.
[http://dx.doi.org/10.1016/j.aeue.2018.03.029]
[50]
Ahmad, S.; Ahmad, S.A.; Muqeem, M.; Alam, N.; Hasan, M. TFET-based robust 7T SRAM cell for low power application. IEEE Trans. Electron Dev., 2019, 66(9), 3834-3840.
[http://dx.doi.org/10.1109/TED.2019.2931567]
[51]
Yang, L.; Zhu, J.; Chen, C.; Wang, Z.; Liu, Z.; Huang, Q.; Ye, L.; Huang, R. Combinational access tunnel FET SRAM for ultra-low power applications. IEEE International Symposium on Circuits and Systems, Florence, Italy 2018, pp. 1-5.
[http://dx.doi.org/10.1109/ISCAS.2018.8351297]
[52]
Dutta, U.; Soni, M.K.; Pattanaik, M. Design and analysis of gate all around tunnel FET based SRAM. IJITEE, 2019, 8(9), 1-9.
[53]
Chen, Y.N.; Fan, M.L.; Hu, V.P.H.; Su, P.; Chuang, C.T. Evaluation of stability, performance of ultra-low voltage MOSFET, TFET, and mixed TFET-MOSFET SRAM cell with write-assist circuits. IEEE J. Emerg. Sel. Top. Circuits Syst., 2014, 4(4), 389-399.
[http://dx.doi.org/10.1109/JETCAS.2014.2361072]
[54]
Fan, M.L.; Yang, S-Y.; Hu, V.P-H.; Chen, Y-N.; Su, P.; Chuang, C-T. Single-trap-induced random telegraph noise for FinFET, Si/Ge Nanowire FET, Tunnel FET, SRAM and logic circuits. Microelectron. Reliab., 2014, 54(4), 698-711.
[http://dx.doi.org/10.1016/j.microrel.2013.12.026]
[55]
Fani, S.H.; Peiravi, A.; Farkhani, H.; Moradi, F. A novel TFET 8T-SRAM cell with improved noise margin and stability. International Symposium on Design and Diagnostics of Electronic Circuits & Systems, Budapest, Hungary 2018, pp. 39-44.
[http://dx.doi.org/10.1109/DDECS.2018.00014]
[56]
Pandey, R.; Saripalli, V.; Kulkarni, J.P.; Narayanan, V.; Datta, S. Impact of single trap random telegraph noise on heterojunction TFET SRAM stability. IEEE Electron Device Lett., 2014, 35(3), 393-395.
[http://dx.doi.org/10.1109/LED.2014.2300193]
[57]
Thapliyal, H.; Varun, T.S.S.; Kumar, S.D. Low-power and secure lightweight cryptography via TFET-based energy recovery circuits. IEEE International Conference on Rebooting Computing (ICRC), Washington, DC, USA 2017, p. 8123640.
[http://dx.doi.org/10.1109/ICRC.2017.8123640]
[58]
Pown, M.; Sandeep, S.; Lakshmi, B. Investigation of homo and hetero-junction double-gate tunnel-FET-based adiabatic inverter circuits. J. Inst. Electron. Telecommun. Eng., 2020, 2020, 1-9.
[http://dx.doi.org/10.1080/03772063.2020.1859951]
[59]
Liu, J.S.; Clavel, M.B.; Hudait, M.K. TBAL: Tunnel FET-based adiabatic logic for energy-efficient, ultra-low voltage IoT applications. IEEE J. Electron Devices Soc., 2019, 7, 210-218.
[http://dx.doi.org/10.1109/JEDS.2019.2891204]
[60]
Das, D.; Baishya, S.; Chakraborty, U. Impact of temperature on RF characteristics and electrical noise analysis of an L‐shaped gate tunnel FET with hetero‐stacked source configuration. Int. J. RF Microw. Comput.-Aided Eng., 2020, 30(9), e22310.
[http://dx.doi.org/10.1002/mmce.22310]
[61]
Čolaković, A.; Hadžialić, M. Internet of Things (IoT): A review of enabling technologies, challenges, and open research issues. Comput. Netw., 2018, 144, 17-39.
[http://dx.doi.org/10.1016/j.comnet.2018.07.017]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy