Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Discovery of Novel Lysine Methyltransferase (SMYD3) Inhibitors by Utilizing 3D-QSAR, Molecular Docking and Molecular Dynamics Simulation

Author(s): YuanZe Shi, XiaoDie Chen, JiaLi Li, Na Yu, JinPing Wu, XueMin Zhao, Mao Shu* and ZhiHua Lin

Volume 21, Issue 10, 2024

Published on: 08 May, 2023

Page: [1728 - 1744] Pages: 17

DOI: 10.2174/1570180820666230419082516

Price: $65

Abstract

Aim: To investigate novel isoxazole amide SMYD3 inhibitors as adjuvant anticancer agents for multiple cancers.

Background: SET and MYND Domain-Containing Protein 3 is a hopeful therapeutic target for breast, liver, colon, and prostate cancer.

Objective: Novel SMYD3 inhibitors were predicted by the 3D-QSAR models.

Methods: In this present work, 3D-QSAR, molecular docking and molecular dynamics (MD) simulations were performed on a series of isoxazole amides-based SMYD3 inhibitors.

Results: Molecular docking revealed residues important to protein-compound interactions, indicating that SMYD3 inhibitors have a strong affinity with and bind to key protein residues such as TYR239, MET190, LYS297 and VAL368. The molecular docking results were further validated by molecular dynamics simulations.

Conclusion: The above information provided significant guidance for the design of novel SMYD3 inhibitors.

[1]
Önder, Ö.; Sidoli, S.; Carroll, M.; Garcia, B.A. Progress in epigenetic histone modification analysis by mass spectrometry for clinical investigations. Expert Rev. Proteomics, 2015, 12(5), 499-517.
[http://dx.doi.org/10.1586/14789450.2015.1084231] [PMID: 26400466]
[2]
Meyer, M.; Rübsamen, D.; Slany, R.; Illmer, T.; Stabla, K.; Roth, P.; Stiewe, T.; Eilers, M.; Neubauer, A. Oncogenic RAS enables DNA damage- and p53-dependent differentiation of acute myeloid leukemia cells in response to chemotherapy. PLoS One, 2009, 4(11), e7768.
[http://dx.doi.org/10.1371/journal.pone.0007768] [PMID: 19890398]
[3]
Catalano, A.; Adlesic, M.; Kaltenbacher, T.; Klar, R.F.U.; Albers, J.; Seidel, P.; Brandt, L.P.; Hejhal, T.; Busenhart, P.; Röhner, N.; Zodel, K.; Fritsch, K.; Wild, P.J.; Duyster, J.; Fritsch, R.; Brummer, T.; Frew, I.J. Sensitivity and resistance of oncogenic RAS-Driven tumors to dual MEK and ERK inhibition. Cancers , 2021, 13(8), 1852.
[http://dx.doi.org/10.3390/cancers13081852] [PMID: 33924486]
[4]
Kalari, K.R.; Hebbring, S.J.; Chai, H.S.; Li, L.; Kocher, J.P.A.; Wang, L.; Weinshilboum, R.M. Copy number variation and cytidine analogue cytotoxicity: A genome-wide association approach. BMC Genomics, 2010, 11(1), 357.
[http://dx.doi.org/10.1186/1471-2164-11-357] [PMID: 20525348]
[5]
Lagger, S.; Meunier, D.; Mikula, M.; Brunmeir, R.; Schlederer, M.; Artaker, M.; Pusch, O.; Egger, G.; Hagelkruys, A.; Mikulits, W.; Weitzer, G.; Muellner, E.W.; Susani, M.; Kenner, L.; Seiser, C. Crucial function of histone deacetylase 1 for differentiation of teratomas in mice and humans. EMBO J., 2010, 29(23), 3992-4007.
[http://dx.doi.org/10.1038/emboj.2010.264] [PMID: 20967026]
[6]
Fujii, T.; Tsunesumi, S.; Yamaguchi, K.; Watanabe, S.; Furukawa, Y. Smyd3 is required for the development of cardiac and skeletal muscle in zebrafish. PLoS One, 2011, 6(8), e23491.
[http://dx.doi.org/10.1371/journal.pone.0023491] [PMID: 21887258]
[7]
Kim, J.D.; Kim, E.; Koun, S.; Ham, H.J.; Rhee, M.; Kim, M.J.; Huh, T.L. Proper activity of histone H3 Lysine 4 (H3K4) methyltransferase is required for morphogenesis during zebrafish cardiogenesis. Mol. Cells, 2015, 38(6), 580-586.
[http://dx.doi.org/10.14348/molcells.2015.0053] [PMID: 25997738]
[8]
Bernard, B.J.; Nigam, N.; Burkitt, K.; Saloura, V. SMYD3: A regulator of epigenetic and signaling pathways in cancer. Clin. Epigenetics, 2021, 13(1), 45.
[http://dx.doi.org/10.1186/s13148-021-01021-9] [PMID: 33637115]
[9]
Su, D.S.; Qu, J.; Schulz, M.; Blackledge, C.W.; Yu, H.; Zeng, J.; Burgess, J.; Reif, A.; Stern, M.; Nagarajan, R.; Pappalardi, M.B.; Wong, K.; Graves, A.P.; Bonnette, W.; Wang, L.; Elkins, P.; Knapp-Reed, B.; Carson, J.D.; McHugh, C.; Mohammad, H.; Kruger, R.; Luengo, J.; Heerding, D.A.; Creasy, C.L. Discovery of isoxazole amides as potent and selective SMYD3 inhibitors. ACS Med. Chem. Lett., 2020, 11(2), 133-140.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00493] [PMID: 32071679]
[10]
Ye, F.; Ma, P.; Zhang, Y.Y.; Li, P.; Yang, F.; Fu, Y. Herbicidal activity and molecular docking study of novel accase inhibitors. Front. Plant Sci., 2018, 9, 1850.
[http://dx.doi.org/10.3389/fpls.2018.01850] [PMID: 30619418]
[11]
Wu, X.Y.; Chen, W.H.; Wu, S.G.; Tian, Y.X.; Zhang, J.J. Pyrrolo[3,2-d]pyrimidine derivatives as type II kinase insert domain receptor (KDR) inhibitors: CoMFA and CoMSIA studies. Int. J. Mol. Sci., 2012, 13(2), 2387-2404.
[http://dx.doi.org/10.3390/ijms13022387] [PMID: 22408460]
[12]
Hou, Y.; Zhao, Y.; Li, Y. Environmentally friendly fluoroquinolone derivatives with lower plasma protein binding rate designed using 3D-QSAR, molecular docking and molecular dynamics simulation. Int. J. Environ. Res. Public Health, 2020, 17(18), 6626.
[http://dx.doi.org/10.3390/ijerph17186626] [PMID: 32932916]
[13]
Ren, Z.; Wang, Y.; Xu, H.; Li, Y.; Han, S. Fuzzy comprehensive evaluation assistant 3d-qsar of environmentally friendly FQs to reduce ADRs. Int. J. Environ. Res. Public Health, 2019, 16(17), 3161.
[http://dx.doi.org/10.3390/ijerph16173161] [PMID: 31470687]
[14]
Wang, X.; Zhang, M.; Zhu, R.; Wu, Z.; Wu, F.; Wang, Z.; Yu, Y. Design, synthesis, biological evaluation, and molecular modeling of 2-difluoromethylbenzimidazole derivatives as potential PI3KA inhibitors. Molecules, 2022, 27(2), 387.
[http://dx.doi.org/10.3390/molecules27020387]
[15]
Ghosh, S.; Keretsu, S.; Cho, S.J. Molecular modeling studies of N-phenylpyrimidine-4-amine derivatives for inhibiting FMS-like tyrosine kinase-3. Int. J. Mol. Sci., 2021, 22(22), 12511.
[http://dx.doi.org/10.3390/ijms222212511] [PMID: 34830393]
[16]
Wang, Y.; Guo, Y.; Qiang, S.; Jin, R.; Li, Z.; Tang, Y.; Leung, E.L.H.; Guo, H.; Yao, X. 3D-QSAR, molecular docking, and MD simulations of anthraquinone derivatives as PGAM1 inhibitors. Front. Pharmacol., 2021, 12, 764351.
[http://dx.doi.org/10.3389/fphar.2021.764351] [PMID: 34899321]
[17]
Zhu, J.; Wu, Y.; Xu, L.; Jin, J. Theoretical studies on the selectivity mechanisms of glycogen synthase kinase 3Î2 (GSK3Î2) with pyrazine atp-competitive inhibitors by 3DQSAR, Molecular docking, molecular dynamics simulation and free energy calculations. Curr. Computeraided Drug Des., 2020, 16(1), 17-30.
[http://dx.doi.org/10.2174/18756697OTk0jNDkgTcVY] [PMID: 31284868]
[18]
Yang, J.; Gu, W.; Li, Y. Biological enrichment prediction of polychlorinated biphenyls and novel molecular design based on 3D-QSAR/HQSAR associated with molecule docking. Biosci. Rep., 2019, 39(5), BSR20180409.
[http://dx.doi.org/10.1042/BSR20180409] [PMID: 31101726]
[19]
Liu, H.; Wang, X.; Wang, J.; Wang, J.; Li, Y.; Yang, L.; Li, G. Structural determinants of CX-4945 derivatives as protein kinase CK2 inhibitors: A computational study. Int. J. Mol. Sci., 2011, 12(10), 7004-7021.
[http://dx.doi.org/10.3390/ijms12107004] [PMID: 22072932]
[20]
Kumar, R.; Långström, B.; Darreh-Shori, T. Novel ligands of Choline Acetyltransferase designed by in silico molecular docking, hologram QSAR and lead optimization. Sci. Rep., 2016, 6(1), 31247.
[http://dx.doi.org/10.1038/srep31247] [PMID: 27507101]
[21]
Daoui, O.; Mazoir, N.; Bakhouch, M.; Salah, M.; Benharref, A.; Gonzalez-Coloma, A.; Elkhattabi, S.; Yazidi, M.E.; Chtita, S. 3D-QSAR, ADME-Tox, and molecular docking of semisynthetic triterpene derivatives as antibacterial and insecticide agents. Struct. Chem., 2022, 33(4), 1063-1084.
[http://dx.doi.org/10.1007/s11224-022-01912-4] [PMID: 35345415]
[22]
Wendt, B.; Cramer, R.D. Challenging the gold standard for 3D-QSAR: template CoMFA versus X-ray alignment. J. Comput. Aided Mol. Des., 2014, 28(8), 803-824.
[http://dx.doi.org/10.1007/s10822-014-9761-z] [PMID: 24934658]
[23]
Gu, C.; Goodarzi, M.; Yang, X.; Bian, Y.; Sun, C.; Jiang, X. Predictive insight into the relationship between AhR binding property and toxicity of polybrominated diphenyl ethers by PLS-derived QSAR. Toxicol. Lett., 2012, 208(3), 269-274.
[http://dx.doi.org/10.1016/j.toxlet.2011.11.010] [PMID: 22119921]
[24]
Djapovic, M.; Milivojevic, D.; Ilic-Tomic, T.; Lješević, M.; Nikolaivits, E.; Topakas, E.; Maslak, V.; Nikodinovic-Runic, J. Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases. Chemosphere, 2021, 275, 130005.
[http://dx.doi.org/10.1016/j.chemosphere.2021.130005] [PMID: 33640747]
[25]
Jing, P.; Zhao, S.; Ruan, S.; Sui, Z.; Chen, L.; Jiang, L.; Qian, B. Quantitative studies on structure–ORAC relationships of anthocyanins from eggplant and radish using 3D-QSAR. Food Chem., 2014, 145, 365-371.
[http://dx.doi.org/10.1016/j.foodchem.2013.08.082] [PMID: 24128490]
[26]
Zhang, L.; Tsai, K.C.; Du, L.; Fang, H.; Li, M.; Xu, W. How to generate reliable and predictive CoMFA models. Curr. Med. Chem., 2011, 18(6), 923-930.
[http://dx.doi.org/10.2174/092986711794927702] [PMID: 21182474]
[27]
Tosco, P.; Balle, T. A 3D-QSAR-driven approach to binding mode and affinity prediction. J. Chem. Inf. Model., 2012, 52(2), 302-307.
[http://dx.doi.org/10.1021/ci200411s] [PMID: 22087561]
[28]
Roy, K. On some aspects of validation of predictive quantitative structure–activity relationship models. Expert Opin. Drug Discov., 2007, 2(12), 1567-1577.
[http://dx.doi.org/10.1517/17460441.2.12.1567] [PMID: 23488901]
[29]
Ai, Y.; Wang, S.T.; Sun, P.H.; Song, F.J. Molecular modeling studies of 4,5-dihydro-1H-pyrazolo[4,3-h] quinazoline derivatives as potent CDK2/Cyclin a inhibitors using 3D-QSAR and docking. Int. J. Mol. Sci., 2010, 11(10), 3705-3724.
[http://dx.doi.org/10.3390/ijms11103705] [PMID: 21152296]
[30]
Donvito, G.; Piscitelli, F.; Muldoon, P.; Jackson, A.; Vitale, R.M.; D’Aniello, E.; Giordano, C.; Ignatowska-Jankowska, B.M.; Mustafa, M.A.; Guida, F.; Petrie, G.N.; Parker, L.; Smoum, R.; Sim-Selley, L.; Maione, S.; Lichtman, A.H.; Damaj, M.I.; Di Marzo, V.; Mechoulam, R. N-Oleoyl-glycine reduces nicotine reward and withdrawal in mice. Neuropharmacology, 2019, 148, 320-331.
[http://dx.doi.org/10.1016/j.neuropharm.2018.03.020] [PMID: 29567093]
[31]
Götz, A.W.; Williamson, M.J.; Xu, D.; Poole, D.; Le Grand, S.; Walker, R.C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. J. Chem. Theory Comput., 2012, 8(5), 1542-1555.
[http://dx.doi.org/10.1021/ct200909j] [PMID: 22582031]
[32]
Salomon-Ferrer, R.; Götz, A.W.; Poole, D.; Le Grand, S.; Walker, R.C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. explicit solvent particle mesh ewald. J. Chem. Theory Comput., 2013, 9(9), 3878-3888.
[http://dx.doi.org/10.1021/ct400314y] [PMID: 26592383]
[33]
Sprenger, K.G.; Jaeger, V.W.; Pfaendtner, J. The general AMBER force field (GAFF) can accurately predict thermodynamic and transport properties of many ionic liquids. J. Phys. Chem. B, 2015, 119(18), 5882-5895.
[http://dx.doi.org/10.1021/acs.jpcb.5b00689] [PMID: 25853313]
[34]
Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J.L.; Dror, R.O.; Shaw, D.E. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins, 2010, 78(8), 1950-1958.
[http://dx.doi.org/10.1002/prot.22711] [PMID: 20408171]
[35]
Carbajo, D.; Pérez, Y.; Guerra-Rebollo, M.; Prats, E.; Bujons, J.; Alfonso, I. Dynamic combinatorial optimization of in vitro and in vivo heparin antidotes. J. Med. Chem., 2022, 65(6), 4865-4877.
[http://dx.doi.org/10.1021/acs.jmedchem.1c02054] [PMID: 35235323]
[36]
Weng, G.; Wang, E.; Chen, F.; Sun, H.; Wang, Z.; Hou, T. Assessing the performance of MM/PBSA and MM/GBSA methods. 9. Prediction reliability of binding affinities and binding poses for protein–peptide complexes. Phys. Chem. Chem. Phys., 2019, 21(19), 10135-10145.
[http://dx.doi.org/10.1039/C9CP01674K] [PMID: 31062799]
[37]
Huang, K.; Luo, S.; Cong, Y.; Zhong, S.; Zhang, J.Z.H.; Duan, L. An accurate free energy estimator: Based on MM/PBSA combined with interaction entropy for protein–ligand binding affinity. Nanoscale, 2020, 12(19), 10737-10750.
[http://dx.doi.org/10.1039/C9NR10638C] [PMID: 32388542]
[38]
Alqahtani, S. In silico ADME-Tox modeling: Progress and prospects. Expert Opin. Drug Metab. Toxicol., 2017, 13(11), 1147-1158.
[http://dx.doi.org/10.1080/17425255.2017.1389897] [PMID: 28988506]
[39]
Sepehri, S.; Razzaghi-Asl, N.; Mirzayi, S.; Mahnam, K.; Adhami, V. In silico screening and molecular dynamics simulations toward new human papillomavirus 16 type inhibitors. Res. Pharm. Sci., 2022, 17(2), 189-208.
[http://dx.doi.org/10.4103/1735-5362.335177] [PMID: 35280831]
[40]
Abdizadeh, T.; Ghodsi, R.; Hadizadeh, F. 3D-QSAR (CoMFA, CoMSIA) and molecular docking studies on histone deacetylase 1 selective inhibitors. Recent Patents Anticancer Drug Discov., 2017, 12(4), 365-383.
[PMID: 28482791]
[41]
Chen, Y.; Tian, Y.; Gao, Y.; Wu, F.; Luo, X.; Ju, X.; Liu, G. In silico design of novel HIV-1 NNRTIs based on combined modeling studies of dihydrofuro[3,4-d]pyrimidines. Front Chem., 2020, 8, 164.
[http://dx.doi.org/10.3389/fchem.2020.00164] [PMID: 32266208]
[42]
Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem., 2015, 58(9), 4066-4072.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00104] [PMID: 25860834]
[43]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]

© 2024 Bentham Science Publishers | Privacy Policy