Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Computational Studies to Explore Plant-based Inhibitors for Enoyl- (Acyl Carrier Protein)- Reductase (InhA) of Mycobacterium tuberculosis

Author(s): Divya Singh and Anjana Pandey*

Volume 21, Issue 10, 2024

Published on: 10 May, 2023

Page: [1716 - 1727] Pages: 12

DOI: 10.2174/1570180820666230413090737

Price: $65

Abstract

Aims: A computational approach has been adopted to find therapeutically potent herbal compounds with anti-TB properties.

Background: The second largest cause of death globally is Mycobacterium tuberculosis. Considering that the BCG vaccine is only marginally effective. This study has focused on enoyl- (acyl carrier protein)- reductase (InhA), one of the important enzymes in M. tuberculosis's type II fatty acid (mycolic acid synthesis) biosynthesis pathway. Bioinformatics-based tools have been used to explore therapeutically sound phytocompounds against InhA.

Objective: To conduct an insightful study using bioinformatics-based tools to explore phytocompounds originating from different medicinal plants which would act as potent inhibitors of enoyl - (acyl carrier protein)- reductase (InhA) to obstruct the growth of M. tuberculosis.

Method: Molecular docking (using EasyDockVina) has been used for screening the 150 phytocompounds against Enoyl - (acyl carrier protein)- reductase (InhA). AMDET analysis was performed using DruLito and protox II to test the drug-likeness properties of phytocompounds.

Result: From the results of molecular docking and two-dimensional interaction, it is concluded that Licoflavone B, Tembaterine, Colubrine and Shinpterocarpin are the potent inhibitors of InhA.

Conclusion: According to this study, Licoflavone B, Tembaterine, Columbin, and Shinpterocarpin have positively passed AMDET screening and have high docking scores. These phytocompounds can be considered safe drug candidates against InhA of Mycobacterium tuberculosis.

[1]
Koch, A.; Mizrahi, V. Mycobacterium tuberculosis. Trends Microbiol., 2018, 26(6), 555-556.
[http://dx.doi.org/10.1016/j.tim.2018.02.012] [PMID: 29580884]
[2]
Ehrt, S.; Schnappinger, D.; Rhee, K.Y. Metabolic principles of persistence and pathogenicity in Mycobacterium tuberculosis. Nat. Rev. Microbiol., 2018, 16(8), 496-507.
[http://dx.doi.org/10.1038/s41579-018-0013-4] [PMID: 29691481]
[3]
Banerjee, A.; Dubnau, E.; Quemard, A.; Balasubramanian, V.; Um, K.S.; Wilson, T.; Collins, D.; de Lisle, G.; Jacobs, W.R., Jr InhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science, 1994, 263(5144), 227-230.
[http://dx.doi.org/10.1126/science.8284673] [PMID: 8284673]
[4]
Lou, Z.; Zhang, X. Protein targets for structure-based anti-Mycobacterium tuberculosis drug discovery. Protein Cell, 2010, 1(5), 435-442.
[http://dx.doi.org/10.1007/s13238-010-0057-3] [PMID: 21203958]
[5]
Frieden, T.R.; Sterling, T.R.; Munsiff, S.S.; Watt, C.J.; Dye, C. Tuberculosis. Lancet, 2003, 362(9387), 887-899.
[http://dx.doi.org/10.1016/S0140-6736(03)14333-4] [PMID: 13678977]
[6]
Bañuls, A.L.; Sanou, A.; Van Anh, N.T.; Godreuil, S. Mycobacterium tuberculosis: Ecology and evolution of a human bacterium. J. Med. Microbiol., 2015, 64(11), 1261-1269.
[http://dx.doi.org/10.1099/jmm.0.000171] [PMID: 26385049]
[7]
Beg, M.; Athar, F. Pharmacokinetic and molecular docking studies of Achyranthes aspera phytocompounds to exploring potential anti-tuberculosis activity. J. Bacteriol. Mycol. Open Access, 2020, 8(1), 18-27.
[8]
Kamsri, P.; Hanwarinroj, C.; Phusi, N.; Pornprom, T.; Chayajarus, K.; Punkvang, A.; Suttipanta, N.; Srimanote, P.; Suttisintong, K.; Songsiriritthigul, C.; Saparpakorn, P.; Hannongbua, S.; Rattanabunyong, S.; Seetaha, S.; Choowongkomon, K.; Sureram, S.; Kittakoop, P.; Hongmanee, P.; Santani-rand, P.; Chen, Z.; Zhu, W.; Blood, R.A.; Takebayashi, Y.; Hinchliffe, P.; Mulholland, A.J.; Spencer, J.; Pungpo, P. Discovery of new and potent InhA inhibitors as antituberculosis agents: structure-based virtual screening validated by biological assays and X-ray crystallography. J. Chem. Inf. Model., 2020, 60(1), 226-234.
[http://dx.doi.org/10.1021/acs.jcim.9b00918] [PMID: 31820972]
[9]
Guex, N.; Peitsch, M. C. SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment for comparative protein modeling. electrophoresis. 1997, 18(15), 2714-2723.
[10]
Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Res., 2018, 46(W1), W363-W367.
[http://dx.doi.org/10.1093/nar/gky473] [PMID: 29860391]
[11]
Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. Pub-Chem 2019 update: Improved access to chemical data. Nucleic Acids Res., 2019, 47(D1), D1102-D1109.
[http://dx.doi.org/10.1093/nar/gky1033] [PMID: 30371825]
[12]
Sterling, T.; Irwin, J.J. ZINC 15–ligand discovery for everyone. J. Chem. Inf. Model., 2015, 55(11), 2324-2337.
[http://dx.doi.org/10.1021/acs.jcim.5b00559] [PMID: 26479676]
[13]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[14]
Almeleebia, T.M.; Shahrani, M.A.; Alshahrani, M.Y.; Ahmad, I.; Alkahtani, A.M.; Alam, M.J.; Kausar, M.A.; Saeed, A.; Saeed, M.; Iram, S. Identification of new Mycobacterium tuberculosis proteasome inhibitors using a knowledge-based computational screening approach. Molecules, 2021, 26(8), 2326.
[http://dx.doi.org/10.3390/molecules26082326] [PMID: 33923734]
[15]
Kar, S.; Leszczynski, J. Open access in silico tools to predict the ADMET profiling of drug candidates. Expert Opin. Drug Discov., 2020, 15(12), 1473-1487.
[http://dx.doi.org/10.1080/17460441.2020.1798926] [PMID: 32735147]
[16]
Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(W1), W257-W263.
[http://dx.doi.org/10.1093/nar/gky318] [PMID: 29718510]
[17]
Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng. Des. Sel., 1995, 8(2), 127-134.
[http://dx.doi.org/10.1093/protein/8.2.127] [PMID: 7630882]
[18]
Dong, J.; Wang, N.N.; Yao, Z.J.; Zhang, L.; Cheng, Y.; Ouyang, D.; Lu, A.P.; Cao, D.S. ADMETlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J. Cheminform., 2018, 10(1), 29.
[http://dx.doi.org/10.1186/s13321-018-0283-x] [PMID: 29943074]
[19]
Kim, S.K.; Lee, S. Drug-likeness and oral bioavailability for chemical compounds of medicinal materials constituting oryeong-san. Korea J. Herbol., 2018, 33(5), 19-37.
[20]
DeLano, W.L.; Bromberg, S. PyMOL user’s guide; DeLano Scientific LLC, 2004, p. 629.

© 2025 Bentham Science Publishers | Privacy Policy