Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Discovery of Multi-functional Lead Compounds Originating from Traditional Chinese Medicine for Developing Anti-depressive Agents via Virtual Screening

Author(s): Mo Jiajia, Xu Qinlong, Li Jiaming*, Chu Zhaoxing*, Ma Xiaodong, Zhu Qihua and He Guangwei

Volume 21, Issue 10, 2024

Published on: 08 May, 2023

Page: [1745 - 1754] Pages: 10

DOI: 10.2174/1570180820666230418104418

Price: $65

Abstract

Background: The increasing prevalence of depression has become a global health issue. Currently approved anti-depressive including 5-hydroxytryptamine (5-HT), dopamine (DA), norepinephrine (NE), triple reuptake inhibitors (TRIs) and glutamate N-methyl-D-aspartate (NMDA) receptor antagonists have limited effects because of their insufficient efficacy and/or slow onset of action. Developing multifunctional antidepressants that can modulate 5-HT, DA, NE, and NMDA simultaneously can potentially overcome the current drug defects.

Objective: This study aimed to explore leads for the development of multi-functional anti-depressive agents that simultaneous triple reuptake inhibitory and NMDA-GluN2B receptor antagonistic activities.

Methods: Potential leads were screened virtually from the TCMSP database based on the 3DPharmacophore model of TRIs followed by the molecular docking into NMDA-GluN2B receptor, BBB score, and the in silico toxicity evaluation. The biological activities of discovered leads on 5-HT, NE, and DA reuptake and their effect on the NMDA-GluN2B receptor were evaluated via radio-labeled neurotransmitters and competition radio-ligand binding experiment with [3H] ifenprodil, respectively. Lastly, the antidepressant effect of these potential leads was determined in vivo through the forced swim test in mice.

Results: Two compounds were attained as potential leads after the aforementioned experiments. Further in vitro biological evaluation identified Hit-2 as a promising lead that exerted favorable triple 5- HT/DA/NE reuptake inhibitory activity (66.98% inhibition rate at 10 μM against hNET, 73.01% inhibition rate at 1 μM against hDAT and 86.27% inhibition rate at 1 μM against hSERT), as well as potent NMDA-GluN2B receptor antagonistic activity (Ki=115.73 ± 3.54 nM). The antidepressant activity of Hit- 2 was confirmed through in vivo experiments

Conclusion: Hit-2 not only simultaneously inhibited the reuptake of 5-HT, DA, and NE, and acted as an NMDA-GluN2B receptor antagonist in vitro but also showed in vivo antidepressant activity. These findings may serve as a structural basis for the further development of multi-functional anti-depressive agents.

[1]
Sheet, D.F. World Health Organization; WHO: Geneva, 2017.
[2]
Gaynes, B.N.; Warden, D.; Trivedi, M.H.; Wisniewski, S.R.; Fava, M.; Rush, A.J. What did STAR*D teach us? Results from a large-scale, practical, clinical trial for patients with depression. Psychiatr. Serv., 2009, 60(11), 1439-1445.
[http://dx.doi.org/10.1176/ps.2009.60.11.1439] [PMID: 19880458]
[3]
Sim, K.; Lau, W.K.; Sim, J.; Sum, M.Y.; Baldessarini, R.J. Prevention of relapse and recurrence in adults with major depressive disorder: Systematic review and meta-analyses of controlled trials. Int. J. Neuropsychopharmacol., 2016, 19(2), pyv076.
[http://dx.doi.org/10.1093/ijnp/pyv076] [PMID: 26152228]
[4]
Research progress of antidepressants with new mechanism of action. Zhongguo Yaowu Huaxue Zazhi, 2018, 28(3), 237-244.
[http://dx.doi.org/10.14142/j.cnki.cn21-1313/r.2018.03.011]
[5]
Progress of development research on targets and drugs for magor depressive dosorder. Chin. Med. J., 2018, 38(4), 443-449.
[http://dx.doi.org/10.13286/j.cnki.chinhosppharmacyj.2018.04.21]
[6]
Tran, P.; Skolnick, P.; Czobor, P.; Huang, N.Y.; Bradshaw, M.; McKinney, A.; Fava, M. Efficacy and tolerability of the novel triple reuptake inhibitor amitifadine in the treatment of patients with major depressive disorder: a randomized, double-blind, placebo-controlled trial. J. Psychiatr. Res., 2012, 46(1), 64-71.
[7]
Skolnick, P.; Basile, A. Triple reuptake inhibitors (“broad spectrum” antidepressants). CNS Neurol. Disord. Drug Targets, 2007, 6(2), 141-149.
[http://dx.doi.org/10.2174/187152707780363285] [PMID: 17430151]
[8]
Subbaiah, M.A.M. Triple reuptake inhibitors as potential therapeutics for depression and other disorders: Design paradigm and developmental challenges. J. Med. Chem., 2018, 61(6), 2133-2165.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01827] [PMID: 28731336]
[9]
Learned, S.; Graff, O.; Roychowdhury, S.; Moate, R.; Krishnan, K.R.; Archer, G.; Modell, J.G.; Alexander, R.; Zamuner, S.; Lavergne, A.; Evoniuk, G.; Ratti, E. Efficacy, safety, and tolerability of a triple reuptake inhibitor GSK372475 in the treatment of patients with major depressive disorder: Two randomized, placebo- and active-controlled clinical trials. J. Psychopharmacol., 2012, 26(5), 653-662.
[http://dx.doi.org/10.1177/0269881111424931] [PMID: 22048884]
[10]
Falcucci, R.M.; Wertz, R.; Green, J.L.; Meucci, O.; Salvino, J.; Fontana, A.C.K. Novel positive allosteric modulators of glutamate transport have neuroprotective properties in an in vitro Excitotoxic Model. ACS Chem. Neurosci., 2019, 10(8), 3437-3453.
[http://dx.doi.org/10.1021/acschemneuro.9b00061] [PMID: 31257852]
[11]
Hardingham, G.E.; Fukunaga, Y.; Bading, H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat. Neurosci., 2002, 5(5), 405-414.
[http://dx.doi.org/10.1038/nn835] [PMID: 11953750]
[12]
Moscato, E.H.; Peng, X.; Jain, A.; Parsons, T.D.; Dalmau, J.; Balice-Gordon, R.J. Acute mechanisms underlying antibody effects in anti-N-methyl-D-aspartate receptor encephalitis. Ann. Neurol., 2014, 76(1), 108-119.
[http://dx.doi.org/10.1002/ana.24195] [PMID: 24916964]
[13]
Yang, Y.; Cui, Y.; Sang, K.; Dong, Y.; Ni, Z.; Ma, S.; Hu, H. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature, 2018, 554(7692), 317-322.
[http://dx.doi.org/10.1038/nature25509] [PMID: 29446381]
[14]
Cui, Y.; Yang, Y.; Ni, Z.; Dong, Y.; Cai, G.; Foncelle, A.; Ma, S.; Sang, K.; Tang, S.; Li, Y.; Shen, Y.; Berry, H.; Wu, S.; Hu, H. Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature, 2018, 554(7692), 323-327.
[http://dx.doi.org/10.1038/nature25752] [PMID: 29446379]
[15]
Traynelis, S.F.; Wollmuth, L.P.; McBain, C.J.; Menniti, F.S.; Vance, K.M.; Ogden, K.K.; Hansen, K.B.; Yuan, H.; Myers, S.J.; Dingledine, R. Glutamate receptor ion channels: Structure, regulation, and function. Pharmacol. Rev., 2010, 62(3), 405-496.
[http://dx.doi.org/10.1124/pr.109.002451] [PMID: 20716669]
[16]
Paoletti, P.; Bellone, C.; Zhou, Q. NMDA receptor subunit diversity: Impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci., 2013, 14(6), 383-400.
[http://dx.doi.org/10.1038/nrn3504] [PMID: 23686171]
[17]
Duman, R.S.; Aghajanian, G.K. Synaptic dysfunction in depression: Potential therapeutic targets. Science, 2012, 338(6103), 68-72.
[http://dx.doi.org/10.1126/science.1222939] [PMID: 23042884]
[18]
Baudot, J.; Soeiro, T.; Tambon, M.; Navarro, N.; Veyrac, G.; Mezaache, S.; Micallef, J. Safety concerns on the abuse potential of esketamine: Multidimensional analysis of a new anti-depressive drug on the market. Fundam. Clin. Pharmacol., 2022, 36(3), 572-581.
[http://dx.doi.org/10.1111/fcp.12745] [PMID: 34907579]
[19]
Axsome Therapeutics Announces FDA Approval of AUVELITY™, the First and Only Oral NMDA Receptor Antagonist for the Treatment of Major Depressive Disorder in Adults. Available from: https://www.biospace.com/article/releases/axsome-therapeutics-announces-fda-approval-of-auvelity-the-first-and-only-oral-nmda-receptor-antagonist-for-the-treatment-of-major-depressive-disorder-in-adults/
[20]
Sapkota, K.; Mao, Z.; Synowicki, P.; Lieber, D.; Liu, M.; Ikezu, T.; Gautam, V.; Monaghan, D.T. GluN2D N-Methyl-D-aspartate receptor subunit contribution to the stimulation of brain activity and gamma oscillations by ketamine: Implications for schizophrenia. J. Pharmacol. Exp. Ther., 2016, 356(3), 702-711.
[http://dx.doi.org/10.1124/jpet.115.230391] [PMID: 26675679]
[21]
Williams, K. Ifenprodil discriminates subtypes of the N-methyl-D-aspartate receptor: Selectivity and mechanisms at recombinant heteromeric receptors. Mol. Pharmacol., 1993, 44(4), 851-859.
[PMID: 7901753]
[22]
Ya, M.Y. The exploration on the rapid antidepressant action of ifenprodil: a NR2B-subunit containing NMDA receptor antagonist. Ph.D. Thesis, Shanghai Jiao Tong University: China, 2020.
[http://dx.doi.org/10.27307/d.cnki.gsjtu.2020.000297]
[23]
Young, A.R.; Bouloy, M.; Boussard, J.F.; Edvinsson, L.; MacKenzie, E.T. Direct vascular effects of agents used in the pharmacotherapy of cerebrovascular disease on isolated cerebral vessels. J. Cereb. Blood Flow Metab., 1981, 1(1), 117-128.
[http://dx.doi.org/10.1038/jcbfm.1981.12] [PMID: 7328134]
[24]
Baumeister, S.; Schepmann, D.; Wünsch, B. Synthesis and receptor binding of thiophene bioisosteres of potent GluN2B ligands with a benzo[7]annulene-scaffold. MedChemComm, 2019, 10(2), 315-325.
[http://dx.doi.org/10.1039/C8MD00545A] [PMID: 30881618]
[25]
Ravikumar, B.; Aittokallio, T. Improving the efficacy-safety balance of polypharmacology in multi-target drug discovery. Expert Opin. Drug Discov., 2018, 13(2), 179-192.
[http://dx.doi.org/10.1080/17460441.2018] [PMID: 29233023]
[26]
Paudel, S.; Min, X.; Acharya, S.; Khadka, D.B.; Yoon, G.; Kim, K.M.; Cheon, S.H. Triple reuptake inhibitors: Design, synthesis and structure–activity relationship of benzylpiperidine–tetrazoles. Bioorg. Med. Chem., 2017, 25(20), 5278-5289.
[http://dx.doi.org/10.1016/j.bmc.2017.07.046] [PMID: 28807575]
[27]
Vadivelan, S.; Sinha, B.N.; Rambabu, G.; Boppana, K.; Jagarlapudi, S.A.R.P. Pharmacophore modeling and virtual screening studies to design some potential histone deacetylase inhibitors as new leads. J. Mol. Graph. Model., 2008, 26(6), 935-946.
[http://dx.doi.org/10.1016/j.jmgm.2007.07.002] [PMID: 17707666]
[28]
Mohamed, A.I.; Ahmed, O.A.A.; Amin, S.; Elkadi, O.A.; Kassem, M.A. In vivo evaluation of clindamycin release from glyceryl monooleate-alginate microspheres by NIR spectroscopy. Int. J. Pharm., 2015, 494(1), 127-135.
[http://dx.doi.org/10.1016/j.ijpharm.2015.08.032] [PMID: 26276253]
[29]
Lu, S.H.; Wu, J.W.; Liu, H.L.; Zhao, J.H.; Liu, K.T.; Chuang, C.K.; Lin, H.Y.; Tsai, W.B.; Ho, Y. The discovery of potential acetylcholinesterase inhibitors: A combination of pharmacophore modeling, virtual screening, and molecular docking studies. J. Biomed. Sci., 2011, 18(1), 8.
[http://dx.doi.org/10.1186/1423-0127-18-8] [PMID: 21251245]
[30]
Yuan, K.; Min, W.; Wang, X.; Li, J.; Kuang, W.; Zhang, F.; Xie, S.; Yang, P. Discovery of novel and selective CDK4/6 inhibitors by pharmacophore and structure-based virtual screening. Future Med. Chem., 2020, 12(12), 1121-1136.
[http://dx.doi.org/10.4155/fmc-2020-0011] [PMID: 32400188]
[31]
Vanommeslaeghe, K.; MacKerell, A.D., Jr Automation of the CHARMM general force field (CGenFF) I: Bond perception and atom typing. J. Chem. Inf. Model., 2012, 52(12), 3144-3154.
[http://dx.doi.org/10.1021/ci300363c] [PMID: 23146088]
[32]
Ulbrich, M.H.; Isacoff, E.Y. Rules of engagement for NMDA receptor subunits. Proc. Natl. Acad. Sci., 2008, 105(37), 14163-14168.
[http://dx.doi.org/10.1073/pnas.0802075105] [PMID: 18779583]
[33]
Low, C.M.; Wee, K.S.L. New insights into the not-so-new NR3 subunits of N-methyl-D-aspartate receptor: Localization, structure, and function. Mol. Pharmacol., 2010, 78(1), 1-11.
[http://dx.doi.org/10.1124/mol.110.064006] [PMID: 20363861]
[34]
Paudel, S.; Kim, E.; Zhu, A.; Acharya, S.; Min, X.; Cheon, S.H.; Kim, K.M. Structural requirements for modulating 4-benzylpiperidine carboxamides from serotonin/norepinephrine reuptake inhibitors to triple reuptake inhibitors. Biomol. Ther., 2021, 29(4), 392-398.
[http://dx.doi.org/10.4062/biomolther.2020.233] [PMID: 34053940]
[35]
Schoemaker, H.; Allen, J.; Langer, S.Z. Binding of [3H]ifenprodil, a novel NMDA antagonist, to a polyamine-sensitive site in the rat cerebral cortex. Eur. J. Pharmacol., 1990, 176(2), 249-250.
[http://dx.doi.org/10.1016/0014-2999(90)90539-I] [PMID: 2178949]
[36]
Campus, P.; Colelli, V.; Orsini, C.; Sarra, D.; Cabib, S. Evidence for the involvement of extinction-associated inhibitory learning in the forced swimming test. Behav. Brain Res., 2015, 278, 348-355.
[http://dx.doi.org/10.1016/j.bbr.2014.10.009] [PMID: 25448432]
[37]
Islam, N.; Khan, M.F.; Khatun, M.R.; Nur, S.; Hanif, N.B.; Kulsum, U.; Arshad, L.; Lyzu, C.; Cacciola, N.A.; Capasso, R.; Haque, M.A. Neuropharmacological insights of African oil palm leaf through experimental assessment in rodent behavioral model and computer-aided mechanism. Food Biosci., 2021, 40, 100881.
[http://dx.doi.org/10.1016/j.fbio.2021.100881]
[38]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[39]
Xu, Q.; Hu, M.; Li, J.; Ma, X.; Chu, Z.; Zhu, Q.; Zhang, Y.; Zhu, P.; Huang, Y.; He, G. Discovery of novel brain-penetrant GluN2B NMDAR antagonists via pharmacophore-merging strategy as anti-stroke therapeutic agents. Eur. J. Med. Chem., 2022, 227, 113876.
[http://dx.doi.org/10.1016/j.ejmech.2021.113876] [PMID: 34710748]
[40]
Paudel, S.; Wang, S.; Kim, E.; Kundu, D.; Min, X.; Shin, C.Y.; Kim, K.M. Design, synthesis, and functional evaluation of 1, 5-disubstituted tetrazoles as monoamine neurotransmitter reuptake inhibitors. Biomol. Ther., 2022, 30(2), 191-202.
[http://dx.doi.org/10.4062/biomolther.2021.119] [PMID: 34789584]
[41]
Höfner, G.; Wanner, K.T. [3H]ifenprodil binding to NMDA receptors in porcine hippocampal brain membranes. Eur. J. Pharmacol., 2000, 394(2-3), 211-219.
[http://dx.doi.org/10.1016/S0014-2999(00)00084-4] [PMID: 10771286]
[42]
Schepmann, D.; Frehland, B.; Lehmkuhl, K.; Tewes, B.; Wünsch, B. Development of a selective competitive receptor binding assay for the determination of the affinity to NR2B containing NMDA receptors. J. Pharm. Biomed. Anal., 2010, 53(3), 603-608.
[http://dx.doi.org/10.1016/j.jpba.2010.04.014] [PMID: 20462722]
[43]
Schreiber, J.A.; Schepmann, D.; Frehland, B.; Thum, S.; Datunashvili, M.; Budde, T.; Hollmann, M.; Strutz-Seebohm, N.; Wünsch, B.; Seebohm, G. A common mechanism allows selective targeting of GluN2B subunit-containing N-methyl-D-aspartate receptors. Commun. Biol., 2019, 2(1), 420.
[http://dx.doi.org/10.1038/s42003-019-0645-6] [PMID: 31754650]
[44]
Kukuia, K.K.E.; Mensah, J.A.; Amoateng, P.; Amponsah, S.K.; N’Guessan, B.B.; Asiedu-Gyekye, I.J. Antidepressant potentials of components from Trichilia monadelpha (Thonn.) J.J. de wilde in murine models. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-11.
[http://dx.doi.org/10.1155/2018/6863973] [PMID: 29849723]
[45]
Hossen, M.A.; Ali Reza, A.S.M.; Amin, M.B.; Nasrin, M.S.; Khan, T.A.; Rajib, M.H.R.; Tareq, A.M.; Haque, M.A.; Rahman, M.A.; Haque, M.A. Bioactive metabolites of Blumea lacera attenuate anxiety and depression in rodents and computer-aided model. Food Sci. Nutr., 2021, 9(7), 3836-3851.
[http://dx.doi.org/10.1002/fsn3.2362] [PMID: 34262741]
[46]
Poleszak, E.; Wośko, S.; Serefko, A.; Szopa, A.; Wlaź, A.; Szewczyk, B.; Nowak, G.; Wlaź, P. Effects of ifenprodil on the antidepressant-like activity of NMDA ligands in the forced swim test in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 46, 29-35.
[http://dx.doi.org/10.1016/j.pnpbp.2013.06.001] [PMID: 23774195]

© 2025 Bentham Science Publishers | Privacy Policy