Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Identification of Selective JAK3/STAT1 and CYP34A from Pyrazolopyrimidine Derivatives: A Search for Potential Drug Targets for Rheumatoid Arthritis using In-silico Drug Discovery Techniques

Author(s): Abdelmoujoud Faris*, Ibrahim M. Ibrahim, Souvik Chakraborty, Omkulthom Al Kamaly, Samar Zuhair Alshawwa and Menana Elhallaoui

Volume 21, Issue 10, 2024

Published on: 26 September, 2023

Page: [1755 - 1778] Pages: 24

DOI: 10.2174/1570180820666230821102836

Price: $65

Abstract

Objective: This study aimed to discover a novel active compound capable of effectively inhibiting JAK3/STAT1 and CYP3A4 using molecular modelling techniques, with the goal of treating autoimmune diseases such as cancer and specifically rheumatoid arthritis. The study involved modelling compounds derived from pyrazolopyrimidine, followed by screening methods to identify the most promising compounds. Moreover, this study seeks to identify potential compounds that can inhibit JAK3/STAT through molecular modelling techniques and validate the stability and affinity of the predicted molecule.

Methods: Various molecular modelling techniques were employed to identify potential compounds and assess the stability and affinity of the predicted molecule. A pharmacophore hypothesis was developed to obtain crucial information about the experimental series of pyrazolopyrimidine studied, which served as the basis for designing new molecules. Additionally, ADMET was utilized to predict and evaluate the pharmacokinetic properties and potential toxicity of the compound prior to synthesis or utilization. To determine the essential residues involved in the interaction between the molecule and the target JAK3 protein, the covalent docking method was applied. We further validated the binding stability of the JAK3 protein with the ligands ZINC62162141 and Tofacitinib, both of which have been approved by the FDA for JAK3/STAT inhibition., using DFT/B3LYP/6-31G molecular dynamics simulations lasting 1000 ns and MM/GBSA.

Results: During the study, we identified compounds that displayed notable activity against JAK3/STAT, specifically those containing thiadiazol, oxadiazol, and chlorophenyl groups. Additionally, the pharmacophore model, ADRRR_1, exhibited promising potential for predicting new molecules. The predicted compound, ZINC62162141, demonstrated favourable ADMET properties, including inhibition of CYP3A4. Furthermore, we assessed its binding stability to the target protein and determined its affinity for the protein-ligand complex using MMGBSA.

Conclusion: The results of this study suggest that the compounds identified have the potential to be promising candidates for inhibiting JAK3/STAT and CYP3A4, offering potential therapeutic benefits for the treatment of rheumatoid arthritis. These findings provide a foundation for subsequent experimental validation and the development of novel drugs in this field.

[1]
Global, RA Network. Available from: https://globalranetwork.org/project/disease-info/
[2]
Jang, S.; Kwon, E.J.; Lee, J.J. Rheumatoid Arthritis. Int. J. Mol. Sci., 2022, 23(2), 905.
[http://dx.doi.org/10.3390/ijms23020905] [PMID: 35055087]
[3]
Whittle, S.L.; Colebatch, A.N.; Buchbinder, R.; Edwards, C.J.; Adams, K.; Englbrecht, M.; Hazlewood, G.; Marks, J.L.; Radner, H.; Ramiro, S.; Richards, B.L.; Tarner, I.H.; Aletaha, D.; Bombardier, C.; Landewé, R.B.; Müller-Ladner, U.; Bijlsma, J.W.J.; Branco, J.C.; Bykerk, V.P.; da Rocha Castelar Pinheiro, G.; Catrina, A.I.; Hannonen, P.; Kiely, P.; Leeb, B.; Lie, E.; Martinez-Osuna, P.; Montecucco, C.; Ostergaard, M.; Westhovens, R.; Zochling, J.; van der Heijde, D. Multinational evidence-based recommendations for pain management by pharmacotherapy in inflammatory arthritis: Integrating systematic literature research and expert opinion of a broad panel of rheumatologists in the 3e Initiative. Rheumatology (Oxford), 2012, 51(8), 1416-1425.
[http://dx.doi.org/10.1093/rheumatology/kes032] [PMID: 22447886]
[4]
da Silva, J.C.; Mariz, H.A.; da Rocha Júnior, L.F.; Santana de Oliveira, P.S.; Dantas, A.T.; Duarte, A.L.B.P.; da Rocha Pitta, I.; Galdino, S.L.; da Rocha Pitta, M.G. Hydroxychloroquine decreases Th17-related cytokines in systemic lupus erythematosus and rheumatoid arthritis patients. Clinics (São Paulo), 2013, 68(6), 766-771.
[http://dx.doi.org/10.6061/clinics/2013(06)07] [PMID: 23778483]
[5]
Tian, H.; Cronstein, B.N. Understanding the mechanisms of action of methotrexate: Implications for the treatment of rheumatoid arthritis. Bull. NYU Hosp. Jt. Dis., 2007, 65(3), 168-173.
[PMID: 17922664]
[6]
Yamaoka, K.; Saharinen, P.; Pesu, M.; Holt, V.E.T., III; Silvennoinen, O.; O’Shea, J.J. The Janus kinases (Jaks). Genome Biol., 2004, 5(12), 253.
[http://dx.doi.org/10.1186/gb-2004-5-12-253] [PMID: 15575979]
[7]
Harrington, R.; Al Nokhatha, S.A.; Conway, R. JAK inhibitors in rheumatoid arthritis: An evidence-based review on the emerging clinical data. J. Inflamm. Res., 2020, 13, 519-531.
[http://dx.doi.org/10.2147/JIR.S219586] [PMID: 32982367]
[8]
Narisawa, M.; Kubo, S.; Okada, Y.; Yamagata, K.; Nakayamada, S.; Sakata, K.; Yamaoka, K.; Tanaka, Y. Human dendritic cell-derived osteoclasts with high bone resorption capacity and T cell stimulation ability. Bone, 2021, 142, 115616.
[http://dx.doi.org/10.1016/j.bone.2020.115616] [PMID: 32866681]
[9]
Cada, D.J.; Demaris, K.; Levien, T.L.; Baker, D.E. Tofacitinib. Hosp. Pharm., 2013, 48(5), 413-424.
[http://dx.doi.org/10.1310/hpj4805-413] [PMID: 24421498]
[10]
Padda, I.S.; Bhatt, R.; Parmar, M. Upadacitinib.StatPearls; StatPearls Publishing: Treasure Island, FL, 2023. http://www.ncbi.nlm.nih.gov/books/NBK572088/
[11]
Tanaka, Y.; Kavanaugh, A.; Wicklund, J.; McInnes, I.B. Filgotinib, a novel JAK1-preferential inhibitor for the treatment of rheumatoid arthritis: An overview from clinical trials. Mod. Rheumatol., 2022, 32(1), 1-11.
[http://dx.doi.org/10.1080/14397595.2021.1902617] [PMID: 33740386]
[12]
Pombo-Suarez, M.; Sanchez-Piedra, C.; Gómez-Reino, J.; Lauper, K.; Mongin, D.; Iannone, F.; Pavelka, K.; Nordström, D.C.; Inanc, N.; Codreanu, C.; Hyrich, K.L.; Choquette, D.; Strangfeld, A.; Leeb, B.F.; Rotar, Z.; Rodrigues, A.; Kristianslund, E.K.; Kvien, T.K.; Elkayam, O.; Lukina, G.; Bergstra, S.A.; Finckh, A.; Courvoisier, D.S. After JAK inhibitor failure: to cycle or to switch, that is the question – data from the JAK-pot collaboration of registries. Ann. Rheum. Dis., 2023, 82(2), 175-181.
[http://dx.doi.org/10.1136/ard-2022-222835] [PMID: 36100351]
[13]
Yin, Y.; Chen, C.J.; Yu, R.N.; Shu, L.; Wang, Z.J.; Zhang, T.T.; Zhang, D.Y. Novel 1H-pyrazolo[3,4-d]pyrimidin-6-amino derivatives as potent selective Janus kinase 3 (JAK3) inhibitors. Evaluation of their improved effect for the treatment of rheumatoid arthritis. Bioorg. Chem., 2020, 98, 103720.
[http://dx.doi.org/10.1016/j.bioorg.2020.103720] [PMID: 32171982]
[14]
Release, S. 2021-1; Maestro; Schrödinger, LLC: New York, NY, USA, 2021.
[15]
ZINCPharmer. Aavailable from: http://zincpharmer.csb.pitt.edu/pharmer.html
[16]
Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem., 2015, 58(9), 4066-4072.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00104] [PMID: 25860834]
[17]
Kumari, R.; Kumar, R.; Lynn, A.; Lynn, A. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model., 2014, 54(7), 1951-1962.
[http://dx.doi.org/10.1021/ci500020m] [PMID: 24850022]
[18]
Free Software for Drawing Chemical Structures. Available from: https://www.acdlabs.com/resources/free-chemistry-software-apps/chemsketch-freeware/
[19]
PyMOL. Available from: https://pymol.org/2/
[20]
D. Systèmes, Free Download: BIOVIA Discovery Studio Visualizer, Dassault Systèmes. 2020. Available from: https://discover.3ds.com/discovery-studio-visualizer-download
[21]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A., Jr; Vreven, T.; Kudin, K.N.; Burant, J.C. Gaussian 03 Citation. 2009. Available from: https://gaussian.com/g03citation/
[22]
Fu, L.; Liu, X.; Hu, J.; Zhao, X.; Wang, H.; Wang, X. Application of dispersive liquid–liquid microextraction for the analysis of triazophos and carbaryl pesticides in water and fruit juice samples. Anal. Chim. Acta, 2009, 632(2), 289-295.
[http://dx.doi.org/10.1016/j.aca.2008.11.020] [PMID: 19110107]
[23]
Fei, J.; Zhou, L.; Liu, T.; Tang, X.Y. Pharmacophore modeling, virtual screening, and molecular docking studies for discovery of novel Akt2 inhibitors. Int. J. Med. Sci., 2013, 10(3), 265-275.
[http://dx.doi.org/10.7150/ijms.5344] [PMID: 23372433]
[24]
Liu, Y.; Tong, G.; Tong, W.; Lu, L.; Qin, X. Can body mass index, waist circumference, waist-hip ratio and waist-height ratio predict the presence of multiple metabolic risk factors in Chinese subjects? BMC Public Health, 2011, 11(1), 35.
[http://dx.doi.org/10.1186/1471-2458-11-35] [PMID: 21226967]
[25]
Shekhar, S.; Kumar, R.; Rai, N.; Kumar, V.; Singh, K.; Upadhyay, A.D.; Tripathi, M.; Dwivedi, S.; Dey, A.B.; Dey, S. Estimation of Tau and Phosphorylated Tau181 in Serum of Alzheimer’s Disease and Mild Cognitive Impairment Patients. PLoS One, 2016, 11(7), e0159099.
[http://dx.doi.org/10.1371/journal.pone.0159099] [PMID: 27459603]
[26]
Limpawattana, P.; Tiamkao, S.; Sawanyawisuth, K.; Thinkhamrop, B. Can Rowland Universal Dementia Assessment Scale (RUDAS) replace Mini-mental State Examination (MMSE) for dementia screening in a Thai geriatric outpatient setting? Am. J. Alzheimers Dis. Other Demen., 27(4), 254-259.
[http://dx.doi.org/10.1177/1533317512447886] [PMID: 22615482]
[27]
Tripathi, A.C.; Sonar, P.K.; Rathore, R.; Saraf, S.K. Structural insights into the molecular design of HER2 inhibitors. Open Pharm. Sci. J., 2016, 3, 164-181.
[28]
Empereur-mot, C.; Guillemain, H.; Latouche, A.; Zagury, J.F.; Viallon, V.; Montes, M. Predictiveness curves in virtual screening. J. Cheminform., 2015, 7(1), 52.
[http://dx.doi.org/10.1186/s13321-015-0100-8] [PMID: 26539250]
[29]
McNally, K.L.; Childs, K.L.; Bohnert, R.; Davidson, R.M.; Zhao, K.; Ulat, V.J.; Zeller, G.; Clark, R.M.; Hoen, D.R.; Bureau, T.E.; Stokowski, R.; Ballinger, D.G.; Frazer, K.A.; Cox, D.R.; Padhukasahasram, B.; Bustamante, C.D.; Weigel, D.; Mackill, D.J.; Bruskiewich, R.M.; Rätsch, G.; Buell, C.R.; Leung, H.; Leach, J.E. Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc. Natl. Acad. Sci. USA, 2009, 106(30), 12273-12278.
[http://dx.doi.org/10.1073/pnas.0900992106] [PMID: 19597147]
[30]
Sutanto, F.; Konstantinidou, M.; Dömling, A. Covalent inhibitors: a rational approach to drug discovery. RSC Med. Chem., 2020, 11(8), 876-884.
[http://dx.doi.org/10.1039/D0MD00154F] [PMID: 33479682]
[31]
Chen, C.; Yin, Y.; Shi, G.; Zhou, Y.; Shao, S.; Wei, Y.; Wu, L.; Zhang, D.; Sun, L.; Zhang, T. A highly selective JAK3 inhibitor is developed for treating rheumatoid arthritis by suppressing γc cytokine–related JAK-STAT signal. Sci. Adv., 2022, 8(33), eabo4363.
[http://dx.doi.org/10.1126/sciadv.abo4363] [PMID: 35984890]
[32]
Su, W.; Chen, Z.; Liu, M.; He, R.; Liu, C.; Li, R.; Gao, M.; Zheng, M.; Tu, Z.; Zhang, Z.; Xu, T. Design, synthesis and structure-activity relationship studies of pyrido[2,3-d]pyrimidin-7-ones as potent Janus Kinase 3 (JAK3) covalent inhibitors. Bioorg. Med. Chem. Lett., 2022, 64, 128680.
[http://dx.doi.org/10.1016/j.bmcl.2022.128680] [PMID: 35306167]
[33]
Zhu, Y.; Zheng, X.; Wang, C.; Sun, X.; Sun, H.; Ma, T.; Li, Y.; Liu, K.; Chen, L.; Ma, X. Synthesis and biological activity of thieno[3,2-d]pyrimidines as potent JAK3 inhibitors for the treatment of idiopathic pulmonary fibrosis. Bioorg. Med. Chem., 2020, 28(2), 115254.
[http://dx.doi.org/10.1016/j.bmc.2019.115254] [PMID: 31866272]
[34]
Zhong, H.A.; Almahmoud, S. Docking and Selectivity Studies of Covalently Bound Janus Kinase 3 Inhibitors. Int. J. Mol. Sci., 2023, 24(7), 6023.
[http://dx.doi.org/10.3390/ijms24076023] [PMID: 37047004]
[35]
Wang, D.P.; Wu, L.H.; Li, R.; He, N.; Zhang, Q.Y.; Zhao, C.Y.; Jiang, T. A Novel Aldisine Derivative Exhibits Potential Antitumor Effects by Targeting JAK/STAT3 Signaling. Mar. Drugs, 2023, 21(4), 218.
[http://dx.doi.org/10.3390/md21040218] [PMID: 37103357]
[36]
Gholamhoseinnia, M.; Asadollahi-Baboli, M. Ranked binding energies of residues and data fusion to identify the active and selective pyrimidine-based Janus kinases 3 (JAK3) inhibitors. SAR QSAR Environ. Res., 2022, 33(1), 23-34.
[http://dx.doi.org/10.1080/1062936X.2021.2013318] [PMID: 34915777]
[37]
McNally, R.; Tan, L.; Gray, N.S.; Eck, M.J. Crystal Structure of the Jak3 Kinase Domain Covalently Bound to N-(3-(((5-chloro-2- ((2-methoxy-4-(4-methylpiperazin-1-yl)phenyl)amino)pyrimidin-4- yl)amino)methyl)phenyl)acrylamide. 2015. Available from: https://www.rcsb.org/structure/4z16
[38]
Tan, L.; Akahane, K.; McNally, R.; Reyskens, K.M.S.E.; Ficarro, S.B.; Liu, S.; Herter-Sprie, G.S.; Koyama, S.; Pattison, M.J.; Labella, K.; Johannessen, L.; Akbay, E.A.; Wong, K.K.; Frank, D.A.; Marto, J.A.; Look, T.A.; Arthur, J.S.C.; Eck, M.J.; Gray, N.S. Development of selective covalent Janus kinase 3 inhibitors. J. Med. Chem., 2015, 58(16), 6589-6606.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00710] [PMID: 26258521]
[39]
Ramos, J.M.; Versiane, O.; Felcman, J.; Téllez, S. C.A. FT-IR vibrational spectrum and DFT:B3LYP/6-31G and B3LYP/6-311G structure and vibrational analysis of glycinate–guanidoacetate nickel (II) complex. [Ni(Gly)(Gaa)]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2009, 72(1), 182-189.
[http://dx.doi.org/10.1016/j.saa.2008.09.026] [PMID: 19036632]
[40]
Paier, J.; Marsman, M.; Kresse, G. Why does the B3LYP hybrid functional fail for metals? J. Chem. Phys., 2007, 127(2), 024103.
[http://dx.doi.org/10.1063/1.2747249] [PMID: 17640115]
[41]
Midoune, A.; Messaoudi, A. DFT/TD-DFT computational study of the tetrathiafulvalene-1,3-benzothiazole molecule to highlight its structural, electronic, vibrational and non-linear optical properties. C. R. Chim., 2020, 23(2), 143-158.
[http://dx.doi.org/10.5802/crchim.12]
[42]
Jia, C.Y.; Li, J.Y.; Hao, G.F.; Yang, G.F. A drug-likeness toolbox facilitates ADMET study in drug discovery. Drug Discov. Today, 2020, 25(1), 248-258.
[http://dx.doi.org/10.1016/j.drudis.2019.10.014] [PMID: 31705979]
[43]
Venkatraman, V. FP-ADMET: a compendium of fingerprint-based ADMET prediction models. J. Cheminform., 2021, 13(1), 75.
[http://dx.doi.org/10.1186/s13321-021-00557-5] [PMID: 34583740]
[44]
Funai, Y.; Takemura, M.; Inoue, K.; Shirasaka, Y. Effect of ingested fluid volume and solution osmolality on intestinal drug absorption: Impact on drug interaction with beverages. Eur. J. Pharm. Sci., 2022, 172, 106136.
[http://dx.doi.org/10.1016/j.ejps.2022.106136] [PMID: 35121020]
[45]
Shanu-Wilson, J.; Evans, L.; Wrigley, S.; Steele, J.; Atherton, J.; Boer, J. Biotransformation: Impact and application of metabolism in drug discovery. ACS Med. Chem. Lett., 2020, 11(11), 2087-2107.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00202] [PMID: 33214818]
[46]
Ndombera, F.; Maiyoh, G.; Tuei, V. Physicochemical and medicinal properties of n-glycoside anti-cancer agent more potent than 2-deoxy-d-glucose in lung cancer cells. J. Pharm. Pharmacol., 2019, 7(4), 165-176.
[http://dx.doi.org/10.17265/2328-2150/2019.04.003]
[47]
Jo, S.; Kim, T.; Iyer, V.G. Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem., 2008, 29(11), 1859-1865.
[http://dx.doi.org/10.1002/jcc.20945] [PMID: 18351591]
[48]
Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; Mackerell, A.D. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem., 31(4), 671-690.
[49]
Goeckner, M.J.; Goree, J.A.; Sheridan, T. E Monte Carlo simulation of ions in a magnetron plasma. IEEE Trans. on Plasma Sci., 1991, 19(2), 301-308.
[http://dx.doi.org/10.1109/27.106828]
[50]
Visual Molecular Dynamics (VMD). Available from: http://www.ks.uiuc.edu/Research/vmd/
[51]
Valdés-Tresanco, M.S.; Valdés-Tresanco, M.E.; Valiente, P.A.; Moreno, E. gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. J. Chem. Theory Comput., 2021, 17(10), 6281-6291.
[http://dx.doi.org/10.1021/acs.jctc.1c00645] [PMID: 34586825]
[52]
Ȧqvist, J. Ion-water interaction potentials derived from free energy perturbation simulations. J. Phys. Chem., 1990, 94(21), 8021-8024.
[http://dx.doi.org/10.1021/j100384a009]
[53]
Trucks, G.; Trucks, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennuci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Nakai, H.; Vreven, T.; Montgomery, J.; Peralta, J.E. Gaussian, Gaussian, Inc., Wallingford, CT. 2009. Available from: https://www.researchgate.net/publication/220020584_Gaussian_Gaussian_Inc_Wallingford_CT
[54]
Kim, J.; Kim, S.; Schaumann, G.E. Reliable predictive computational toxicology methods for mixture toxicity: toward the development of innovative integrated models for environmental risk assessment. Rev. Environ. Sci. Biotechnol., 2013, 12(3), 235-256.
[http://dx.doi.org/10.1007/s11157-012-9286-7]
[55]
Izadyar, M.; Housaindokht, M.R.; Zavvar, N.; Khavani, M.; Reisivanani, A. Secondary Structure Effects on the Acidity of Histidine and Lysine-Based Peptides Model; A Theoretical Study. Physical Chemistry Research., 2015, 3, 67-77.
[56]
Palacios-Prado, N.; Soto, P.A.; López, X.; Choi, E.J.; Marquez-Miranda, V.; Rojas, M.; Duarte, Y.; Lee, J.; González-Nilo, F.D.; Sáez, J.C. Endogenous pannexin1 channels form functional intercellular cell–cell channels with characteristic voltage-dependent properties. Proc. Natl. Acad. Sci. USA, 2022, 119(18), e2202104119.
[http://dx.doi.org/10.1073/pnas.2202104119] [PMID: 35486697]
[57]
Jaffar, S. Optimizing selectivity in heterocycle CH functionalization through computational design; PhD ThesisUniversity of Oxford, 2015.
[58]
Dong, Z.; Liu, C-H.; Wang, Y.; Lin, M.; Yu, Z-X. Gold (I)-Catalyzed endo-Selective Intramolecular a-Alkenylation of b-Yne-Furans: Synthesis of Seven-Membered-Ring-Fused Furans and DFT Calculations, Angew, 52nd ed; Chem. Int, 2013.
[59]
Atkins, P.; Atkins, P.W.; de Paula, J. Atkins’ physical chemistry; Oxford university press, 2014.
[60]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49(21), 6177-6196.
[http://dx.doi.org/10.1021/jm051256o] [PMID: 17034125]
[61]
Abel, R.; Mondal, S.; Masse, C.; Greenwood, J.; Harriman, G.; Ashwell, M.A.; Bhat, S.; Wester, R.; Frye, L.; Kapeller, R.; Friesner, R.A. Accelerating drug discovery through tight integration of expert molecular design and predictive scoring. Curr. Opin. Struct. Biol., 2017, 43, 38-44.
[http://dx.doi.org/10.1016/j.sbi.2016.10.007] [PMID: 27816785]
[62]
Sapaya, AI Available from: https://spaya.ai/app/search
[63]
Podoll, T.; Pearson, P.G.; Kaptein, A.; Evarts, J.; de Bruin, G.; Emmelot-van Hoek, M.; de Jong, A.; van Lith, B.; Sun, H.; Byard, S.; Fretland, A.; Hoogenboom, N.; Barf, T.; Slatter, J.G. Identification and Characterization of ACP-5862, the Major Circulating Active Metabolite of Acalabrutinib: Both Are Potent and Selective Covalent Bruton Tyrosine Kinase Inhibitors. J. Pharmacol. Exp. Ther., 2023, 384(1), 173-186.
[http://dx.doi.org/10.1124/jpet.122.001116] [PMID: 36310034]
[64]
Dowty, M.E.; Lin, J.; Ryder, T.F.; Wang, W.; Walker, G.S.; Vaz, A.; Chan, G.L.; Krishnaswami, S.; Prakash, C. The pharmacokinetics, metabolism, and clearance mechanisms of tofacitinib, a janus kinase inhibitor, in humans. Drug Metab. Dispos., 2014, 42(4), 759-773.
[http://dx.doi.org/10.1124/dmd.113.054940] [PMID: 24464803]
[65]
Namour, F.; Desrivot, J.; Van der Aa, A.; Harrison, P.; Tasset, C.; van’t Klooster, G. Clinical Confirmation that the Selective JAK1 Inhibitor Filgotinib (GLPG0634) has a Low Liability for Drug-drug Interactions. Drug Metab. Lett., 2016, 10(1), 38-48.
[http://dx.doi.org/10.2174/1872312810666151223103353] [PMID: 26693854]
[66]
Ge, X.; Ma, S.; Yan, S.; Wu, Y.; Chen, C.; Tang, C.; Zhan, Y.; Bian, Y.C.; Shen, K.; Feng, S.; Gao, X.; Zhong, D.; Zhang, H.; Miao, L.Y.; Diao, X.X. Mass balance study of [14C]SHR0302, a selective and potent JAK1 inhibitor in humans. Xenobiotica, 2023, 53(2), 69-83.
[http://dx.doi.org/10.1080/00498254.2023.2176267] [PMID: 36745485]
[67]
Desai, J.; Patel, B.; Gite, A.; Panchal, N.; Gite, S.; Argade, A.; Kumar, J.; Sachchidanand, S.; Bandyopadhyay, D.; Ghoshdastidar, K.; Patel, H.; Chatterjee, A.; Mahapatra, J.; Sharma, M.; Giri, P.; Kumar, S.; Jain, M.; Sharma, R.; Desai, R. Optimisation of momelotinib with improved potency and efficacy as pan-JAK inhibitor. Bioorg. Med. Chem. Lett., 2022, 66, 128728.
[http://dx.doi.org/10.1016/j.bmcl.2022.128728] [PMID: 35413417]
[68]
Nautiyal, M.; Sankaran, K.; Sekaran, S.; Rengasamy, G.; Priya, V. Molecular docking analysis of Indole based diaza-sulphonamides with JAK-3 protein. Bioinformation, 2023, 19(1), 74-78.
[http://dx.doi.org/10.6026/97320630019074]
[69]
Siu, M.; Pastor, R.; Liu, W.; Barrett, K.; Berry, M.; Blair, W.S.; Chang, C.; Chen, J.Z. 2-Amino-[1,2,4]triazolo[1,5-a]pyridines as JAK2 inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(17), 5014-5021.
[70]
Mannion, M.; Raeppel, S.; Claridge, S.; Zhou, N.; Saavedra, O.; Isakovic, L.; Zhan, L.; Gaudette, F.; Raeppel, F.; Déziel, R.; Beaulieu, N.; Nguyen, H.; Chute, I.; Beaulieu, C.; Dupont, I.; Robert, M.F.; Lefebvre, S.; Dubay, M.; Rahil, J.; Wang, J.; Ste-Croix, H.; Robert Macleod, A.; Besterman, J.M.; Vaisburg, A. N-(4-(6,7-Disubstituted-quinolin-4-yloxy)-3-fluorophenyl)-2-oxo-3-phenylimidazolidine-1-carboxamides: A novel series of dual c-Met/VEGFR2 receptor tyrosine kinase inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(23), 6552-6556.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.040] [PMID: 19854051]
[71]
Seerden, J.P.G.; Leusink-Ionescu, G.; Woudenberg-Vrenken, T.; Dros, B.; Molema, G.; Kamps, J.A.A.M.; Kellogg, R.M. Synthesis and structure–activity relationships of 4-fluorophenyl-imidazole p38α MAPK, CK1δ and JAK2 kinase inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(15), 3412-3418.
[http://dx.doi.org/10.1016/j.bmcl.2014.05.080] [PMID: 24930833]
[72]
Xu, P.; Shen, P.; Wang, H.; Qin, L.; Ren, J.; Sun, Q.; Ge, R.; Bian, J.; Zhong, Y.; Li, Z.; Wang, J.; Qiu, Z. Discovery of imidazopyrrolopyridines derivatives as novel and selective inhibitors of JAK2. Eur. J. Med. Chem., 2021, 218, 113394.
[http://dx.doi.org/10.1016/j.ejmech.2021.113394] [PMID: 33813153]
[73]
Lu, X.; Smaill, J.B.; Patterson, A.V.; Ding, K. Discovery of cysteine-targeting covalent protein kinase inhibitors. J. Med. Chem., 2022, 65(1), 58-83.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01719] [PMID: 34962782]

© 2025 Bentham Science Publishers | Privacy Policy