Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Enzymatic Activity of Glucose Oxidase on Mesoporous TiO2:Mn Surfaces

Author(s): Leda G. Bousiakou*, Peter J. Dobson and Omar M. Aldossary

Volume 20, Issue 2, 2024

Published on: 12 May, 2023

Page: [272 - 278] Pages: 7

DOI: 10.2174/1573413719666230403103754

open access plus

Abstract

Introduction: It is well known, that titanium dioxide (TiO2) nanoparticles can lead to the generation of reactive oxygen species (ROS) upon photoexcitation.

Methods: In this work, we investigated mesoporous surfaces based on TiO2 nanoparticles doped with 0.6-0.7% manganese (Mn), which showed reduced photoactivity and were based on the more stable rutile polymorph of titania.

Results: In particular, we showed spectrophotometrically that the enzyme glucose oxidase (GOD) can be successfully adsorbed up to 80% while retaining its bioactivity in contact with the TiO2:Mn-based surface.

Conclusion: We propose that this study could potentially give rise to biocompatible surfaces for biosensing applications.

« Previous
Graphical Abstract

[1]
Viswanathan, S.; Li, P.; Choi, W.; Filipek, A.; Balasubramaniam, T.A.; Renugopalakrishnan, V. Protein–carbon nanotube sensors: Single platform integrated micro clinical lab for monitoring blood analytes. In: Meth. Enzymol; Nejat, D., Ed; , 2012; 509, pp. 165-194.
[2]
Zhou, H.; Gan, X.; Wang, J.; Zhu, X.; Li, G. Hemoglobin-based hydrogen peroxide biosensor tuned by the photovoltaic effect of nano titanium dioxide. Anal. Chem., 2005, 77(18), 6102-6104.
[http://dx.doi.org/10.1021/ac050924a] [PMID: 16159149]
[3]
Zhou, H.; Gan, X.; Liu, T.; Yang, Q.; Li, G. Electrochemical study of photovoltaic effect of nano titanium dioxide on hemoglobin. Bioelectrochemistry, 2006, 69(1), 34-40.
[http://dx.doi.org/10.1016/j.bioelechem.2005.10.003] [PMID: 16386965]
[4]
Amani-Beni, Z.; Nezamzadeh-Ejhieh, A. A novel non-enzymatic glucose sensor based on the modification of carbon paste electrode with CuO nanoflower: Designing the experiments by Response Surface Methodology (RSM). J. Colloid Interface Sci., 2017, 504, 186-196.
[http://dx.doi.org/10.1016/j.jcis.2017.05.049] [PMID: 28550749]
[5]
Amani-Beni, Z.; Nezamzadeh-Ejhieh, A. Construction of a sensitive non-enzymatic fructose carbon paste electrode – CuO nanoflower: designing the experiments by response surface methodology. New J. Chem., 2018, 42(2), 1021-1030.
[http://dx.doi.org/10.1039/C7NJ03124F]
[6]
Amani-Beni, Z.; Nezamzadeh-Ejhieh, A. NiO nanoparticles modified carbon paste electrode as a novel sulfasalazine sensor. Anal. Chim. Acta, 2018, 1031, 47-59.
[http://dx.doi.org/10.1016/j.aca.2018.06.002] [PMID: 30119743]
[7]
Revathi, C.; Rajendra Kumar, R.T. Enzymatic and nonenzymatic electrochemical biosensors. Morgan, H.; Chandra, S.R.; Dattatray, J; In: Woodhead Publishing Series in Electronic and Optical Materials, Fundamentals and Sensing Applications of 2D Materials; Woodhead Publishing, 2019, pp. 259-300.
[8]
Buchholz, K.; Kasche, V.; Bornscheuer, U.T. Biocatalysts and Enzyme Technology; 2nd ed.; John willey & sons., 2015.
[9]
obinson, P.K. Enzymes: Principles and biotechnological applications. In: Essays Biochem; , 2015; 59, pp. 1-41.
[http://dx.doi.org/10.1042/bse0590001]] [PMID: 26504249]
[10]
Gora, A.; Brezovsky, J.; Damborsky, J. Gates of enzymes. In: Chem. Rev; , 2013; 113, pp. (8)5871-5923.
[http://dx.doi.org/10.1021/cr300384w] [PMID: 23617803]
[11]
Bisswanger, H. Enzyme Kinetics: Principles and Methods, 2nd ed; Wiley-VCH: Weinheim, Germany 2008.
[http://dx.doi.org/10.1002/9783527622023]
[12]
McGrath, M.J.; Scanaill, C.N. Sensor Technologies: Healthcare, Wellness and Environmental Applications; Apress Media, LLC: New York. 2014.
[13]
Naresh, V.; Lee, N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors, 2021, 21(4), 1109.
[http://dx.doi.org/10.3390/s21041109] [PMID: 33562639]
[14]
Nguyen, H.H.; Lee, S.H.; Lee, U.J.; Fermin, C.D.; Kim, M. Immobilized enzymes in biosensor applications. Materials., 2019, 12(1), 121.
[http://dx.doi.org/10.3390/ma12010121] [PMID: 30609693]
[15]
Zabihi-Mobarakeh, H.; Nezamzadeh-Ejhieh, A. Application of supported TiO2 onto Iranian clinoptilolite nanoparticles in the photodegradation of mixture of aniline and 2, 4-dinitroaniline aqueous solution. J. Ind. Eng. Chem., 2015, 26, 315-321.
[http://dx.doi.org/10.1016/j.jiec.2014.12.003]
[16]
Nezamzadeh-Ejhieh, A.; Bahrami, M. Investigation of the photocatalytic activity of supported ZnO–TiO2 on clinoptilolite nano-partic les towards photodegradation of wastewater-contained phenol. Desalination Water Treat., 2015, 55(4), 1096-1104.
[http://dx.doi.org/10.1080/19443994.2014.922443]
[17]
Vadim, V. Engineering stability of enzymes in systems with organic solvents. In: Progress in Biotechnology; Ballesteros, A.; Plou, F.J.; Iborra, J.L.; Halling, P.J., Eds.; Elsevier,; , 1998; 15, pp. 355-363.
[18]
Chen, G.; Zhao, J.; Liu, X.; Gao, G.; Huang, J.; Li, G. Electrochemical sensing DNA damage with nano-titanium dioxide and repair with a medicinal herb species resveratrol. J. Biotechnol., 2007, 127(4), 653-656.
[http://dx.doi.org/10.1016/j.jbiotec.2006.07.029] [PMID: 16949697]
[19]
Wilson, R.; Turner, A.P.F. Glucose oxidase: an ideal enzyme. Biosens. Bioelectron., 1992, 7(3), 165-185.
[http://dx.doi.org/10.1016/0956-5663(92)87013-F]
[20]
Bauer, J.A.; Zámocká, M.; Majtán, J.; Bauerová-Hlinková, V. Glucose oxidase, an enzyme “ferrari”: its structure, function, production and properties in the light of various industrial and biotechnological applications. Biomolecules, 2022, 12(3), 472.
[http://dx.doi.org/10.3390/biom12030472] [PMID: 35327664]
[21]
Wong, C.M.; Wong, K.H.; Chen, X.D. Glucose oxidase: natural occurrence, function, properties and industrial applications. Appl. Microbiol. Biotechnol., 2008, 78(6), 927-938.
[http://dx.doi.org/10.1007/s00253-008-1407-4] [PMID: 18330562]
[22]
Sassolas, A.; Blum, L.J.; Leca-Bouvier, B.D. Immobilization strategies to develop enzymatic biosensors. Biotechnol. Adv., 2012, 30(3), 489-511.
[http://dx.doi.org/10.1016/j.biotechadv.2011.09.003] [PMID: 21951558]
[23]
Jesionowski, T.; Zdarta, J.; Krajewska, B. Enzyme immobilization by adsorption: A review. Adsorption, 2014, 20(5-6), 801-821.
[http://dx.doi.org/10.1007/s10450-014-9623-y]
[24]
Bonnet, C.; Andreescu, S.; Marty, J.L. Adsorption: An easy and efficient immobilisation of acetylcholinesterase on screen-printed electrodes. Anal. Chim. Acta, 2003, 481(2), 209-211.
[http://dx.doi.org/10.1016/S0003-2670(03)00122-3]
[25]
Bousiakou, L.; Dobson, P.; Jurkin, T.; Marić, I.; Aldossary, O.; Ivanda, M. Optical, structural and semiconducting properties of Mn doped TiO2 nanoparticles for cosmetic applications. J. King Saud Univ. Sci., 2022, 34(3), 101818.
[http://dx.doi.org/10.1016/j.jksus.2021.101818]
[26]
Basso, A.; Serban, S. Industrial applications of immobilized enzymes—A review. Molecular Catalysis, 2019, 479, 110607.
[http://dx.doi.org/10.1016/j.mcat.2019.110607]
[27]
Sigma-Aldrich Enzymatic Assay of glucose oxidase (EC 1.1.3.4); , 2020. Available from : [https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Enzyme_Assay/g6641enz.pdf
[28]
Bergmeyer, H.U.; Gawehnand, K.; Grassl, M. Methods of Enzymatic Analysis; Academic Press Inc.: New York, USA, 1974, Vol. 1, pp. 457-458.
[29]
Yusan, S.; Rahman, M.M.; Mohamad, N.; Arrif, T.M.; Latif, A.Z.A. M A, M.A.; Wan Nik, W.S.B. Development of an amperometric glucose biosensor based on the immobilization of glucose oxidase on the Se-MCM-41 mesoporous composite. J. Anal. Methods Chem., 2018, 2018, 2687341.
[http://dx.doi.org/10.1155/2018/2687341] [PMID: 29862120]
[30]
Brunauer, L.S.; Lola, S.D.; Edwards, W.D. On a theory of the van der waals adsorption of gases. J. Am. Chem. Soc., 1940, 62, 1723.
[http://dx.doi.org/10.1021/ja01864a025]
[31]
a) Dell’Edera, M.; Petronella, F.; Truppi, A.; Liotta, L.F.; Gallì, N.; Sibillano, T.; Giannini, C.; Brescia, R.; Milano, F.; Striccoli, M.; Agostiano, A.; Curri, M.L.; Comparelli, R. Low Temperature synthesis of photocatalytic mesoporous TiO2 nanomaterials. Catalysts, 2020, 10(8), 893.
[http://dx.doi.org/10.3390/catal10080893];
b) Harris, D.C. Quantitative Chemical Analysis, 7th ed; W.H. Freeman and Company: New York, 2015.
[32]
Lee, KT.; Liu, DM.; Liang, YY.; Matsushita, N.; Ikoma, T.; Lu, SY. Porous fluorine-doped tin oxide as a promising substrate for electrochemical biosensors-demonstration in hydrogen peroxide sensing. J. Mater. Chem. B, 2014, 2(44), 7779-7784.
[http://dx.doi.org/10.1039/C4TB01191K]
[33]
Puri, N.; Sharma, V.; Tanwar, V.K.; Singh, N.; Biradar, A.M. Rajesh, Enzyme-modified indium tin oxide microelectrode array-based electrochemical uric acid biosensor. Prog. Biomater., 2013, 2(1), 5.
[http://dx.doi.org/10.1186/2194-0517-2-5] [PMID: 29470786]

© 2025 Bentham Science Publishers | Privacy Policy