Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Preparation of Ampicillin-derived CQDs and its Application in the Detection of Phenols in Medicinal Materials

Author(s): Yu Zhang* and Ping Zhang

Volume 20, Issue 2, 2024

Published on: 11 April, 2023

Page: [264 - 271] Pages: 8

DOI: 10.2174/1573413719666230222124501

open access plus

Abstract

Background: In this study, ampicillin sodium fluorescent carbon quantum dots were prepared by one-step hydrothermal method with ampicillin sodium as the carbon source and urea as the nitrogen source.

Methods: The structure of CQDs were characterized by UV-Vis and fluorescence spectrophotometer. The pH, reaction time and ionic strength of phenol detected by N-CQDs were optimized. The optimum experimental conditions were 40 μL ampicillin sodium N-CQDs, 2 mL buffer solution with pH 8.0, and the reaction time was 6 min.

Results: Through the detection of fluorescence spectrophotometry, p-nitrophenol had obvious fluorescence quenching phenomenon on ampicillin sodium N-CQDs, and the detection limit was 75 nM. It was used in the standard addition experiment of actual samples, and the recovery rates were more than 85%.

Conclusion: Therefore, the N-CQDs could be used as fluorescent probe to analyze the content of p-nitrophenol in the actual environment.

[1]
Li, J.; Ren, Y.; Lai, L.; Lai, B. Electrolysis assisted persulfate with annular iron sheet as anode for the enhanced degradation of 2, 4-dinitrophenol in aqueous solution. J. Hazard. Mater., 2018, 344, 778-787.
[http://dx.doi.org/10.1016/j.jhazmat.2017.11.007] [PMID: 29172164]
[2]
Emelyanova, E.V.; Reshetilov, A.N. Rhodococcus erythropolis as the receptor of cell-based sensor for 2,4-dinitrophenol detection: effect of ‘co-oxidation’. Process Biochem., 2002, 37(7), 683-692.
[http://dx.doi.org/10.1016/S0032-9592(01)00257-6]
[3]
Heiss, G.; Hofmann, K.W.; Trachtmann, N.; Walters, D.M.; Rouvière, P.; Knackmuss, H.J. npd gene functions of Rhodococcus (opacus) erythropolis HL PM-1 in the initial steps of 2,4,6-trinitrophenol degradation b bThe GenBank accession number for the sequence reported in this paper is AF435009. Microbiology (Reading), 2002, 148(3), 799-806.
[http://dx.doi.org/10.1099/00221287-148-3-799] [PMID: 11882715]
[4]
Rieger, P.G.; Sinnwell, V.; Preuß, A.; Francke, W.; Knackmuss, H.J. Hydride-Meisenheimer complex formation and protonation as key reactions of 2,4,6-trinitrophenol biodegradation by Rhodococcus erythropolis. J. Bacteriol., 1999, 181(4), 1189-1195.
[http://dx.doi.org/10.1128/JB.181.4.1189-1195.1999] [PMID: 9973345]
[5]
Lenke, H.; Knackmuss, H. Initial hydrogenation and extensive reduction of substituted 2,4-dinitrophenols. Appl. Environ. Microbiol., 1996, 62(3), 784-790.
[http://dx.doi.org/10.1128/aem.62.3.784-790.1996] [PMID: 16535270]
[6]
Asadpour-Zeynali, K.; Delnavaz, E. Electrochemical synthesis of nickel–cobalt oxide nanoparticles on the glassy carbon electrode and its application for the voltammetric determination of 4-nitrophenol. J. Indian Chem. Soc., 2017, 14(10), 2229-2238.
[http://dx.doi.org/10.1007/s13738-017-1159-0]
[7]
Ahmad, R.; Hasan, I. Efficient remediation of an aquatic environment contaminated by Cr (VI) and 2, 4-dinitrophenol by XG-g-Polyaniline@ZnO nanocomposite. J. Chem. Eng. Data, 2017, 62(5), 1594-1607.
[http://dx.doi.org/10.1021/acs.jced.6b00963]
[8]
Fang, M.; Lei, F.; Zhou, J.; Wu, Y.N.; Gong, Z.Y. Rapid, simple and selective determination of 2,4-dinitrophenol by molecularly imprinted spin column extraction coupled with fluorescence detection. Chin. Chem. Lett., 2014, 25(11), 1492-1494.
[http://dx.doi.org/10.1016/j.cclet.2014.06.015]
[9]
Sai, K.T.; Yang, Y.Y. Highly sensitive and selective detection of 4-nitrophenol, and on-off-on fluorescence sensor for Cr (VI) and ascorbic acid detection by glucosamine derived n-doped carbon dots. J. Photochem. Photobiol. Chem., 2020, 387(15), 112-134.
[10]
Kitova, A.E.; Kuvichkina, T.N.; Arinbasarova, A.Iu.; Reshetilov, A.N. Degradation of 2,4-dinitrophenol by free and immobilized cells of Rhodococcus erythropolis HL PM-1. Prikl. Biokhim. Mikrobiol., 2004, 40(3), 307-311.
[PMID: 15283333]
[11]
Wan, Y.; Wang, M.; Zhang, K.; Fu, Q.; Gao, M.; Wang, L.; Xia, Z.; Gao, D. Facile and green synthesis of fluorescent carbon dots from the flowers of Abelmoschus manihot (Linn.) Medicus for sensitive detection of 2,4,6-trinitrophenol and cellular imaging. Microchem. J., 2019, 148, 385-396.
[http://dx.doi.org/10.1016/j.microc.2019.05.026]
[12]
Kitova, A.E.; Kuvichkina, T.N.; Il’iasov, P.V.; Arinbasarova, A.Iu.; Reshetilov, A.N. Biosensor of the reactor type based on Rhodococcus erythropolis HL TM-1 cells for determining 2,4-dinitrophenol. Prikl. Biokhim. Mikrobiol., 2002, 38(5), 585-590.
[PMID: 12391763]
[13]
Hasija, V.; Sudhaik, A.; Raizada, P.; Hosseini-Bandegharaei, A.; Singh, P. Carbon quantum dots supported AgI/ZnO/phosphorus doped graphitic carbon nitride as Z-scheme photocatalyst for efficient photodegradation of 2, 4-dinitrophenol. J. Environ. Chem. Eng., 2019, 7(4), 103272.
[http://dx.doi.org/10.1016/j.jece.2019.103272]
[14]
Üzer, A.; Erçağ, E.; Apak, R. Selective spectrophotometric determination of trinitrotoluene, trinitrophenol, dinitrophenol and mononitrophenol. Anal. Chim. Acta, 2004, 505(1), 83-93.
[http://dx.doi.org/10.1016/S0003-2670(03)00674-3] [PMID: 17723759]
[15]
Cayuela, A.; Laura Soriano, M.; Valcárcel, M. Strong luminescence of Carbon Dots induced by acetone passivation: Efficient sensor for a rapid analysis of two different pollutants. Anal. Chim. Acta, 2013, 804, 246-251.
[http://dx.doi.org/10.1016/j.aca.2013.10.031] [PMID: 24267089]
[16]
Hu, S.L.; Niu, K.Y.; Sun, J.; Yang, J.; Zhao, N-Q.; Du, X-W. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J. Mater. Chem., 2009, 19(4), 484-488.
[http://dx.doi.org/10.1039/B812943F]
[17]
Lu, J.; Yang, J.; Wang, J.; Lim, A.; Wang, S.; Loh, K.P. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano, 2009, 3(8), 2367-2375.
[http://dx.doi.org/10.1021/nn900546b] [PMID: 19702326]
[18]
Huang, H.; Xu, Y.; Tang, C.J.; Chen, J.R.; Wang, A.J.; Feng, J.J. Facile and green synthesis of photoluminescent carbon nanoparticles for cellular imaging. New J. Chem., 2014, 38(2), 784-789.
[http://dx.doi.org/10.1039/c3nj01185b]
[19]
Li, H.; Liu, R.; Kong, W.; Liu, J.; Liu, Y.; Zhou, L.; Zhang, X.; Lee, S.T.; Kang, Z. Carbon quantum dots with photo-generated proton property as efficient visible light controlled acid catalyst. Nanoscale, 2014, 6(2), 867-873.
[http://dx.doi.org/10.1039/C3NR03996J] [PMID: 24270880]
[20]
Tang, L.; Ji, R.; Cao, X.; Lin, J.; Jiang, H.; Li, X.; Teng, K.S.; Luk, C.M.; Zeng, S.; Hao, J.; Lau, S.P. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano, 2012, 6(6), 5102-5110.
[http://dx.doi.org/10.1021/nn300760g] [PMID: 22559247]
[21]
Lai, I.P.J.; Harroun, S.G.; Chen, S.Y.; Unnikrishnan, B.; Li, Y.J.; Huang, C.C. Solid-state synthesis of self-functional carbon quantum dots for detection of bacteria and tumor cells. Sens. Actuators B Chem., 2016, 228, 465-470.
[http://dx.doi.org/10.1016/j.snb.2016.01.062]
[22]
Li, Q.; Meng, S.; Li, Y.; Cheng, D.; Gu, H.; Zhao, Z.; Tang, Z.; Tan, J.; Qu, S. Surface ionization-induced tunable dynamic phosphorescence colors from carbon dots on paper for dynamic multimode encryption. Carbon, 2022, 195, 191-198.
[http://dx.doi.org/10.1016/j.carbon.2022.03.063]
[23]
Kumar, P.; Thakur, U.K.; Alam, K.; Kar, P.; Kisslinger, R.; Zeng, S.; Patel, S.; Shankar, K. Arrays of TiO2 nanorods embedded with fluorine doped carbon nitride quantum dots (CNFQDs) for visible light driven water splitting. Carbon, 2018, 137, 174-187.
[http://dx.doi.org/10.1016/j.carbon.2018.05.019]
[24]
Maaoui, H.; Kumar, P.; Kumar, A.; Pan, G.H.; Chtourou, R.; Szunerits, S.; Boukherroub, R.; Jain, S.L. A Prussian blue/carbon dot nanocomposite as an efficient visible light active photocatalyst for C-H activation of amines. Photochem. Photobiol. Sci., 2016, 15(10), 1282-1288.
[http://dx.doi.org/10.1039/c6pp00203j] [PMID: 27714321]
[25]
Yuan, H.; Yu, J.; Feng, S.; Gong, Y. Highly photoluminescent pH-independent nitrogen-doped carbon dots for sensitive and selective sensing of p-nitrophenol. RSC Advances, 2016, 6(18), 15192-15200.
[http://dx.doi.org/10.1039/C5RA26870B]
[26]
Wei, Z.; Li, H.; Liu, S.; Wang, W.; Chen, H.; Xiao, L.; Ren, C.; Chen, X. Carbon dots as fluorescent/colorimetric probes for real-time detection of hypochlorite and ascorbic acid in cells and body fluid. Anal. Chem., 2019, 91(24), 15477-15483.
[http://dx.doi.org/10.1021/acs.analchem.9b03272] [PMID: 31756070]
[27]
Calabrese, G.; De Luca, G.; Nocito, G.; Rizzo, M.G.; Lombardo, S.P.; Chisari, G.; Forte, S.; Sciuto, E.L.; Conoci, S. Carbon dots: An innovative tool for drug delivery in brain tumors. Int. J. Mol. Sci., 2021, 22(21), 11783.
[http://dx.doi.org/10.3390/ijms222111783] [PMID: 34769212]
[28]
Thota, C.; Modigunta, J.K.R.; Reddeppa, M.; Park, Y.H.; Kim, H.; Kang, H.; Kokkiligadda, S.; Lee, S.; Murali, G.; Park, S.Y. In, I. Light stimulated room-temperature H2S gas sensing ability of Cl-doped carbon quantum dots supported Ag nanoparticles. Carbon, 2022, 196, 337-346.
[http://dx.doi.org/10.1016/j.carbon.2022.05.008]
[29]
Frontistis, Z.; Mantzavinos, D.; Meriç, S. Degradation of antibiotic ampicillin on boron-doped diamond anode using the combined electrochemical oxidation - Sodium persulfate process. J. Environ. Manage., 2018, 223, 878-887.
[http://dx.doi.org/10.1016/j.jenvman.2018.06.099] [PMID: 29990877]
[30]
Shangguan, J.; Huang, J.; He, D.; He, X.; Wang, K.; Ye, R.; Yang, X.; Qing, T.; Tang, J. Highly Fe 3+ -selective fluorescent nanoprobe based on ultrabright N/P codoped carbon dots and its application in biological samples. Anal. Chem., 2017, 89(14), 7477-7484.
[http://dx.doi.org/10.1021/acs.analchem.7b01053] [PMID: 28628302]
[31]
Xu, S.; Che, S.; Ma, P.; Zhang, F.; Xu, L.; Liu, X.; Wang, X.; Song, D.; Sun, Y. One-step fabrication of boronic-acid-functionalized carbon dots for the detection of sialic acid. Talanta, 2019, 197, 548-552.
[http://dx.doi.org/10.1016/j.talanta.2019.01.074] [PMID: 30771974]
[32]
Ding, H.; Yu, S.B.; Wei, J.S.; Xiong, H.M. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano, 2016, 10(1), 484-491.
[http://dx.doi.org/10.1021/acsnano.5b05406] [PMID: 26646584]
[33]
Wang, X.; Cao, L.; Lu, F.; Meziani, M.J.; Li, H.; Qi, G.; Zhou, B.; Harruff, B.A.; Kermarrec, F.; Sun, Y.P. Photoinduced electron transfers with carbon dots. Chem. Commun., 2009, (25), 3774-3776.
[http://dx.doi.org/10.1039/b906252a]

© 2024 Bentham Science Publishers | Privacy Policy