Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Mini-Review Article

A Review: Research Progress on Photoelectric Catalytic Water Splitting of α-Fe2O3

Author(s): Wei Huang, Dongliang Zhang* and Mitang Wang

Volume 19, Issue 6, 2023

Published on: 17 February, 2023

Page: [758 - 769] Pages: 12

DOI: 10.2174/1573413719666230130094051

Price: $65

Abstract

Photoelectric catalytic water splitting for hydrogen production is considered a promising method for hydrogen production, which can convert clean and renewable solar energy into sustainable and pollution-free hydrogen energy. An in-depth understanding of the relationship between the properties and functions of photocatalytic materials can help design and prepare efficient photodegradable water systems. Among them, α-Fe2O3 has a suitable band gap, can absorb visible light below 600 nm, and has the advantages of abundant raw materials high stability, and has become one of the most promising photoelectrode materials. However, as a photoelectrode material, α-Fe2O3 has the shortcomings of short photogenerated hole diffusion distance, low oxidation kinetics, poor conductivity, ease to be corroding, and so on, resulting in a very low photoelectric conversion efficiency, which limits its application in the field of photoelectric catalysis. This paper reviews the research progress of α-Fe2O3 as a photoanode. Firstly, the principle of photoelectric catalytic water splitting for hydrogen production and the main preparation methods of α-Fe2O3 photoanode is described; Secondly, the research work on modification of α- Fe2O3 photoanode by morphology control, element doping, construction of the heterojunction, surface modification and thermal excitation assisted effect in recent years is introduced. The photochemical performance of α-Fe2O3 photoanode is enhanced by improving the photocurrent density and the transfer of photo-generated carriers.

Graphical Abstract

[1]
Huang, H.; Yan, M.; Yang, C.; He, H.; Jiang, Q.; Yang, L.; Lu, Z.; Sun, Z.; Xu, X.; Bando, Y.; Yamauchi, Y. Graphene nanoarchitectonics: Recent advances in graphene‐based electrocatalysts for hydrogen evolution reaction. Adv. Mater., 2019, 31(48), 1903415.
[http://dx.doi.org/10.1002/adma.201903415] [PMID: 31496036]
[2]
Ding, Z.; Yu, H.; Liu, X.; He, N.; Chen, X.; Li, H.; Wang, M.; Yamauchi, Y.; Xu, X.; Amin, M.A.; Lu, T.; Pan, L. Prussian blue analogue derived cobalt–nickel phosphide/carbon nanotube composite as electrocatalyst for efficient and stable hydrogen evolution reaction in wide-pH environment. J. Colloid Interface Sci., 2022, 616, 210-220.
[http://dx.doi.org/10.1016/j.jcis.2022.02.039] [PMID: 35203034]
[3]
Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358), 37-38.
[http://dx.doi.org/10.1038/238037a0] [PMID: 12635268]
[4]
Zhu, J.; Jiang, E.; Wang, X.; Pan, Z.; Xu, X.; Ma, S.; Kang Shen, P.; Pan, L.; Eguchi, M.; Nanjundan, A.K.; Shapter, J.; Yamauchi, Y Gram-Scale production of Cu3P-Cu2O Janus nanoparticles into nitrogen and phosphorous doped porous carbon framework as bifunctional electrocatalysts for overall water splitting. Chem. Eng. J., 2022, 427, 130946.
[http://dx.doi.org/10.1016/j.cej.2021.130946]
[5]
Han, Y.; Wu, J.; Li, Y.; Gu, X.; He, T.; Zhao, Y.; Huang, H.; Liu, Y.; Kang, Z. Carbon dots enhance the interface electron transfer and photoelectrochemical kinetics in TiO2 photoanode. Appl. Catal. B, 2022, 304, 120983.
[http://dx.doi.org/10.1016/j.apcatb.2021.120983]
[6]
Zhang, T.; Lin, P.; Wei, N.; Wang, D. Enhanced photoelectrochemical water-splitting property on TiO2 nanotubes by surface chemical modification and wettability control. ACS Appl. Mater. Interfaces, 2020, 12(17), 20110-20118.
[http://dx.doi.org/10.1021/acsami.0c03051] [PMID: 32255600]
[7]
Wang, L.; Si, W.; Ye, Y.; Wang, S.; Hou, F.; Hou, X.; Cai, H.; Dou, S.X.; Liang, J. Cu-ion-implanted and polymeric carbon nitride-decorated TiO2 nanotube array for unassisted photoelectrochemical water splitting. ACS Appl. Mater. Interfaces, 2021, 13(37), 44184-44194.
[http://dx.doi.org/10.1021/acsami.1c09665] [PMID: 34499482]
[8]
Shao, C.; Malik, A.S.; Han, J.; Li, D.; Dupuis, M.; Zong, X.; Li, C. Oxygen vacancy engineering with flame heating approach towards enhanced photoelectrochemical water oxidation on WO3 photoanode. Nano Energy, 2020, 77, 105190.
[http://dx.doi.org/10.1016/j.nanoen.2020.105190]
[9]
Li, Y.; Mei, Q.; Liu, Z.; Hu, X.; Zhou, Z.; Huang, J.; Bai, B.; Liu, H.; Ding, F.; Wang, Q. Fluorine-doped iron oxyhydroxide cocatalyst: Promotion on the WO3 photoanode conducted photoelectrochemical water splitting. Appl. Catal. B, 2022, 304, 120995.
[http://dx.doi.org/10.1016/j.apcatb.2021.120995]
[10]
Kalanur, S.S.; Singh, R.; Seo, H. Enhanced solar water splitting of an ideally doped and work function tuned 002 oriented one-dimensional WO3 with nanoscale surface charge mapping insights. Appl. Catal. B, 2021, 295, 120269.
[http://dx.doi.org/10.1016/j.apcatb.2021.120269]
[11]
Sun, Q.; Cheng, T.; Liu, Z.; Qi, L. A cobalt silicate modified BiVO4 photoanode for efficient solar water oxidation. Appl. Catal. B, 2020, 277, 119189.
[http://dx.doi.org/10.1016/j.apcatb.2020.119189]
[12]
Shim, S.G.; Tan, J.; Lee, H.; Park, J.; Yun, J.; Park, Y.S.; Kim, K.; Lee, J.; Moon, J. Facile morphology control strategy to enhance charge separation efficiency of Mo:BiVO4 photoanodes for efficient photoelectrochemical water splitting. Chem. Eng. J., 2022, 430, 133061.
[http://dx.doi.org/10.1016/j.cej.2021.133061]
[13]
Zhang, X.; Guo, H.; Dong, G.; Zhang, Y.; Lu, G.; Bi, Y. Homostructural Ta3N5 nanotube/nanoparticle photoanodes for highly efficient solar-driven water splitting. Appl. Catal. B, 2020, 277, 119217.
[http://dx.doi.org/10.1016/j.apcatb.2020.119217]
[14]
Chen, Y.; Xia, H.; Feng, X.; Liu, Y.; Zheng, W.; Ma, L.; Li, R. Synergy of porous structure and cation doping in Ta3N5 photoanode towards improved photoelectrochemical water oxidation. J. Energy Chem., 2021, 52, 343-350.
[http://dx.doi.org/10.1016/j.jechem.2020.04.034]
[15]
Najaf, Z.; Nguyen, D.L.T.; Chae, S.Y.; Joo, O.S.; Shah, A.U.H.A.; Vo, D.V.N.; Nguyen, V-H.; Le, Q.V.; Rahman, G. Recent trends in development of hematite (α-Fe2O3) as an efficient photoanode for enhancement of photoelectrochemical hydrogen production by solar water splitting. Int. J. Hydrogen Energy, 2021, 46(45), 23334-23357.
[http://dx.doi.org/10.1016/j.ijhydene.2020.07.111]
[16]
Üzer, E.; Kumar, P.; Kisslinger, R.; Kar, P.; Thakur, U.K.; Zeng, S.; Shankar, K.; Nilges, T. Vapor deposition of semiconducting phosphorus allotropes into TiO2 nanotube arrays for photoelectrocatalytic water splitting. ACS Appl. Nano Mater., 2019, 2(6), 3358-3367.
[http://dx.doi.org/10.1021/acsanm.9b00221]
[17]
Kumar, P.; Mulmi, S.; Laishram, D.; Alam, K.M.; Thakur, U.K.; Thangadurai, V.; Shankar, K. Water-splitting photoelectrodes consisting of heterojunctions of carbon nitride with a p-type low bandgap double perovskite oxide. Nanotechnology, 2021, 32(48), 485407.
[http://dx.doi.org/10.1088/1361-6528/abedec] [PMID: 33706303]
[18]
Kumar, P.; Kar, P.; Manuel, A.P.; Zeng, S.; Thakur, U.K.; Alam, K.M.; Zhang, Y.; Kisslinger, R.; Cui, K.; Bernard, G.M.; Michaelis, V.K.; Shankar, K. Noble metal free, visible light driven photocatalysis using TiO2 nanotube arrays sensitized by P‐Doped C3N4 quantum dots. Adv. Opt. Mater., 2020, 8(4), 1901275.
[http://dx.doi.org/10.1002/adom.201901275]
[19]
Alam, K.M.; Kumar, P.; Kar, P.; Thakur, U.K.; Zeng, S.; Cui, K.; Shankar, K. Enhanced charge separation in g-C3N4-BiOI heterostructures for visible light driven photoelectrochemical water splitting. Nanoscale Adv., 2019, 1(4), 1460-1471.
[http://dx.doi.org/10.1039/C8NA00264A] [PMID: 36132597]
[20]
Qiu, Y.; Leung, S.F.; Zhang, Q.; Hua, B.; Lin, Q.; Wei, Z.; Tsui, K.H.; Zhang, Y.; Yang, S.; Fan, Z. Efficient photoelectrochemical water splitting with ultrathin films of hematite on three-dimensional nanophotonic structures. Nano Lett., 2014, 14(4), 2123-2129.
[http://dx.doi.org/10.1021/nl500359e] [PMID: 24601797]
[21]
Prévot, M.S.; Sivula, K. Photoelectrochemical tandem cells for solar water splitting. J. Phys. Chem. C, 2013, 117(35), 17879-17893.
[http://dx.doi.org/10.1021/jp405291g]
[22]
Cesar, I.; Sivula, K.; Kay, A.; Zboril, R.; Grätzel, M. Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. J. Phys. Chem. C, 2009, 113(2), 772-782.
[http://dx.doi.org/10.1021/jp809060p]
[23]
Tilley, S.D.; Cornuz, M.; Sivula, K.; Grätzel, M. Light-induced water splitting with hematite: Improved nanostructure and iridium oxide catalysis. Angew. Chem. Int. Ed., 2010, 49(36), 6405-6408.
[http://dx.doi.org/10.1002/anie.201003110] [PMID: 20665613]
[24]
Sivula, K.; Grätzel, M. Tandem photoelectrochemical cells for water splitting. In: Photoelectrochemical Water Splitting; Lewerenz, H-J., Ed.; The Royal Society of Chemistry, 2013; pp. 83-108.
[25]
Sivula, K.; Le Formal, F.; Grätzel, M. Solar water splitting: Progress using hematite α-Fe2O3 photoelectrodes. ChemSusChem, 2011, 4(4), 432-449.
[http://dx.doi.org/10.1002/cssc.201000416] [PMID: 21416621]
[26]
Tang, Y.; Yang, C.; Xu, X.; Kang, Y.; Henzie, J.; Que, W.; Yamauchi, Y. Mxene nanoarchitectonics: Defect‐engineered 2D Mxenes towards enhanced electrochemical water splitting. Adv. Energy Mater., 2022, 12(12), 2103867.
[http://dx.doi.org/10.1002/aenm.202103867]
[27]
Tahir, M.; Tasleem, S.; Tahir, B. Recent development in band engineering of binary semiconductor materials for solar driven photocatalytic hydrogen production. Int. J. Hydrogen Energy, 2020, 45(32), 15985-16038.
[http://dx.doi.org/10.1016/j.ijhydene.2020.04.071]
[28]
Samuel, E.; Joshi, B.; Kim, M-W. Morphology engineering of photoelectrodes for efficient photoelectrochemical water splitting. Nano Energy, 2020, 72.
[http://dx.doi.org/10.1016/j.nanoen.2020.104648]
[29]
Pang, Y.L.; Lim, S.; Ong, H.C.; Chong, W.T. Research progress on iron oxide-based magnetic materials: Synthesis techniques and photocatalytic applications. Ceram. Int., 2016, 42(1), 9-34.
[http://dx.doi.org/10.1016/j.ceramint.2015.08.144]
[30]
Bu, Q.; Li, S.; Zhang, K.; Lin, Y.; Wang, D.; Zou, X.; Xie, T. Hole transfer channel of ferrihydrite designed between Ti–Fe2O3 and CoPi as an efficient and durable photoanode. ACS Sustain. Chem.& Eng., 2019, 7(12), 10971-10978.
[http://dx.doi.org/10.1021/acssuschemeng.9b02009]
[31]
Chong, R.; Wang, B.; Su, C.; Li, D.; Mao, L.; Chang, Z.; Zhang, L. Dual-functional CoAl layered double hydroxide decorated α-Fe2O3 as an efficient and stable photoanode for photoelectrochemical water oxidation in neutral electrolyte. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(18), 8583-8590.
[http://dx.doi.org/10.1039/C7TA01586K]
[32]
Iandolo, B.; Wickman, B. Zorić I.; Hellman, A. The rise of hematite: Origin and strategies to reduce the high onset potential for the oxygen evolution reaction. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(33), 16896-16912.
[http://dx.doi.org/10.1039/C5TA03362D]
[33]
Sivula, K. Metal oxide photoelectrodes for solar fuel production, surface traps, and catalysis. J. Phys. Chem. Lett., 2013, 4(10), 1624-1633.
[http://dx.doi.org/10.1021/jz4002983] [PMID: 26282969]
[34]
Xu, Y.F.; Wang, X.D.; Chen, H.Y.; Kuang, D.B.; Su, C.Y. Toward high performance photoelectrochemical water oxidation: Combined effects of ultrafine cobalt iron oxide nanoparticle. Adv. Funct. Mater., 2016, 26(24), 4414-4421.
[http://dx.doi.org/10.1002/adfm.201600232]
[35]
Wan, L. Study of the stability of the iron oxide photoelectrodeprepared through hydrothermal method. IOP Conf. Ser. Earth Environ. Sci., 2021, 714(2), 022075.
[http://dx.doi.org/10.1088/1755-1315/714/2/022075]
[36]
Nasiri, M.A.; Sangpour, P.; Yousefzadeh, S.; Bagheri, M. Elevated temperature annealed α-Fe2O3/reduced graphene oxide nanocomposite photoanode for photoelectrochemical water oxidation. J. Environ. Chem. Eng., 2019, 7(2), 102999.
[http://dx.doi.org/10.1016/j.jece.2019.102999]
[37]
Kalamaras, E.; Dracopoulos, V.; Sygellou, L.; Lianos, P. Electrodeposited Ti-doped hematite photoanodes and their employment for photoelectrocatalytic hydrogen production in the presence of ethanol. Chem. Eng. J., 2016, 295, 288-294.
[http://dx.doi.org/10.1016/j.cej.2016.03.062]
[38]
Mohsen Momeni, M.; Ghayeb, Y.; Hallaj, A.; Bagheri, R.; Songd, Z.; Farrokhpour, H. Effects of platinum photodeposition time on the photoelectrochemical properties of Fe2O3 nanotube electrodes. Mater. Lett., 2019, 237, 188-192.
[http://dx.doi.org/10.1016/j.matlet.2018.11.089]
[39]
Makimizu, Y.; Nguyen, N.T.; Tucek, J.; Ahn, H.J.; Yoo, J.; Poornajar, M.; Hwang, I.; Kment, S.; Schmuki, P. Activation of α‐Fe 2 O3 for photoelectrochemical water splitting strongly enhanced by low temperature annealing in low oxygen containing ambient. Chemistry, 2020, 26(12), 2685-2692.
[http://dx.doi.org/10.1002/chem.201904430] [PMID: 31788871]
[40]
Lian, X.; Yang, X.; Liu, S.; Xu, Y.; Jiang, C.; Chen, J.; Wang, R. Enhanced photoelectrochemical performance of Ti-doped hematite thin films prepared by the sol–gel method. Appl. Surf. Sci., 2012, 258(7), 2307-2311.
[http://dx.doi.org/10.1016/j.apsusc.2011.10.001]
[41]
Li, S.; Zhang, P.; Song, X.; Gao, L. Ultrathin Ti-doped hematite photoanode by pyrolysis of ferrocene. Int. J. Hydrogen Energy, 2014, 39(27), 14596-14603.
[http://dx.doi.org/10.1016/j.ijhydene.2014.07.110]
[42]
Jansi Rani, B.; Praveen Kumar, M.; Ravi, G.; Ravichandran, S.; Guduru, R.K.; Yuvakkumar, R. Electrochemical and photoelectrochemical water oxidation of solvothermally synthesized Zr-doped α-Fe2O3 nanostructures. Appl. Surf. Sci., 2019, 471, 733-744.
[http://dx.doi.org/10.1016/j.apsusc.2018.12.061]
[43]
Allieta, M.; Marelli, M.; Malara, F.; Bianchi, C.L.; Santangelo, S.; Triolo, C.; Patane, S.; Ferretti, A.M.; Kment, Š.; Ponti, A.; Naldoni, A. Shaped‐controlled silicon‐doped hematite nanostructures for enhanced PEC water splitting. Catal. Today, 2019, 328, 43-49.
[http://dx.doi.org/10.1016/j.cattod.2018.10.010]
[44]
Chai, H.; Wang, P.; Wang, T.; Gao, L.; Li, F.; Jin, J. Surface reconstruction of cobalt species on amorphous cobalt silicate-coated fluorine-doped hematite for efficient photoelectrochemical water oxidation. ACS Appl. Mater. Interfaces, 2021, 13(40), 47572-47580.
[http://dx.doi.org/10.1021/acsami.1c12597] [PMID: 34607433]
[45]
Masoumi, Z.; Tayebi, M.; Lee, B.K. The role of doping molybdenum (Mo) and back-front side illumination in enhancing the charge separation of α-Fe2O3 nanorod photoanode for solar water splitting. Sol. Energy, 2020, 205, 126-134.
[http://dx.doi.org/10.1016/j.solener.2020.05.044]
[46]
Liu, G.; Zhao, Y.; Li, N.; Yao, R.; Wang, M.; Wu, Y.; Zhao, F.; Li, J. Ti-doped hematite photoanode with surface phosphate ions functionalization for synergistic enhanced photoelectrochemical water oxidation. Electrochim. Acta, 2019, 307, 197-205.
[http://dx.doi.org/10.1016/j.electacta.2019.03.214]
[47]
Bouhjar, F.; Derbali, L.; Marí, B.; Bessaïs, B. Electrodeposited Cr-Doped α-Fe2O3 thin films active for photoelectrochemical water splitting. Int. J. Hydrogen Energy, 2020, 45(20), 11492-11501.
[http://dx.doi.org/10.1016/j.ijhydene.2019.10.215]
[48]
Li, L.; Chen, Y.; Liu, X.; Wang, Q.; Du, L.; Chen, X.; Tian, G. Cu2O decorated α-Fe2O3/SnS2 core/shell heterostructured nanoarray photoanodes for water splitting. Sol. Energy, 2021, 220, 843-851.
[http://dx.doi.org/10.1016/j.solener.2021.04.022]
[49]
Deng, J.; Zhuo, Q.; Lv, X. Hierarchical TiO2/Fe2O3 heterojunction photoanode for improved photoelectrochemical water oxidation. J. Electroanal. Chem., 2019, 835, 287-292.
[http://dx.doi.org/10.1016/j.jelechem.2019.01.056]
[50]
Mao, L.; Huang, Y.C.; Fu, Y.; Dong, C.L.; Shen, S. Surface sulfurization activating hematite nanorods for efficient photoelectrochemical water splitting. Sci. Bull. (Beijing), 2019, 64(17), 1262-1271.
[http://dx.doi.org/10.1016/j.scib.2019.07.008]
[51]
Chong, R.; Wang, G.; Du, Y.; Jia, Y.; Wang, X.; Li, C.; Chang, Z.; Zhang, L. Anion engineering of exfoliated CoAl layered double hydroxides on hematite photoanode toward highly efficient photoelectrochemical water splitting. Chem. Eng. J., 2019, 366, 523-530.
[http://dx.doi.org/10.1016/j.cej.2019.02.127]
[52]
Wang, C.; Wei, S.; Li, F.; Long, X.; Wang, T.; Wang, P.; Li, S.; Ma, J.; Jin, J. Activating a hematite nanorod photoanode via fluorine-doping and surface fluorination for enhanced oxygen evolution reaction. Nanoscale, 2020, 12(5), 3259-3266.
[http://dx.doi.org/10.1039/C9NR09502K] [PMID: 31970358]
[53]
Xing, X.S.; Bao, M.; Wang, P.; Wang, X.; Wang, Y.; Du, J. Synergy between Mn and Co in Mn/CoOx cocatalyst for enhanced photoelectrochemical water oxidation of hematite photoanode. Appl. Surf. Sci., 2022, 572, 151472.
[http://dx.doi.org/10.1016/j.apsusc.2021.151472]
[54]
Nurlaela, E.; Shinagawa, T.; Qureshi, M.; Dhawale, D.S.; Takanabe, K. Temperature dependence of electrocatalytic and photocatalytic oxygen evolution reaction rates using NiFe oxide. ACS Catal., 2016, 6(3), 1713-1722.
[http://dx.doi.org/10.1021/acscatal.5b02804]
[55]
Zhang, L.; Sun, L.; Guan, Z.; Lee, S.; Li, Y.; Deng, H.D.; Li, Y.; Ahlborg, N.L.; Boloor, M.; Melosh, N.A.; Chueh, W.C. Quantifying and elucidating thermally enhanced minority carrier diffusion length using radius-controlled rutile nanowires. Nano Lett., 2017, 17(9), 5264-5272.
[http://dx.doi.org/10.1021/acs.nanolett.7b01504] [PMID: 28817772]
[56]
Zhang, L.; Ye, X.; Boloor, M.; Poletayev, A.; Melosh, N.A.; Chueh, W.C. Significantly enhanced photocurrent for water oxidation in monolithic Mo:BiVO4/SnO2/Si by thermally increasing the minority carrier diffusion length. Energy Environ. Sci., 2016, 9(6), 2044-2052.
[http://dx.doi.org/10.1039/C6EE00036C]
[57]
Zhang, B.; Daniel, Q.; Cheng, M.; Fan, L.; Sun, L. Temperature dependence of electrocatalytic water oxidation: A triple device model with a photothermal collector and photovoltaic cell coupled to an electrolyzer. Faraday Discuss., 2017, 198, 169-179.
[http://dx.doi.org/10.1039/C6FD00206D] [PMID: 28276546]
[58]
Peerakiatkhajohn, P.; Yun, J.H.; Chen, H.; Lyu, M.; Butburee, T.; Wang, L. Stable hematite nanosheet photoanodes for enhanced photoelectrochemical water splitting. Adv. Mater., 2016, 28(30), 6405-6410.
[http://dx.doi.org/10.1002/adma.201601525] [PMID: 27167876]
[59]
Katsuki, T.; Zahran, Z.N.; Tanaka, K.; Eo, T.; Mohamed, E.A.; Tsubonouchi, Y.; Berber, M.R.; Yagi, M. Facile fabrication of a highly crystalline and well-interconnected hematite nanoparticle photoanode for efficient visible-light-driven water oxidation. ACS Appl. Mater. Interfaces, 2021, 13(33), 39282-39290.
[http://dx.doi.org/10.1021/acsami.1c08949] [PMID: 34387481]
[60]
Wang, H.; Hu, Y.; Song, G.L.; Zheng, D.J. Intrinsic and extrinsic doping to construct hematite nanorod p-n homojunctions for highly efficient PEC water splitting. Chem. Eng. J., 2022, 435, 135016.
[http://dx.doi.org/10.1016/j.cej.2022.135016]
[61]
Rashid, N.M.A.; Talik, N.A.; Chiu, W.S.; Sim, K.P.; Nakajima, H.; Pan, G.T.; Yang, T.C.K.; Rahman, S.A. Influence of different morphology of carbon nanostructures on the structural and optical properties of decorated single crystalline hematite nanocubes for photoelectrochemical applications. Appl. Surf. Sci., 2019, 498, 143845.
[http://dx.doi.org/10.1016/j.apsusc.2019.143845]
[62]
Chen, D.; Liu, Z.; Zhou, M.; Wu, P.; Wei, J. Enhanced photoelectrochemical water splitting performance of α-Fe2O3 nanostructures modified with Sb2S3 and cobalt phosphate. J. Alloys Compd., 2018, 742, 918-927.
[http://dx.doi.org/10.1016/j.jallcom.2018.01.334]
[63]
Bu, X.; Gao, Y.; Zhang, S.; Tian, Y. Amorphous cerium phosphate on P-doped Fe2O3 nanosheets for efficient photoelectrochemical water oxidation. Chem. Eng. J., 2019, 355, 910-919.
[http://dx.doi.org/10.1016/j.cej.2018.08.221]
[64]
Arzaee, N.A.; Mohamad Noh, M.F.; Ab Halim, A.; Abdul Rahim, M.A.F.; Mohamed, N.A.; Safaei, J.; Aadenan, A.; Syed Nasir, S.N.; Ismail, A.F.; Mat Teridi, M.A. Aerosol-assisted chemical vapour deposition of α-Fe2O3 nanoflowers for photoelectrochemical water splitting. Ceram. Int., 2019, 45(14), 16797-16802.
[http://dx.doi.org/10.1016/j.ceramint.2019.05.219]
[65]
Su, J.; Wang, J.; Liu, C.; Feng, B.; Chen, Y.; Guo, L. On the role of metal atom doping in hematite for improved photoelectrochemical properties: A comparison study. RSC Advances, 2016, 6(104), 101745-101751.
[http://dx.doi.org/10.1039/C6RA22895J]
[66]
Baig, F.; Hameed Khattak, Y.; Jemai, S.; Marí Soucase, B.; Beg, S. Hydrothermal syntheses of Vanadium doped α-Fe2O3 cubic particles with enhanced photoelectrochemical activity. Sol. Energy, 2019, 182, 332-339.
[http://dx.doi.org/10.1016/j.solener.2019.02.066]
[67]
Peng, Y.; Ruan, Q.; Lam, C.H.; Meng, F.; Guan, C-Y.; Santoso, S.P.; Zou, X.; Yu, T. Plasma-implanted Ti-doped hematite photoanodes with enhanced photoelectrochemical water oxidation performance. J. Alloys Compd., 2021, 870, 159376.
[http://dx.doi.org/10.1016/j.jallcom.2021.159376]
[68]
Kong, T.T.; Huang, J.; Jia, X.G.; Wang, W.Z.; Zhou, Y. Selective doping of titanium into double layered hematite nanorod arrays for improved photoelectrochemical water splitting. Appl. Surf. Sci., 2019, 486, 312-322.
[http://dx.doi.org/10.1016/j.apsusc.2019.04.219]
[69]
Chae, S.Y.; Rahman, G.; Joo, O. Elucidation of the structural and charge separation properties of titanium-doped hematite films deposited by electrospray method for photoelectrochemical water oxidation. Electrochim. Acta, 2019, 297, 784-793.
[http://dx.doi.org/10.1016/j.electacta.2018.11.166]
[70]
Jansi Rani, B.; Ravi, G.; Yuvakkumar, R.; Ravichandran, S.; Ameen, F.; AlNadhary, S. Sn doped α-Fe2O3 (Sn=0,10,20,30 wt%) photoanodes for photoelectrochemical water splitting applications. Renew. Energy, 2019, 133, 566-574.
[http://dx.doi.org/10.1016/j.renene.2018.10.067]
[71]
Ma, Z.; Wen, Z.; Gu, C.; Yin, Y. Doping of nonmetal Se in Fe 2 O 3 nanowire array-based photoanodes for water oxidation. ACS Appl. Nano Mater., 2021, 4(12), 13297-13304.
[http://dx.doi.org/10.1021/acsanm.1c02807]
[72]
Liu, C.; Xu, Y.; Luo, H.; Wang, W.; Liang, Q.; Chen, Z. Synthesis and photoelectrochemical properties of CoOOH/phosphorus-doped hematite photoanodes for solar water oxidation. Chem. Eng. J., 2019, 363, 23-32.
[http://dx.doi.org/10.1016/j.cej.2019.01.112]
[73]
Xiao, J.; Du, B.; Hu, S.; Zhong, J.; Chen, X.; Zhang, Y.; Cai, D.; Zhou, S.F.; Zhan, G. Simultaneously enhanced charge separation and transfer in cocatalyst-free hematite photoanode by Mo/Sn codoping. ACS Appl. Energy Mater., 2021, 4(9), 10368-10379.
[http://dx.doi.org/10.1021/acsaem.1c02291]
[74]
Sahu, T.K.; Shah, A.K.; Banik, A.; Qureshi, M. Enhanced surface and bulk recombination kinetics by virtue of sequential metal and nonmetal incorporation in hematite-based photoanode for superior photoelectrochemical water oxidation. ACS Appl. Energy Mater., 2019, 2(6), 4325-4334.
[http://dx.doi.org/10.1021/acsaem.9b00548]
[75]
Reddy, C.V.; Reddy, I.N.; Akkinepally, B.; Reddy, K.R.; Shim, J. Synthesis and photoelectrochemical water oxidation of (Y, Cu) codoped α-Fe2O3 nanostructure photoanode. J. Alloys Compd., 2020, 814, 152349.
[76]
Cai, J.; Li, S.; Pan, H.; Liu, Y.; Qin, G. c-In2O3/α-Fe2O3 heterojunction photoanodes for water oxidation. J. Mater. Sci., 2016, 51(17), 8148-8155.
[http://dx.doi.org/10.1007/s10853-016-0085-3]
[77]
Cai, J.; Li, S.; Qin, G. Interface engineering of Co3O4 loaded CaFe2O4/Fe2O3 heterojunction for photoelectrochemical water oxidation. Appl. Surf. Sci., 2019, 466, 92-98.
[http://dx.doi.org/10.1016/j.apsusc.2018.10.022]
[78]
Kyesmen, P.I.; Nombona, N.; Diale, M. Heterojunction of nanostructured α-Fe2O3/CuO for enhancement of photoelectrochemical water splitting. J. Alloys Compd., 2021, 863, 158724.
[http://dx.doi.org/10.1016/j.jallcom.2021.158724]
[79]
Zhu, C.; Li, C.; Miao, X.; Zhao, L.; Wang, Z.; Delaunay, J.J. Photoelectrochemical water oxidation performance promoted by a cupric oxide-hematite heterojunction photoanode. Int. J. Hydrogen Energy, 2020, 45(58), 33102-33110.
[http://dx.doi.org/10.1016/j.ijhydene.2020.09.091]
[80]
Masoumi, Z.; Tayebi, M.; Kolaei, M.; Tayyebi, A.; Ryu, H.; Jang, J.I.; Lee, B.K. Simultaneous enhancement of charge separation and hole transportation in a W:α-Fe2O3/MoS2 photoanode: A collaborative approach of MoS2 as a heterojunction and W as a metal dopant. ACS Appl. Mater. Interfaces, 2021, 13(33), 39215-39229.
[http://dx.doi.org/10.1021/acsami.1c08139] [PMID: 34374510]
[81]
Chen, X.; Fu, Y.; Kong, T.; Shang, Y.; Niu, F.; Diao, Z.; Shen, S. Protected hematite nanorod arrays with molecular complex Co‐catalyst for efficient and stable photoelectrochemical water oxidation. Eur. J. Inorg. Chem., 2019, 2019(15), 2078-2085.
[http://dx.doi.org/10.1002/ejic.201801200]
[82]
Rong, J.; Wang, Z.; Lv, J.; Fan, M.; Chong, R.; Chang, Z. Ni(OH)2 quantum dots as a stable cocatalyst modified α-Fe2O3 for enhanced photoelectrochemical water-splitting. Chin. J. Catal., 2021, 42(11), 1999-2009.
[http://dx.doi.org/10.1016/S1872-2067(21)63829-9]
[83]
Liu, Y.; Li, X.; Mo, R.; Xie, P.; Yin, M.; Li, H. Enhancing the photoelectrochemical water oxidation activity of α‐Fe2O3 thin film photoanode by employing rGo as electron transfer mediator and NiFe‐LDH as cocatalyst. ChemCatChem, 2021, 13(22), 4729-4737.
[http://dx.doi.org/10.1002/cctc.202100913]
[84]
Liu, X.; Zhan, F.; Li, D.; Xue, M. α-Fe2O3 nanoarrays photoanodes decorated with Ni-MOFs for enhancing photoelectrochemical water oxidation. Int. J. Hydrogen Energy, 2020, 45(53), 28836-28846.
[http://dx.doi.org/10.1016/j.ijhydene.2020.07.277]
[85]
Ye, X.; Yang, J.; Boloor, M.; Melosh, N.A.; Chueh, W.C. Thermally-enhanced minority carrier collection in hematite during photoelectrochemical water and sulfite oxidation. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(20), 10801-10810.
[http://dx.doi.org/10.1039/C5TA02108A]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy