Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Application of Microorganisms as Biofactories to Produce Biogenic Nanoparticles for Environmental Cleanup: Currents Advances and Challenges

Author(s): Osikemekha Anthony Anani*, Abel Inobeme, Osayomwanbo Osarenotor, Frances Ngozi Olisaka, Paul Atagamen Aidonojie, Emmanuel Olusegun Olatunji and Aishatu Idris Habib

Volume 19, Issue 6, 2023

Published on: 13 January, 2023

Page: [770 - 782] Pages: 13

DOI: 10.2174/1573413719666221219164613

Price: $65

Abstract

Recently, there has been a significant increase in the rate and amount of pollutant discharge into the environment. This is extremely worrisome to the human population, especially as it is envisaged to reach 10 billion in the next 40 years. The traditional methods applied for pollutant abatement and recycling exhibit inefficiency and environmental unfriendliness because they cannot effectively transform these pollutants into non-noxious states. Recently, microorganisms and nano-based materials are emerging as highly efficient and eco-friendly alternatives for managing, reducing, and decontaminating pollutant wastes or effluents in the environment. The biosynthesis of these materials has motivated research into developing cheaper, green, and more sustainable yeast, algae, fungi, and bacteria-biogenic nanoparticles, which could be used to clean up heavily contaminated environments. This review evaluates the application of microorganisms (yeast, algae, fungi, and bacteria) with nanomaterials as biogenic nanoparticles to clean up environmental pollutants. The environmental and health hazards associated with the fate of the biogenic nanoparticles, and some legal regulations, are also highlighted. The commercialization of nanomaterials and their possible global application are also documented. Future recommendations were proffered.

Graphical Abstract

[1]
Fulekar, M.H.; Singh, A.; Bhaduri, A.M. Genetic engineering strategies for enhancing phytoremediation of heavy metals. Afr. J. Biotechnol., 2009, 8, 529-535.
[2]
Singh, J.S.; Abhilash, P.C.; Singh, H.B.; Singh, R.P.; Singh, D.P. Genetically engineered bacteria: An emerging tool for environmental remediation and future research perspectives. Gene, 2011, 480(1-2), 1-9.
[http://dx.doi.org/10.1016/j.gene.2011.03.001] [PMID: 21402131]
[3]
Anani, O.A.; Olomukoro, J.O. Health risk from the consumption of freshwater prawn and crab exposed to heavy metals in a tropical river, southern nige. J. Heavy Metal Tox. Diss., 2018, 3(2), 5. Available from: https://doi.org/ria
[http://dx.doi.org/10.21767/2473-6457.10024]
[4]
Aidonojie, P.A.; Anani, O.A.; Agbale, O.P.; Olomukoro, J.O.; Adetunji, O.C. Environmental law in nigeria: A review on its antecedence, application, judicial unfairness and prospects. Arch. Sci. Technol., 2020, 1(2), 212-221.
[5]
Oon, Y.L.; Ong, S.A.; Ho, L.N.; Wong, Y.S.; Dahalan, F.A.; Oon, Y.S. Constructed wetland-microbial fuel cell for azo dyes degradation and energy recovery: Influence of molecular structure, kinetics, mechanisms and degradation pathways. Sci. Total Environ., 2020, 720, 137370.
[6]
Adetunji, C.O.; Anani, O.A. Bioremediation of polythene and plastics using beneficial microorganisms. Microbial Rejuvenation of Polluted Environment; Springer, 2021, Vol. 27, pp. 281-302.
[http://dx.doi.org/10.1007/978-981-15-7459-7_13]
[7]
Kapoor, R.T.; Salvadori, M.R.; Rafatullah, M.; Siddiqui, M.R.; Khan, M.A.; Alshareef, S.A. Exploration of microbial factories for synthesis of nanoparticles-A sustainable approach for bioremediation of environmental contaminants. Front. Microbiol., 2021, 12, 658294.
[http://dx.doi.org/10.3389/fmicb.2021.658294]
[8]
Goutam, S.P.; Saxena, G.; Roy, D.; Yadav, A.K.; Bharagava, R.N. Green synthesis of nanoparticles and their applications in water and wastewater treatment.Bioremediation of Industrial Waste for Environmental Safety; Saxena, G; Bharagava, R.N., Eds.; Springer Nature: Basingstoke, 2020, pp. 349-379.
[http://dx.doi.org/10.1007/978-981-13-1891-7_16]
[9]
Adetunji, C.O.; Anani, O.A.; Islam, S.; Kadiri, O.; Thangadurai, D.; Nwankwo, W.; Makinde, S.; Sangeetha, J.; Adetunji, J.B.; Said Al-Tawaha, A.R.M. Nanomaterials from Marine Environments: An Overview. In: Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications; Kharissova, O.V.; Martínez, L.M.T.; Kharisov, B.I., Eds.; Springer: Cham, 2020; pp. 1-8.
[http://dx.doi.org/10.1007/978-3-030-11155-7_24-1]
[10]
Adetunji, C.O.; Michael, O.; Akram, M.; Kadiri, O.; Olerimi, S.E.; Anani, O.A.; Nwankwo, W.; Anwar, H.; Akinola, O.S. Recent advances in the utilization of bioengineered plant-based nanoparticles. In: Green Synthesis in Nanomedicine and Human Health; Glover, R.L.K.; Nyanganyura, D.; Mufamadi, M.S.; Mulaudzi, R.B., Eds.; CRC Press, 2021; p. 18.
[http://dx.doi.org/10.1201/9781003023197-13]
[11]
Adetunji, C.O.; Michael, O.; Akram, M.; Kadiri, O.; Temidayo, A.K.; Anani, O.A.; Akinola, O.S.; Olerimi, S.E.; Nwankwo, W.; Ghaffar, I.; Adetunji, J.B. Application of next-generation plant-derived nanobiofabricated drugs for the management of tuberculosis. In: Green Synthesis in Nanomedicine and Human Health; Glover, R.L.K.; Nyanganyura, D.; Mufamadi, M.S.; Mulaudzi, R.B., Eds.; CRC Press, 2021; p. 20.
[http://dx.doi.org/10.1201/9781003023197-8]
[12]
Adetunji, C.O.; Michael, O.; Nwankwo, W.; Anani, O.A.; Adetunji, J.B.; Akinola, O.S.; Akram, M. Biogenic nanoparticles based drugs derived from medicinal plants. In: Green Synthesis in Nanomedicine and Human Health; Glover, R.L.K.; Nyanganyura, D.; Mufamadi, M.S.; Mulaudzi, R.B., Eds.; CRC Press, 2021; pp. 103-122.
[http://dx.doi.org/10.1201/9781003023197-10]
[13]
Adetunji, C.O.; Olaniyan, O.T.; Anani, O.A.; Inobeme, A.; Ukhurebor, K.E.; Bodunrinde, E.E.; Adetunji, J.B.; Singh, K.R.B.; Nayak, V.; Palnam, W.A.; Singh, R.P. Bionanomaterials for green bionanotechnology. In: Bionanomaterials Fundamentals and biomedical applications; Singh, R.P., Ed.; IOP Publishing Ltd., 2021; pp. 10-24.
[14]
Adetunji, C.O.; Olaniyan, O.T.; Anani, O.A.; Olisaka, F.N.; Inobeme, A.; Bodunrinde, R.E.; Adetunji, J.B.; Singh, K.R.B.; Palnam, W.D.; Singh, R.P. Current scenario of nanomaterials in the environmental, agricultural, and biomedical fields. In: Nanomaterials in Bionanotechnology: Fundamental and application; Singh, R.P., Ed.; Taylor and Francs, CRC Press, 2021; pp. 129-158.
[15]
Gupta, A.; Kumar, S.; Kumar, V. Challenges for Assessing Toxicity of Nanomaterials. In: Biochemical Toxicology - Heavy Metals and Nanomaterials; Ince, M.; Ince, O.K.; Ondrasek, G., Eds.; IntechOpen: London, 2019.
[http://dx.doi.org/10.5772/intechopen.89601]
[16]
Islam, S.; Thangadurai, D.; Adetunji, C.O.; Micheal, O.S.; Nwankwo, W.; Kadiri, O.; Anani, O.A.; Makinde, S.; Adetunji, J.B. Nanomaterials: Applications in biomedicine and biotechnology.Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications; Kharissova, O.V., Ed.; Springer Nature Switzerland AG, 2020, pp. 1-18. b
[http://dx.doi.org/10.1007/978-3-030-11155-7_4-1]
[17]
Lloyd, J.R.; Lovley, D.R.; Macaskie, L.E. Biotechnological application of metal-reducing microorganisms. Adv. Appl. Microbiol., 2003, 53, 85-128.
[http://dx.doi.org/10.1016/S0065-2164(03)53003-9] [PMID: 14696317]
[18]
Shukla, K.P.; Singh, N.K.; Sharma, S. Bioremediation: Developments. Curr. Pract. Persp. Gen. Eng. Biotechnol. J., 2010, 1-20.
[19]
Williams, P.; Keshavarz-Moore, E.; Dunnill, P. Production of cadmium sulphide microcrystallites in batch cultivation by Schizosaccharomyces pombe. J. Biotechnol., 1996, 48(3), 259-267.
[http://dx.doi.org/10.1016/0168-1656(96)01520-9] [PMID: 8862002]
[20]
Strouhal, M.; Kizek, R.; Vacek, J.; Trnková, L. Němec, M. Electrochemical study of heavy metals and metallothionein in yeast yarrowia lipolytica. Bioelectrochemistry, 2003, 60(1-2), 29-36.
[http://dx.doi.org/10.1016/S1567-5394(03)00043-4] [PMID: 12893307]
[21]
Gericke, M.; Pinches, A. Microbial production of gold nanoparticles. Gold Bull., 2006, 39(1), 22-28.
[http://dx.doi.org/10.1007/BF03215529]
[22]
Pimprikar, P.S.; Joshi, S.S.; Kumar, A.R.; Zinjarde, S.S.; Kulkarni, S.K. Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids Surf. B Biointerfaces, 2009, 74(1), 309-316.
[http://dx.doi.org/10.1016/j.colsurfb.2009.07.040] [PMID: 19700266]
[23]
Mohseniazar, M.; Barin, M.; Zarredar, H.; Alizadeh, S.; Shanehbandi, D. Potential of microalgae and lactobacilli in biosynthesis of silver nanoparticles. Bioimpacts, 2011, 1(3), 149-152.
[PMID: 23678420]
[24]
Castro, L.; Blázquez, M.L.; Muñoz, J.A.; González, F.; Ballester, A. Biological synthesis of metallic nanoparticles using algae. IET Nanobiotechnol., 2013, 7(3), 109-116.
[http://dx.doi.org/10.1049/iet-nbt.2012.0041] [PMID: 24028809]
[25]
Bansal, V.; Rautaray, D.; Bharde, A.; Ahire, K.; Sanyal, A.; Ahmad, A.; Sastry, M. Fungus-mediated biosynthesis of silica and titania particles. J. Mater. Chem., 2005, 15(26), 2583-2589.
[http://dx.doi.org/10.1039/b503008k]
[26]
Say, R.; Yilmaz, N.; Denizli, A. Removal of heavy metal ions using the fungus Penicillium canescens. Adsorpt. Sci. Technol., 2003, 21(7), 643-650.
[http://dx.doi.org/10.1260/026361703772776420]
[27]
Das, R.K.; Pachapur, V.L.; Lonappan, L.; Naghdi, M.; Pulicharla, R.; Maiti, S.; Cledon, M.; Dalila, L.M.A.; Sarma, S.J.; Brar, S.K. Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects. Nanotechnol. Environm. Eng., 2017, 2(1), 18.
[http://dx.doi.org/10.1007/s41204-017-0029-4]
[28]
Hsueh, C.C.; Chen, C.T.; Hsu, A.W.; Wu, C.C.; Chen, B.Y. Comparative assessment of azo dyes and nitroaromatic compounds reduction using indigenous dye-decolorizing bacteria. J. Taiwan Inst. Chem. Eng., 2017, 79, 134-140.
[http://dx.doi.org/10.1016/j.jtice.2017.04.017]
[29]
Khin, M.M.; Nair, A.S.; Babu, V.J.; Murugan, R.; Ramakrishna, S. A review on nanomaterials for environmental remediation. Energy Environ. Sci., 2012, 5(8), 8075-8109.
[http://dx.doi.org/10.1039/c2ee21818f]
[30]
Guerra, F.; Attia, M.; Whitehead, D.; Alexis, F. Nanotechnology for environmental remediation: Materials and applications. Molecules, 2018, 23(7), 1760.
[http://dx.doi.org/10.3390/molecules23071760] [PMID: 30021974]
[31]
Bahrulolum, H.; Nooraei, S.; Javanshir, N.; Tarrahimofrad, H.; Mirbagheri, V.S.; Easton, A.J.; Ahmadian, G. Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. J. Nanobiotechnology, 2021, 19(1), 86.
[http://dx.doi.org/10.1186/s12951-021-00834-3] [PMID: 33771172]
[32]
Eltarahony, M.; Ibrahim, A.; El-shall, H.; Ibrahim, E.; Althobaiti, F.; Fayad, E. Antibacterial, antifungal and antibiofilm activities of silver nanoparticles supported by crude bioactive metabolites of bionanofactories isolated from lake mariout. Molecules, 2021, 26(10), 3027.
[http://dx.doi.org/10.3390/molecules26103027] [PMID: 34069487]
[33]
Akhtar, N.; Khan, S.; Rehman, S.U.; Rehman, Z.U.; Mashwani, Z.U.R.; Rha, E.S.; Jam, M. Zinc oxide nanoparticles enhance the tolerance and remediation potential of bacillus spp. against heavy metal stress. Adsorpt. Sci. Technol., 2021, Article ID: 1774528.
[http://dx.doi.org/10.1155/2021/1774528]
[34]
Khalil, N.M.; El-Sheshtawy, H.S.; Aman, D. Elimination of different heavy metals in contaminated soil using indigenous microorganisms and nanoparticle in the El-Rahawy village. Egyptian J. Mat. Environ. Sci., 2016, 7(7), 2603-2616.
[35]
Medunić Singh, P.K.; Singh, A.L.; Rai, A.; Rai, S.; Jaiswal, M.K.; Obrenović, Z.; Petković, Z.; Janeš, M. Use of bacteria and synthetic zeolites in remediation of soil and water polluted with superhigh-organic-sulfur raša coal (raša bay, north adriatic, croatia). Water, 2019, 11(7), 1419.
[http://dx.doi.org/10.3390/w11071419]
[36]
Iravani, S. Bacteria in nanoparticle synthesis: Current status and future prospects. Int. Sch. Res. Notices, 2014, 2014, 1-18.
[http://dx.doi.org/10.1155/2014/359316] [PMID: 27355054]
[37]
Srivastav, A.; Yadav, K.K.; Yadav, S.; Gupta, N.; Singh, J.K.; Katiyar, R.; Kumar, V. Nano-phytoremediation of pollutants from contaminated soil environment: Current scenario and future prospects. Phytoremediation; Ansari, A.A., Ed.; , 2018, pp. 383-401.
[38]
Negi, S.; Singh, V. Algae: A potential source for nanoparticle synthesis. J. Appl. Nat. Sci., 2018, 10(4), 1134-1140.
[http://dx.doi.org/10.31018/jans.v10i4.1878]
[39]
Chaudhary, R.; Nawaz, K.; Khan, A.K.; Hano, C.; Abbasi, B.H.; Anjum, S. An overview of the algae-mediated biosynthesis of nanoparticles and their biomedical applications. Biomolecules, 2020, 10(11), 1498.
[http://dx.doi.org/10.3390/biom10111498] [PMID: 33143289]
[40]
Singhal, M.; Jadhav Sonone, S.S.; Sankhla, M.S.; Kumar, R. Microalgae based sustainable bioremediation of water contaminated by pesticides. Biointerface Res. Appl. Chem., 2022, 12(1), 149-169.
[41]
Shi, G.; Li, Y.; Xi, G.; Xu, Q.; He, Z.; Liu, Y.; Zhang, J.; Cai, J. Rapid green synthesis of gold nanocatalyst for high-efficiency degradation of quinclorac. J. Hazard. Mater., 2017, 335, 170-177.
[http://dx.doi.org/10.1016/j.jhazmat.2017.04.042] [PMID: 28448880]
[42]
Das, S.K.; Das, A.R.; Guha, A.K. Gold nanoparticles: Microbial synthesis and application in water hygiene management. Langmuir, 2009, 25(14), 8192-8199.
[http://dx.doi.org/10.1021/la900585p] [PMID: 19425601]
[43]
Zhu, C.; Yang, W.L.; He, H.; Yang, C.; Yu, J.; Wu, X.; Zeng, G.; Tarre, S.; Green, M. Preparation, performances and mechanisms of magnetic Saccharomyces cerevisiae bionanocomposites for atrazine removal. Chemosphere, 2018, 200, 380-387. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0045653518302200
[http://dx.doi.org/10.1016/j.chemosphere.2018.02.020]
[44]
José, J.C.; Debs, K.B.; Labuto, G.; Carrilho, E.N.V.M. Synthesis, characterization, and application of yeast-based magnetic bionanocomposite for the removal of Cu(II) from water. Chem. Eng. Commun., 2019, 206(11), 1570-1580.
[http://dx.doi.org/10.1080/00986445.2019.1615468]
[45]
Debs, K.B.; Cardona, D.S.; da Silva, H.D.T.; Nassar, N.N.; Carrilho, E.N.V.M.; Haddad, P.S.; Labuto, G. Oil spill cleanup employing magnetite nanoparticles and yeast-based magnetic bionanocomposite. J. Environ. Manage., 2019, 230, 405-412.
[http://dx.doi.org/10.1016/j.jenvman.2018.09.094] [PMID: 30296678]
[46]
Batley, G.E.; Kirby, J.K.; McLaughlin, M.J. Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc. Chem. Res., 2013, 46(3), 854-862.
[http://dx.doi.org/10.1021/ar2003368]
[47]
Ray, P.C.; Yu, H.; Fu, P.P. Toxicity and environmental risks of nanomaterials: Challenges and future needs. J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev., 2009, 27(1), 1-35.
[http://dx.doi.org/10.1080/10590500802708267] [PMID: 19204862]
[48]
Kuhlbusch, T.A.J.; Asbach, C.; Fissan, H.; Göhler, D.; Stintz, M. Nanoparticle exposure at nanotechnology workplaces: A review. Part. Fibre Toxicol., 2011, 8(1), 22.
[http://dx.doi.org/10.1186/1743-8977-8-22] [PMID: 21794132]
[49]
Brouwer, D. Exposure to manufactured nanoparticles in different workplaces. Toxicology, 2010, 269(2-3), 120-127.
[http://dx.doi.org/10.1016/j.tox.2009.11.017] [PMID: 19941928]
[50]
Oberdörster, E.; Zhu, S.; Blickley, T.M.; McClellan-Green, P.; Haasch, M.L. Ecotoxicology of carbon-based engineered nanoparticles: Effects of fullerene (C60) on aquatic organisms. Carbon, 2006, 44(6), 1112-1120.
[http://dx.doi.org/10.1016/j.carbon.2005.11.008]
[51]
Enuneku, A.A.; Mohammed, O.P.; Asemota, O.C.; Anani, O.A. Evaluation of health risk concerns of trace metals in borehole water proximal to dumpsites in Benin City, Nigeria. J. Appl. Sci. Environ. Manag., 2018, 22(9), 1421-1425.
[http://dx.doi.org/10.4314/jasem.v22i9.10]
[52]
Anani, O.A.; Olomukoro, J.O. Trace metal residues in a tropical Watercourse sediment in Nigeria: Health risk implications. IOP Conf Ser: Earth Environ Sc, 2018, 210, p. 012005.
[53]
Olomukoro, J.O.; Anani, O.A. Evaluation of aquatic macro-invertebrate populations: A model for emergent bio-monitoring guide for quantifying uncleanness of some rivers in northern central Nigeria. Nig. J. Technol. Res., 2019, l14(2), 54-62.
[54]
Auffan, M.; Achouak, W.; Rose, J.; Roncato, M.A.; Chanéac, C.; Waite, D.T.; Masion, A.; Woicik, J.C.; Wiesner, M.R.; Bottero, J.Y. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ. Sci. Technol., 2008, 42(17), 6730-6735.
[http://dx.doi.org/10.1021/es800086f] [PMID: 18800556]
[55]
Diao, M.; Yao, M. Use of zero-valent iron nanoparticles in inactivating microbes. Water Res., 2009, 43(20), 5243-5251.
[http://dx.doi.org/10.1016/j.watres.2009.08.051] [PMID: 19783027]
[56]
Lee, C.; Kim, J.Y.; Lee, W.I.; Nelson, K.L.; Yoon, J.; Sedlak, D.L. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ. Sci. Technol., 2008, 42(13), 4927-4933.
[http://dx.doi.org/10.1021/es800408u] [PMID: 18678028]
[57]
Ma, X.; Gurung, A.; Deng, Y. Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species. Sci. Total Environ., 2013, 443, 844-849.
[http://dx.doi.org/10.1016/j.scitotenv.2012.11.073] [PMID: 23247287]
[58]
El-Temsah, Y.S.; Joner, E.J. Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil. Chemosphere, 2012, 89(1), 76-82.
[http://dx.doi.org/10.1016/j.chemosphere.2012.04.020] [PMID: 22595530]
[59]
Keller, A.A.; Garner, K.; Miller, R.J.; Lenihan, H.S. Toxicity of nano-zero valent iron to freshwater and marine organisms. PLoS One, 2012, 7(8), e43983.
[http://dx.doi.org/10.1371/journal.pone.0043983] [PMID: 22952836]
[60]
Fajardo, C.; Ortíz, L.T.; Rodríguez-Membibre, M.L.; Nande, M.; Lobo, M.C.; Martin, M. Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: A molecular approach. Chemosphere, 2012, 86(8), 802-808.
[http://dx.doi.org/10.1016/j.chemosphere.2011.11.041] [PMID: 22169206]
[61]
Ben-Moshe, T.; Frenk, S.; Dror, I.; Minz, D.; Berkowitz, B. Effects of metal oxide nanoparticles on soil properties. Chemosphere, 2013, 90(2), 640-646.
[http://dx.doi.org/10.1016/j.chemosphere.2012.09.018] [PMID: 23040650]
[62]
Tong, Z.; Bischoff, M.; Nies, L.; Applegate, B.; Turco, R.F. Impact of fullerene (C60) on a soil microbial community. Environ. Sci. Technol., 2007, 41(8), 2985-2991.
[http://dx.doi.org/10.1021/es061953l] [PMID: 17533868]
[63]
Grieger, K.D.; Fjordbøge, A.; Hartmann, N.B.; Eriksson, E.; Bjerg, P.L.; Baun, A. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: Risk mitigation or trade-off? J. Contam. Hydrol., 2010, 118(3-4), 165-183.
[http://dx.doi.org/10.1016/j.jconhyd.2010.07.011] [PMID: 20813426]
[64]
Li, M.; Lin, D.; Zhu, L. Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli. Environ. Pollut., 2013, 173, 97-102.
[http://dx.doi.org/10.1016/j.envpol.2012.10.026] [PMID: 23202638]
[65]
Brohi, R.D.; Wang, L.; Talpur, H.S.; Wu, D.; Khan, F.A.; Bhattarai, D.; Rehman, Z.U.; Farmanullah, F.; Huo, L.J. Toxicity of nanoparticles on the reproductive system in animal models: A review. Front. Pharmacol., 2017, 8, 606.
[http://dx.doi.org/10.3389/fphar.2017.00606] [PMID: 28928662]
[66]
Wen, H.; Dan, M.; Yang, Y.; Lyu, J.; Shao, A.; Cheng, X.; Chen, L.; Xu, L. Acute toxicity and genotoxicity of silver nanoparticle in rats. PLoS One, 2017, 12(9), e0185554.
[http://dx.doi.org/10.1371/journal.pone.0185554] [PMID: 28953974]
[67]
Ferro, C.; Florindo, H.F.; Santos, H.A. Selenium nanoparticles for biomedical applications: From development and characterization to therapeutics. Adv. Health Care Mat., 2021, 10(16), 2100598.
[http://dx.doi.org/10.1002/adhm.202100598]
[68]
Sukhanova, A.; Bozrova, S.; Sokolov, P.; Berestovoy, M.; Karaulov, A.; Nabiev, I. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res. Lett., 2018, 13(1), 44.
[http://dx.doi.org/10.1186/s11671-018-2457-x] [PMID: 29417375]
[69]
Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol., 2018, 9, 1050-1074.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[70]
Kobayashi, N.; Izumi, H.; Morimoto, Y. Review of toxicity studies of carbon nanotubes. J. Occup. Health., 20,, 2017, 59(5), 394-407.
[http://dx.doi.org/10.1539/joh.17-0089-RA]
[71]
Yuan, X.; Zhang, X.; Sun, L.; Wei, Y.; Wei, X. Cellular toxicity and immunological effects of carbon-based nanomaterials. Part. Fibre Toxicol., 2019, 16(1), 18.
[http://dx.doi.org/10.1186/s12989-019-0299-z] [PMID: 30975174]
[72]
Crutzen, P.J.; Mosier, A.R.; Smith, K.A.; Winiwarter, W.N. <sub>2</sub>O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos. Chem. Phys., 2008, 8(2), 389-395.
[http://dx.doi.org/10.5194/acp-8-389-2008]
[73]
Barnes, D.K.A.; Galgani, F.; Thompson, R.C.; Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2009, 364(1526), 1985-1998.
[http://dx.doi.org/10.1098/rstb.2008.0205] [PMID: 19528051]
[74]
Holtsmark, B. A comparison of the global warming effects of wood fuels and fossil fuels taking albedo into account. Glob. Change Biol. Bioenergy, 2015, 7(5), 984-997.
[http://dx.doi.org/10.1111/gcbb.12200]
[75]
Mokhtarzadeh, A.; Eivazzadeh-Keihan, R.; Pashazadeh, P.; Hejazi, M.; Gharaatifar, N.; Hasanzadeh, M.; Baradaran, B.; de la Guardia, M. Nanomaterial-based biosensors for detection of pathogenic virus. Trends Analyt. Chem., 2017, 97, 445-457.
[http://dx.doi.org/10.1016/j.trac.2017.10.005] [PMID: 32287543]
[76]
Anderson, K. Bows, A Reframing the climate change challenge in light of post-2000 emission trends. Philo Trans. Royal Soc. A Math. Phys. Eng., 2008, 366(1882), 3863-3882.
[http://dx.doi.org/10.1098/rsta.2008.0138]
[77]
Friedlingstein, P.; Andrew, R.M.; Rogelj, J.; Peters, G.P.; Canadell, J.G.; Knutti, R.; Luderer, G.; Raupach, M.R.; Schaeffer, M.; van Vuuren, D.P.; Le Quéré, C. Persistent growth of CO2 emissions and implications for reaching climate targets. Nat. Geosci., 2014, 7(10), 709-715.
[http://dx.doi.org/10.1038/ngeo2248]
[78]
Falkner, R. The paris agreement and the new logic of international climate politics. Int. Aff., 2016, 92(5), 1107-1125.
[http://dx.doi.org/10.1111/1468-2346.12708]
[79]
Rigét, F.; Vorkamp, K.; Bossi, R.; Sonne, C.; Letcher, R.J.; Dietz, R. Twenty years of monitoring of persistent organic pollutants in Greenland biota. A review. Environ. Pollut., 2016, 217, 114-123.
[http://dx.doi.org/10.1016/j.envpol.2015.11.006] [PMID: 26640153]
[80]
Lallas, P.L. The stockholm convention on persistent organic pollutants. Am. J. Int. Law, 2001, 95(3), 692-708.
[http://dx.doi.org/10.2307/2668517]
[81]
Wang, T.; Wang, Y.; Liao, C.; Cai, Y.; Jiang, G. Perspectives on the inclusion of perfluorooctane sulfonate into the stockholm convention on persistent organic pollutants. Environ. Sci. Technol., 2009, 43(14), 5171-5175.
[http://dx.doi.org/10.1021/es900464a] [PMID: 19708337]
[82]
Godduhn, A.; Duffy, L.K. Multi-generation health risks of persistent organic pollution in the far north: Use of the precautionary approach in the stockholm convention. Environ. Sci. Policy, 2003, 6(4), 341-353.
[http://dx.doi.org/10.1016/S1462-9011(03)00061-3]
[83]
Lamon, L.; Dalla Valle, M.; Critto, A.; Marcomini, A. Introducing an integrated climate change perspective in POPs modelling, monitoring and regulation. Environ. Pollut., 2009, 157(7), 1971-1980.
[http://dx.doi.org/10.1016/j.envpol.2009.02.016] [PMID: 19272683]
[84]
Torres, J.P.M.; Fróes-Asmus, C.I.R.; Weber, R.; Vijgen, J.M.H. HCH contamination from former pesticide production in Brazil-A challenge for the Stockholm Convention implementation. Environ. Sci. Pollut. Res. Int., 2013, 20(4), 1951-1957.
[http://dx.doi.org/10.1007/s11356-012-1089-4] [PMID: 22825640]
[85]
Kummer, K. The international regulation of transboundary traffic in hazardous wastes: The 1989 basel convention. Int. Comp. Law Q., 1992, 41(3), 530-562.
[http://dx.doi.org/10.1093/iclqaj/41.3.530]
[86]
Kempel, W. The negotiations on the basel convention on the transboundary movement of hazardous wastes and their disposal: A national delegation perspective. Int. Negot., 1999, 4(3), 413-434.
[http://dx.doi.org/10.1163/15718069920848552]
[87]
Ovink, B.J. Transboundary shippments of toxic wastes: The basel and bamako conventions: Do third world countries have a choice? Penn State Inter Law Rev, 1995, 13(2), 281-295.
[88]
Shearer, C.R. Comparative analysis of the basel and bamako conventions on hazardous waste. Environ. Law, 1993, 23, 141-163.
[89]
Musee, N.; Thwala, M.; Nota, N. The antibacterial effects of engineered nanomaterials: Implications for wastewater treatment plants. J. Environ. Monit., 2011, 13(5), 1164-1183.
[http://dx.doi.org/10.1039/c1em10023h] [PMID: 21505709]
[90]
Singh, J; Vishwakarma, K; Ramawat, N; Rai, P; Singh, VK; Mishra, RK; Kumar, V; Tripathi, DK; Sharma, S Nanomaterials and microbes’ interactions: Contemporary overview. 3 Biotech, 2019, 9(3), 68.
[http://dx.doi.org/10.1007/s13205-019-1576-0]
[91]
Paranavithana, S.; Mohajerani, A. Effects of recycled concrete aggregates on properties of asphalt concrete. Resour. Conserv. Recycling, 2006, 48(1), 1-12.
[http://dx.doi.org/10.1016/j.resconrec.2005.12.009]
[92]
Rasmussen, K.; González, M.; Kearns, P.; Sintes, J.R.; Rossi, F.; Sayre, P. Review of achievements of the OECD working party on manufactured nanomaterials’ testing and assessment programme. from exploratory testing to test guidelines. Regul. Toxicol. Pharmacol., 2016, 74, 147-160.
[http://dx.doi.org/10.1016/j.yrtph.2015.11.004] [PMID: 26603783]
[93]
Bandala, E.R.; Berli, M. Engineered nanomaterials (ENMs) and their role at the nexus of food, energy, and water. Mater. Sci. Energy Technol., 2019, 2(1), 29-40.
[http://dx.doi.org/10.1016/j.mset.2018.09.004]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy