Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

LINC00665: A Promising Biomarker in Gastrointestinal Tumors

Author(s): Mengping Yuan, Yuyang Gu, Jiawen Chen, Yibin Jiang, Jing Qian* and Shuguang Cao*

Volume 24, Issue 1, 2024

Published on: 30 December, 2022

Page: [51 - 59] Pages: 9

DOI: 10.2174/1566524023666221201141443

Price: $65

Abstract

An increasing volume of studies has reported that long non-codingRNAs (lncRNAs) are involved in the carcinogenesis of many different cancers. Especially in gastrointestinal tumors, lncRNAs are found to participate in various physiological and pathological processes. LncRNAs can regulate gene expression at multiple levels, including transcriptional, post-transcription, translational, and post-translational levels. Long intergenic non-protein coding RNA 665(LINC00665), a novel cancer-related lncRNA, is frequently dysregulated in multiple gastrointestinal tumors, including gastric and colorectal cancers, hepatocellular carcinoma, and so on. In this review, we analyzed the expression and prognostic value of LINC00665 in human gastrointestinal tumors, systematically summarized the current literature about the clinical significance of this lncRNA, and explored the regulatory mechanisms of LINC00665 as a competing endogenous RNA (ceRNA) in tumor progression. Consequently, we concluded that LINC00665 might act as a prognostic biomarker and a potential target for gastrointestinal tumor diagnosis and treatment.

[1]
Procaccio L. Immunotherapy in gastrointestinal cancers. BioMed Res Int 2017; 8(3): 471-84.
[http://dx.doi.org/10.1155/2017/4346576]
[2]
Grady WM, Yu M, Markowitz SD. Epigenetic alterations in the gastrointestinal tract: current and emerging use for biomarkers of cancer. Gastroenterology 2021; 160(3): 690-709.
[http://dx.doi.org/10.1053/j.gastro.2020.09.058] [PMID: 33279516]
[3]
Hussain S, Tulsyan S, Dar SA, et al. Role of epigenetics in carcinogenesis: Recent advancements in anticancer therapy. Semin Cancer Biol 2021; 83: 441-51.
[PMID: 34182144]
[4]
Santos M, Pereira PM, Varanda AS, et al. Codon misreading tRNAs promote tumor growth in mice. RNA Biol 2018; 15(6): 1-14.
[http://dx.doi.org/10.1080/15476286.2018.1454244] [PMID: 29558247]
[5]
Fu D, Shi Y, Liu JB, et al. Targeting long non-coding RNA to therapeutically regulate gene expression in cancer. Mol Ther Nucleic Acids 2020; 21: 712-24.
[http://dx.doi.org/10.1016/j.omtn.2020.07.005] [PMID: 32771923]
[6]
Yi YC, Chen XY, Zhang J, Zhu JS. Novel insights into the interplay between m6A modification and noncoding RNAs in cancer. Mol Cancer 2020; 19(1): 121.
[http://dx.doi.org/10.1186/s12943-020-01233-2] [PMID: 32767982]
[7]
Tu C, Yang K, Wan L, et al. The crosstalk between lncRNAs and the Hippo signalling pathway in cancer progression. Cell Prolif 2020; 53(9): e12887.
[http://dx.doi.org/10.1111/cpr.12887] [PMID: 32779318]
[8]
MacDonald WA, Mann MRW. Long noncoding RNA functionality in imprinted domain regulation. PLoS Genet 2020; 16(8): e1008930.
[http://dx.doi.org/10.1371/journal.pgen.1008930] [PMID: 32760061]
[9]
Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 2014; 15(1): 7-21.
[http://dx.doi.org/10.1038/nrg3606] [PMID: 24296535]
[10]
Zhu X, Jiang L, Yang H, Chen T, Wu X, Lv K. Analyzing the lncRNA, miRNA, and mRNA-associated ceRNA networks to reveal potential prognostic biomarkers for glioblastoma multiforme. Cancer Cell Int 2020; 20(1): 393.
[http://dx.doi.org/10.1186/s12935-020-01488-1] [PMID: 32821246]
[11]
Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature 2014; 505(7483): 344-52.
[http://dx.doi.org/10.1038/nature12986] [PMID: 24429633]
[12]
Chu YL, Li H, Ng PLA, et al. The potential of circulating exosomal RNA biomarkers in cancer. Expert Rev Mol Diagn 2020; 20(7): 665-78.
[http://dx.doi.org/10.1080/14737159.2020.1745064] [PMID: 32188269]
[13]
Zhong C, et al. LINC00665: An emerging biomarker for cancer diagnostics and therapeutics. Cells.Gene Expression Omnibus 2022; 11(9): 1540.
[14]
Wen DY, Xie Z, Shen J, Jia Y, Duan S. Expression of the long intergenic non-protein coding RNA 665 (LINC00665) gene and the cell cycle in hepatocellular carcinoma using the cancer genome atlas, the gene expression omnibus, and quantitative real-time polymerase chain reaction. Med Sci Monit 2018; 2018: 2786-808.
[15]
Qi H, Xiao Z, Wang Y. Long non-coding RNA LINC00665 gastric cancer tumorigenesis by regulation miR-149-3p/RNF2 axis. OncoTargets Ther 2019; 12: 6981-90.
[http://dx.doi.org/10.2147/OTT.S214588] [PMID: 31695413]
[16]
Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin 2022; 72(1): 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[17]
Lu CW, Zhou DD, Xie T, et al. HOXA11 antisense long noncoding RNA (HOXA11-AS): A promising lncRNA in human cancers. Cancer Med 2018; 7(8): 3792-9.
[http://dx.doi.org/10.1002/cam4.1571] [PMID: 29992790]
[18]
Wang YY, Yan L, Yang S, et al. Long noncoding RNA AC073284.4 suppresses epithelial–mesenchymal transition by sponging miR‐18b‐5p in paclitaxel‐resistant breast cancer cells. J Cell Physiol 2019; 234(12): 23202-15.
[http://dx.doi.org/10.1002/jcp.28887] [PMID: 31215650]
[19]
Zhao X, Weng W, Long Y, Pan W, Li Z, Sun F. LINC00665/miR-9-5p/ATF1 is a novel axis involved in the progression of colorectal cancer. Hum Cell 2020; 33(4): 1142-54.
[http://dx.doi.org/10.1007/s13577-020-00393-z] [PMID: 32776307]
[20]
Han T, Gao M, Wang X, et al. LINC00665 activates Wnt/β-catenin signaling pathway to facilitate tumor progression of colorectal cancer via upregulating CTNNB1. Exp Mol Pathol 2021; 120: 104639.
[http://dx.doi.org/10.1016/j.yexmp.2021.104639] [PMID: 33865827]
[21]
Wu CL, Shan TD, Han Y, et al. Long intergenic noncoding RNA 00665 promotes proliferation and inhibits apoptosis in colorectal cancer by regulating miR-126-5p. Aging 2021; 13(10): 13571-84.
[http://dx.doi.org/10.18632/aging.202874] [PMID: 33878735]
[22]
Nan S, Zhang S, Jin R, Wang J. LINC00665 up-regulates SIN3A expression to modulate the progression of colorectal cancer via sponging miR-138-5p. Cancer Cell Int 2022; 22(1): 51.
[http://dx.doi.org/10.1186/s12935-021-02176-4] [PMID: 35101035]
[23]
Smyth EC, Nilsson M, Grabsch HI, van Grieken NCT, Lordick F. Gastric cancer. Lancet 2020; 396(10251): 635-48.
[http://dx.doi.org/10.1016/S0140-6736(20)31288-5] [PMID: 32861308]
[24]
Hao NB, He YF, Li XQ, Wang K, Wang RL. The role of miRNA and lncRNA in gastric cancer. Oncotarget 2017; 8(46): 81572-82.
[http://dx.doi.org/10.18632/oncotarget.19197] [PMID: 29113415]
[25]
Zhang X, Wu J. LINC00665 promotes cell proliferation, invasion, and metastasis by activating the TGF-β pathway in gastric cancer. Pathol Res Pract 2021; 224: 153492.
[http://dx.doi.org/10.1016/j.prp.2021.153492] [PMID: 34091388]
[26]
Yang B, Bai Q, Chen H, Su K, Gao C. LINC00665 induces gastric cancer progression through activating Wnt signaling pathway. J Cell Biochem 2020; 121(3): 2268-76.
[http://dx.doi.org/10.1002/jcb.29449] [PMID: 31736127]
[27]
Piñero F, Dirchwolf M, Pessôa MG. Biomarkers in hepatocellular carcinoma: diagnosis, prognosis and treatment response assessment. Cells 2020; 9(6): 1370.
[http://dx.doi.org/10.3390/cells9061370] [PMID: 32492896]
[28]
Kulik L, El-Serag HB. Epidemiology and management of hepatocellular carcinoma. Gastroenterology 2019; 156(2): 477-91.
[http://dx.doi.org/10.1053/j.gastro.2018.08.065] [PMID: 30367835]
[29]
Wan H, Tian Y, Zhao J, Su X. LINC00665 targets miR-214-3p/MAPK1 axis to accelerate hepatocellular carcinoma growth and warburg effect. J Oncol 2021; 2021: 1-14.
[http://dx.doi.org/10.1155/2021/9046798] [PMID: 34804162]
[30]
Ding J, Zhao J, Huan L, et al. Inflammation‐induced long intergenic noncoding RNA (LINC00665) increases malignancy through activating the double‐stranded RNA–activated protein kinase/nuclear factor kappa b pathway in hepatocellular Carcinoma. Hepatology 2020; 72(5): 1666-81.
[http://dx.doi.org/10.1002/hep.31195] [PMID: 32083756]
[31]
Shan Y, Li P. Long intergenic non-protein coding RNA 665 regulates viability, apoptosis, and autophagy via the MiR-186-5p/MAP4K3 axis in hepatocellular carcinoma. Yonsei Med J 2019; 60(9): 842-53.
[http://dx.doi.org/10.3349/ymj.2019.60.9.842] [PMID: 31433582]
[32]
Li YR, Zong RQ, Zhang HY, Meng XY, Wu FX. Mechanism analysis of LINC00665 and its peptides CIP2A-BP in hepatocellular carcinoma. Front Genet 2022; 13: 861096.
[http://dx.doi.org/10.3389/fgene.2022.861096] [PMID: 35350239]
[33]
Fu P, Gong B, Li H, et al. Combined identification of three lncRNAs in serum as effective diagnostic and prognostic biomarkers for hepatitis B virus‐related hepatocellular carcinoma. Int J Cancer 2022; 151(10): 1824-34.
[http://dx.doi.org/10.1002/ijc.34201] [PMID: 35802466]
[34]
Ahluwalia S, Ahmad B, Salim U, et al. Hepatitis B virus-encoded HBsAg contributes to hepatocarcinogenesis by inducing the oncogenic long noncoding RNA LINC00665 through the NF-κB pathway. Microbiol Spectr 2022; 10(5): e02731-21.
[http://dx.doi.org/10.1128/spectrum.02731-21] [PMID: 35993712]
[35]
Khan SA, Davidson BR, Goldin RD, et al. Guidelines for the diagnosis and treatment of cholangiocarcinoma: an update. Gut 2012; 61(12): 1657-69.
[http://dx.doi.org/10.1136/gutjnl-2011-301748] [PMID: 22895392]
[36]
Yang W, Li Y, Song X, Xu J, Xie J. Genome-wide analysis of long noncoding RNA and mRNA co-expression profile in intrahepatic cholangiocarcinoma tissue by RNA sequencing. Oncotarget 2017; 8(16): 26591-9.
[http://dx.doi.org/10.18632/oncotarget.15721] [PMID: 28427159]
[37]
Li G, Liu T, Zhang B, Chen W, Ding Z. Genome‐wide identification of a competing endogenous RNA network in cholangiocarcinoma. J Cell Biochem 2019; 120(11): 18995-9003.
[http://dx.doi.org/10.1002/jcb.29222] [PMID: 31270845]
[38]
Lu M, Qin X, Zhou Y, et al. Long non-coding RNA LINC00665 promotes gemcitabine resistance of Cholangiocarcinoma cells via regulating EMT and stemness properties through miR-424-5p/BCL9L axis. Cell Death Dis 2021; 12(1): 72.
[http://dx.doi.org/10.1038/s41419-020-03346-4] [PMID: 33436545]
[39]
Liu X, Chen Y, Li Y, Petersen RB, Huang K. Targeting mitosis exit: A brake for cancer cell proliferation. Biochim Biophys Acta Rev Cancer 2019; 1871(1): 179-91.
[http://dx.doi.org/10.1016/j.bbcan.2018.12.007] [PMID: 30611728]
[40]
Fuchs Y, Steller H. Programmed cell death in animal development and disease. Cell 2011; 147(4): 742-58.
[http://dx.doi.org/10.1016/j.cell.2011.10.033] [PMID: 22078876]
[41]
Pistritto G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging 2016; 8(4): 603-19.
[42]
Tochhawng L, Deng S, Pervaiz S, Yap CT. Redox regulation of cancer cell migration and invasion. Mitochondrion 2013; 13(3): 246-53.
[http://dx.doi.org/10.1016/j.mito.2012.08.002] [PMID: 22960576]
[43]
Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell 2011; 147(2): 275-92.
[http://dx.doi.org/10.1016/j.cell.2011.09.024] [PMID: 22000009]
[44]
Nieto MA, Huang RYJ, Jackson RA, Thiery JP. EMT: 2016. Cell 2016; 166(1): 21-45.
[http://dx.doi.org/10.1016/j.cell.2016.06.028] [PMID: 27368099]
[45]
Jiang W, Xia J, Xie S, et al. Long non-coding RNAs as a determinant of cancer drug resistance: Towards the overcoming of chemoresistance via modulation of lncRNAs. Drug Resist Updat 2020; 50: 100683.
[http://dx.doi.org/10.1016/j.drup.2020.100683] [PMID: 32146422]
[46]
Yue C, Yu C, Peng R, Wang J, Li G, Xu L. LINC00665/miR-379-5p/GRP78 regulates cisplatin sensitivity in gastric cancer by modulating endoplasmic reticulum stress. Cytotechnology 2021; 73(3): 413-22.
[http://dx.doi.org/10.1007/s10616-021-00466-3] [PMID: 34149174]
[47]
Li M, Cai O, Yu Y, Tan S. Paeonol inhibits the malignancy of Apatinib-resistant gastric cancer cells via LINC00665/miR-665/MAPK1 axis. Phytomedicine 2022; 96: 153903.
[http://dx.doi.org/10.1016/j.phymed.2021.153903] [PMID: 35026514]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy