Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Ocimum sanctum [Tulsi] as a Potential Immunomodulator for the Treatment of Ischemic Injury in the Brain

Author(s): Inderjeet Yadav, Ravi Kumar, Zeeshan Fatima* and Velayudhan Rema*

Volume 24, Issue 1, 2024

Published on: 20 January, 2023

Page: [60 - 73] Pages: 14

DOI: 10.2174/1566524023666221212155340

Price: $65

Abstract

Stroke causes brain damage and is one of the main reasons for death. Most survivors of stroke face long-term physical disabilities and cognitive dysfunctions. In addition, they also have persistent emotional and behavioral changes. The two main treatments that are effective are reperfusion with recombinant tissue plasminogen activator and recanalization of penumbra using mechanical thrombectomy. However, these treatments are suitable only for a few patients due to limitations such as susceptibility to hemorrhage and the requirement for administering tissue plasminogen activators within the short therapeutic window during the early hours following a stroke. The paucity of interventions and treatments could be because of the multiple pathological mechanisms induced in the brain by stroke. The ongoing immune response following stroke has been attributed to the worsening brain injury. Hence, novel compounds with immunomodulatory properties that could improve the outcome of stroke patients are required. Natural compounds and medicinal herbs with anti-inflammatory activities and having minimal or no adverse systemic effect could be beneficial in treating stroke. Ocimum sanctum is a medicinal herb that can be considered an effective therapeutic option for ischemic brain injury. Ocimum sanctum, commonly known as holy basil or “Tulsi,” is mentioned as the “Elixir of Life” for its healing powers. Since antiquity, Tulsi has been used in the Ayurvedic and Siddha medical systems to treat several diseases. It possesses immuno-modulatory activity, which can alter cellular and humoral immune responses. Tulsi can be considered a potential option as an immuno-modulator for treating various diseases, including brain stroke.

In this review, we will focus on the immunomodulatory properties of Tulsi, specifically its effect on both innate and adaptive immunity, as well as its antioxidant and antiinflammatory properties, which could potentially be effective in treating ongoing immune reactions following ischemic brain injury.

[1]
Wallin MT, Culpepper WJ, Nichols E, et al. Global, regional, and national burden of multiple sclerosis 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019; 18(3): 269-85.
[http://dx.doi.org/10.1016/S1474-4422(18)30443-5] [PMID: 30679040]
[2]
Feigin VL, Nguyen G, Cercy K, et al. Global, regional, and country-specific lifetime risk of stroke,1990–2016. N Engl J Med 2018; 379(25): 2429.
[3]
Mackay J, Mensah GA, Greenlund K. The atlas of heart disease and stroke. 2004. Available from: https://apps.who.int/iris/handle/10665/43007
[4]
Vos T, Lim SS, Abbafati C, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020; 396(10258): 1204-22.
[http://dx.doi.org/10.1016/S0140-6736(20)30925-9] [PMID: 33069326]
[5]
Astrup J, Siesjö BK, Symon L. Thresholds in cerebral ischemia - the ischemic penumbra. Stroke 1981; 12(6): 723-5.
[http://dx.doi.org/10.1161/01.STR.12.6.723] [PMID: 6272455]
[6]
Paciaroni M, Caso V, Agnelli G. The concept of ischemic penumbra in acute stroke and therapeutic opportunities. Eur Neurol 2009; 61(6): 321-30.
[http://dx.doi.org/10.1159/000210544] [PMID: 19365124]
[7]
Hossmann K-A. Viability thresholds and the penumbra of focal ischemia. Ann Neurol 1994; 36(4): 557-65.
[http://dx.doi.org/10.1002/ana.410360404] [PMID: 7944288]
[8]
Lees KR, Bluhmki E, von Kummer R, et al. Time to treatment with intravenous alteplase and outcome in stroke: an updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials. Lancet 2010; 375(9727): 1695-703.
[http://dx.doi.org/10.1016/S0140-6736(10)60491-6] [PMID: 20472172]
[9]
Liebeskind D, Liaw N. Emerging therapies in acute ischemic stroke 2020; 9.
[10]
Yu Y, Han Q, Ding X, et al. Defining core and penumbra in ischemic stroke: a voxel- and volume-based analysis of whole brain ct perfusion. Sci Rep 2016; 6(1): 20932.
[http://dx.doi.org/10.1038/srep20932] [PMID: 26860196]
[11]
Puig J, Shankar J, Liebeskind D, et al. From “time is brain” to “imaging is brain”: a paradigm shift in the management of acute ischemic stroke. J Neuroimaging 2020; 30(5): 562-71.
[http://dx.doi.org/10.1111/jon.12693] [PMID: 32037629]
[12]
Janjua N. Use of neuroimaging to guide the treatment of patients beyond the 8-hour time window. Neurology 2012; 79(13): S95-9.
[http://dx.doi.org/10.1212/WNL.0b013e3182695826] [PMID: 23008420]
[13]
Durrani K, Zakka FR, Ahmed M, Memon M, Siddique SS, Foster CS. Systemic therapy with conventional and novel immunomodulatory agents for ocular inflammatory disease. Surv Ophthalmol 2011; 56(6): 474-510.
[http://dx.doi.org/10.1016/j.survophthal.2011.05.003] [PMID: 22117884]
[14]
Bascones-Martinez A, Mattila R, Gomez-Font R, Meurman JH. Immunomodulatory drugs: Oral and systemic adverse effects. Med Oral Patol Oral Cir Bucal 2014; 19(1): e24-31.
[http://dx.doi.org/10.4317/medoral.19087] [PMID: 23986016]
[15]
Jantan I, Ahmad W, Bukhari SNA. Plant-derived immunomodulators: an insight on their preclinical evaluation and clinical trials. Front Plant Sci 2015; 6(8): 655.
[http://dx.doi.org/10.3389/fpls.2015.00655] [PMID: 26379683]
[16]
Alijotas-Reig J, Esteve-Valverde E, Belizna C, et al. Immunomodulatory therapy for the management of severe COVID-19. Beyond the anti-viral therapy: A comprehensive review. Autoimmun Rev 2020; 19(7): 102569.
[http://dx.doi.org/10.1016/j.autrev.2020.102569] [PMID: 32376394]
[17]
Mahima RA, Rahal A, Deb R, et al. Immunomodulatory and therapeutic potentials of herbal, traditional/indigenous and ethnoveterinary medicines. Pak J Biol Sci 2012; 15(16): 754-74.
[http://dx.doi.org/10.3923/pjbs.2012.754.774] [PMID: 24175417]
[18]
Kumar D, Arya V, Kaur R, Bhat ZA, Gupta VK, Kumar V. A review of immunomodulators in the Indian traditional health care system. J Microbiol Immunol Infect 2012; 45(3): 165-84.
[http://dx.doi.org/10.1016/j.jmii.2011.09.030] [PMID: 22154993]
[19]
Sharma P, Kumar P, Sharma R, Gupta G, Chaudhary A. Immunomodulators: Role of medicinal plants in immune system. Natl J Physiol Pharm Pharmacol 2017; 7(6): 1.
[http://dx.doi.org/10.5455/njppp.2017.7.0203808032017]
[20]
Khosla MK. Sacred tulsi (Ocimum sanctum L.) in traditional medicine and pharmacology. Anc Sci Life 1995; 15(1): 53-61.
[PMID: 22556721]
[21]
Dhama K, Saminathan M, Jacob SS, et al. Effect of immunomodulation and immunomodulatory agents on health with some bioactive principles, modes of action and potent biomedical applications. Int J Pharmacol 2015; 11(4): 253-90.
[http://dx.doi.org/10.3923/ijp.2015.253.290]
[22]
Bairwa MK, Jakhar JKYS, Reddy D. Animal and plant originated immunostimulants used in aquaculture. J Nat Prod Plant Resour 2012; 2(3): 397-400.
[23]
Mahajan N, Rawal S, Verma M, Poddar M, Alok S. A phytopharmacological overview on Ocimum species with special emphasis on Ocimum sanctum. Biomed Prevent Nutr 2013; 3(2): 185-92.
[http://dx.doi.org/10.1016/j.bionut.2012.08.002]
[24]
López-Valdés HE, Martínez-Coria H, Arrieta-Cruz I, Cruz M-E. Physiopathology of ischemic stroke and its modulation using memantine: evidence from preclinical stroke. Neural Regen Res 2021; 16(3): 433-9.
[http://dx.doi.org/10.4103/1673-5374.293129] [PMID: 32985462]
[25]
Birenbaum D, Bancroft LW, Felsberg GJ. Imaging in acute stroke. West J Emerg Med 2011; 12(1): 67-76.
[PMID: 21694755]
[26]
Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 1999; 22(9): 391-7.
[http://dx.doi.org/10.1016/S0166-2236(99)01401-0] [PMID: 10441299]
[27]
Doyle KP, Simon RP, Stenzel-Poore MP. Mechanisms of ischemic brain damage. Neuropharmacology 2008; 55(3): 310-8.
[http://dx.doi.org/10.1016/j.neuropharm.2008.01.005] [PMID: 18308346]
[28]
Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med 2011; 17(7): 796-808.
[http://dx.doi.org/10.1038/nm.2399] [PMID: 21738161]
[29]
Yang C, Hawkins KE, Doré S, Candelario-Jalil E. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am J Physiol Cell Physiol 2019; 316(2): C135-53.
[http://dx.doi.org/10.1152/ajpcell.00136.2018] [PMID: 30379577]
[30]
Woodruff TM, Thundyil J, Tang SC, Sobey CG, Taylor SM, Arumugam TV. Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol Neurodegener 2011; 6(1): 11.
[http://dx.doi.org/10.1186/1750-1326-6-11] [PMID: 21266064]
[31]
Love S. Oxidative stress in brain ischemia. Brain Pathol 1999; 9(1): 119-31.
[http://dx.doi.org/10.1111/j.1750-3639.1999.tb00214.x] [PMID: 9989455]
[32]
Wang Q, Tang X, Yenari M. The inflammatory response in stroke. J Neuroimmunol 2007; 184(1-2): 53-68.
[http://dx.doi.org/10.1016/j.jneuroim.2006.11.014] [PMID: 17188755]
[33]
Zheng Z, Yenari MA. Post-ischemic inflammation: molecular mechanisms and therapeutic implications. Neurol Res 2004; 26(8): 884-92.
[http://dx.doi.org/10.1179/016164104X2357] [PMID: 15727272]
[34]
Fourgeaud L, Través PG, Tufail Y, et al. TAM receptors regulate multiple features of microglial physiology. Nature 2016; 532(7598): 240-4.
[http://dx.doi.org/10.1038/nature17630] [PMID: 27049947]
[35]
Nayak D, Zinselmeyer BH, Corps KN, McGavern DB. In vivo dynamics of innate immune sentinels in the CNS. Intravital 2012; 1(2): 95-106.
[http://dx.doi.org/10.4161/intv.22823] [PMID: 24078900]
[36]
Nimmerjahn A, Kirchhoff F, Helmchen F. Neuroscience: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005; 308(5726): 1314-8.
[37]
Roth TL, Nayak D, Atanasijevic T, Koretsky AP, Latour LL, McGavern DB. Transcranial amelioration of inflammation and cell death after brain injury. Nature 2014; 505(7482): 223-8.
[http://dx.doi.org/10.1038/nature12808] [PMID: 24317693]
[38]
Gehrmann J, Matsumoto Y, Kreutzberg GW. Microglia: Intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev 1995; 20(3): 269-87.
[http://dx.doi.org/10.1016/0165-0173(94)00015-H] [PMID: 7550361]
[39]
Gremo F, Sogos V, Ennas MG, et al. Features and functions of human microglia cells. Adv Exp Med Biol 1997; 429: 79-97.
[http://dx.doi.org/10.1007/978-1-4757-9551-6_6] [PMID: 9413567]
[40]
Matcovitch-Natan O, Winter DR, Giladi A, et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science 2016; 353(6301)
[http://dx.doi.org/10.1126/science.aad8670]
[41]
Ransohoff RM, Perry VH. Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 2009; 27(1): 119-45.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132528] [PMID: 19302036]
[42]
Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci 1996; 19(8): 312-8.
[http://dx.doi.org/10.1016/0166-2236(96)10049-7] [PMID: 8843599]
[43]
Lian XY, Stringer JL. Astrocytes contribute to regulation of extracellular calcium and potassium in the rat cerebral cortex during spreading depression. Brain Res 2004; 1012(1-2): 177-84.
[http://dx.doi.org/10.1016/j.brainres.2004.04.011] [PMID: 15158175]
[44]
Ricci G, Volpi L, Pasquali L, Petrozzi L, Siciliano G. Astrocyte–neuron interactions in neurological disorders. J Biol Phys 2009; 35(4): 317-36.
[http://dx.doi.org/10.1007/s10867-009-9157-9] [PMID: 19669420]
[45]
Nedergaard M, Ransom B, Goldman SA. New roles for astrocytes: Redefining the functional architecture of the brain. Trends Neurosci 2003; 26(10): 523-30.
[http://dx.doi.org/10.1016/j.tins.2003.08.008] [PMID: 14522144]
[46]
Sherwood CC, Stimpson CD, Raghanti MA, et al. Evolution of increased glia–neuron ratios in the human frontal cortex. Proc Natl Acad Sci 2006; 103(37): 13606-11.
[http://dx.doi.org/10.1073/pnas.0605843103] [PMID: 16938869]
[47]
Bechmann I, Galea I, Perry VH. What is the blood–brain barrier (not)? Trends Immunol 2007; 28(1): 5-11.
[http://dx.doi.org/10.1016/j.it.2006.11.007] [PMID: 17140851]
[48]
Araque A, Perea G. Glial modulation of synaptic transmission in culture. Glia 2004; 47(3): 241-8.
[http://dx.doi.org/10.1002/glia.20026] [PMID: 15252813]
[49]
Ventura R, Harris KM. Three-dimensional relationships between hippocampal synapses and astrocytes. J Neurosci 1999; 19(16): 6897-906.
[http://dx.doi.org/10.1523/JNEUROSCI.19-16-06897.1999] [PMID: 10436047]
[50]
Tanaka M, Shih PY, Gomi H, et al. Astrocytic Ca2+ signals are required for the functional integrity of tripartite synapses. Mol Brain 2013; 6(1): 6.
[http://dx.doi.org/10.1186/1756-6606-6-6] [PMID: 23356992]
[51]
Tuttolomondo A, Di Raimondo D, di Sciacca R, Pinto A, Licata G. Inflammatory cytokines in acute ischemic stroke. Curr Pharm Des 2008; 14(33): 3574-89.
[http://dx.doi.org/10.2174/138161208786848739] [PMID: 19075734]
[52]
Van Wagoner NJ, Oh JW, Repovic P, Benveniste EN. Interleukin-6 (IL-6) production by astrocytes: autocrine regulation by IL-6 and the soluble IL-6 receptor. J Neurosci 1999; 19(13): 5236-44.
[http://dx.doi.org/10.1523/JNEUROSCI.19-13-05236.1999] [PMID: 10377335]
[53]
Stoll G, Jander S, Schroeter M. Inflammation and glial responses in ischemic brain lesions. Prog Neurobiol 1998; 56(2): 149-71.
[http://dx.doi.org/10.1016/S0301-0082(98)00034-3] [PMID: 9760699]
[54]
Barreto G, White RE, Ouyang Y, Xu L, Giffard RG. Astrocytes: targets for neuroprotection in stroke. Cent Nerv Syst Agents Med Chem 2011; 11(2): 164-73.
[http://dx.doi.org/10.2174/187152411796011303] [PMID: 21521168]
[55]
Farina C, Aloisi F, Meinl E. Astrocytes are active players in cerebral innate immunity. Trends Immunol 2007; 28(3): 138-45.
[http://dx.doi.org/10.1016/j.it.2007.01.005] [PMID: 17276138]
[56]
Actor JK. Cells and Organs of the Immune System. Elsevier’s Integr Rev Immunol Microbiol 2012; pp. 7-16.
[http://dx.doi.org/10.1016/B978-0-323-07447-6.00002-8]
[57]
Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A. Neutrophil function: from mechanisms to disease. Annu Rev Immunol 2012; 30(1): 459-89.
[http://dx.doi.org/10.1146/annurev-immunol-020711-074942] [PMID: 22224774]
[58]
Jin R, Yang G, Li G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 2010; 87(5): 779-89.
[http://dx.doi.org/10.1189/jlb.1109766] [PMID: 20130219]
[59]
Matsuo Y, Kihara T, Ikeda M, Ninomiya M, Onodera H, Kogure K. Role of neutrophils in radical production during ischemia and reperfusion of the rat brain: effect of neutrophil depletion on extracellular ascorbyl radical formation. J Cereb Blood Flow Metab 1995; 15(6): 941-7.
[http://dx.doi.org/10.1038/jcbfm.1995.119] [PMID: 7593354]
[60]
Ikegame Y, Yamashita K, Hayashi S, Yoshimura S, Nakashima S, Iwama T. Neutrophil elastase inhibitor prevents ischemic brain damage via reduction of vasogenic edema. Hypertens Res 2010; 33(7): 703-7.
[http://dx.doi.org/10.1038/hr.2010.58] [PMID: 20485441]
[61]
Jiang N, Moyle M, Soule HR, Rote WE, Chopp M. Neutrophil inhibitory factor is neuroprotective after focal Ischemia in rats. Ann Neurol 1995; 38(6): 935-42.
[http://dx.doi.org/10.1002/ana.410380615] [PMID: 8526467]
[62]
Jickling GC, Liu D, Ander BP, Stamova B, Zhan X, Sharp FR. Targeting neutrophils in ischemic stroke: translational insights from experimental studies. J Cereb Blood Flow Metab 2015; 35(6): 888-901.
[http://dx.doi.org/10.1038/jcbfm.2015.45] [PMID: 25806703]
[63]
Thériault P, ElAli A, Rivest S. The dynamics of monocytes and microglia in Alzheimer’s disease. Alzheimers Res Ther 2015; 7(1): 41.
[http://dx.doi.org/10.1186/s13195-015-0125-2] [PMID: 25878730]
[64]
Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. Development of monocytes, macrophages, and dendritic cells. Science 2010; 327(5966): 656-1.
[http://dx.doi.org/10.1126/science.1178331]
[65]
Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 2014; 14(6): 392-404.
[http://dx.doi.org/10.1038/nri3671] [PMID: 24854589]
[66]
Nakajima K, Kohsaka S. Microglia: activation and their significance in the central nervous system. J Biochem 2001; 130(2): 169-75.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a002969] [PMID: 11481032]
[67]
Schilling M, Besselmann M, Müller M, Strecker JK, Ringelstein EB, Kiefer R. Predominant phagocytic activity of resident microglia over hematogenous macrophages following transient focal cerebral ischemia: An investigation using green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol 2005; 196(2): 290-7.
[http://dx.doi.org/10.1016/j.expneurol.2005.08.004] [PMID: 16153641]
[68]
Schilling M, Strecker JK, Schäbitz WR, Ringelstein EB, Kiefer R. Effects of monocyte chemoattractant protein 1 on blood-borne cell recruitment after transient focal cerebral ischemia in mice. Neuroscience 2009; 161(3): 806-12.
[http://dx.doi.org/10.1016/j.neuroscience.2009.04.025] [PMID: 19374937]
[69]
Auffray C, Sieweke MH, Geissmann F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol 2009; 27(1): 669-92.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132557] [PMID: 19132917]
[70]
Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FMV. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci 2011; 14(9): 1142-9.
[http://dx.doi.org/10.1038/nn.2887] [PMID: 21804537]
[71]
London A, Cohen M, Schwartz M. Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair. Front Cell Neurosci 2013; 7(3): 34.
[http://dx.doi.org/10.3389/fncel.2013.00034] [PMID: 23596391]
[72]
Kim E, Cho S. Microglia and Monocyte-Derived Macrophages in Stroke. Neurotherapeutics 2016; 13(4): 702-18.
[http://dx.doi.org/10.1007/s13311-016-0463-1] [PMID: 27485238]
[73]
Jian Z, Liu R, Zhu X, et al. The involvement and therapy target of immune cells after ischemic stroke. Front Immunol 2019; 10(9): 2167.
[http://dx.doi.org/10.3389/fimmu.2019.02167] [PMID: 31572378]
[74]
Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature 2007; 449(7161): 419-26.
[http://dx.doi.org/10.1038/nature06175] [PMID: 17898760]
[75]
McMenamin PG, Wealthall RJ, Deverall M, Cooper SJ, Griffin B. Macrophages and dendritic cells in the rat meninges and choroid plexus: three-dimensional localisation by environmental scanning electron microscopy and confocal microscopy. Cell Tissue Res 2003; 313(3): 259-69.
[http://dx.doi.org/10.1007/s00441-003-0779-0] [PMID: 12920643]
[76]
Serot JM, Foliguet B, Béné MC, Faure GC. Ultrastructural and immunohistological evidence for dendritic-like cells within human choroid plexus epithelium. Neuroreport 1997; 8(8): 1995-8.
[http://dx.doi.org/10.1097/00001756-199705260-00039] [PMID: 9223091]
[77]
Kostulas N, Li HL, Xiao BG, Huang YM, Kostulas V, Link H. Dendritic cells are present in ischemic brain after permanent middle cerebral artery occlusion in the rat. Stroke 2002; 33(4): 1129-34.
[http://dx.doi.org/10.1161/hs0402.105379] [PMID: 11935071]
[78]
Felger JC, Abe T, Kaunzner UW, et al. Brain dendritic cells in ischemic stroke: Time course, activation state, and origin. Brain Behav Immun 2010; 24(5): 724-37.
[http://dx.doi.org/10.1016/j.bbi.2009.11.002] [PMID: 19914372]
[79]
Schenkel JM, Masopust D. Tissue-resident memory T cells. Immunity 2014; 41(6): 886-97.
[http://dx.doi.org/10.1016/j.immuni.2014.12.007] [PMID: 25526304]
[80]
Weisel F, Shlomchik M. Memory B cells of mice and humans. Annu Rev Immunol 2017; 35(1): 255-84.
[http://dx.doi.org/10.1146/annurev-immunol-041015-055531] [PMID: 28142324]
[81]
Brait VH, Jackman KA, Walduck AK, et al. Mechanisms contributing to cerebral infarct size after stroke: gender, reperfusion, T lymphocytes, and Nox2-derived superoxide. J Cereb Blood Flow Metab 2010; 30(7): 1306-17.
[http://dx.doi.org/10.1038/jcbfm.2010.14] [PMID: 20145655]
[82]
Chu HX, Kim HA, Lee S, et al. Immune cell infiltration in malignant middle cerebral artery infarction: comparison with transient cerebral ischemia. J Cereb Blood Flow Metab 2014; 34(3): 450-9.
[http://dx.doi.org/10.1038/jcbfm.2013.217] [PMID: 24326388]
[83]
Gelderblom M, Leypoldt F, Steinbach K, et al. Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 2009; 40(5): 1849-57.
[http://dx.doi.org/10.1161/STROKEAHA.108.534503] [PMID: 19265055]
[84]
Kleinschnitz C, Kraft P, Dreykluft A, et al. Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature. Blood 2013; 121(4): 679-91.
[http://dx.doi.org/10.1182/blood-2012-04-426734] [PMID: 23160472]
[85]
Liesz A, Suri-Payer E, Veltkamp C, et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med 2009; 15(2): 192-9.
[http://dx.doi.org/10.1038/nm.1927] [PMID: 19169263]
[86]
Shichita T, Sugiyama Y, Ooboshi H, et al. Pivotal role of cerebral interleukin-17–producing γδT cells in the delayed phase of ischemic brain injury. Nat Med 2009; 15(8): 946-50.
[http://dx.doi.org/10.1038/nm.1999] [PMID: 19648929]
[87]
Chamorro Á, Meisel A, Planas AM, Urra X, van de Beek D, Veltkamp R. The immunology of acute stroke. Nat Rev Neurol 2012; 8(7): 401-10.
[http://dx.doi.org/10.1038/nrneurol.2012.98] [PMID: 22664787]
[88]
Becker K, Kindrick D, Relton J, Harlan J, Winn R. Antibody to the α4 integrin decreases infarct size in transient focal cerebral ischemia in rats. Stroke 2001; 32(1): 206-11.
[http://dx.doi.org/10.1161/01.STR.32.1.206] [PMID: 11136938]
[89]
Klebe D, McBride D, Flores JJ, Zhang JH, Tang J. Modulating the immune response towards a neuroregenerative peri-injury milieu after cerebral hemorrhage. J Neuroimmune Pharmacol 2015; 10(4): 576-86.
[http://dx.doi.org/10.1007/s11481-015-9613-1] [PMID: 25946986]
[90]
Peruzzotti-Jametti L, Donegá M, Giusto E, Mallucci G, Marchetti B, Pluchino S. The role of the immune system in central nervous system plasticity after acute injury. Neuroscience 2014; 283: 210-21.
[http://dx.doi.org/10.1016/j.neuroscience.2014.04.036] [PMID: 24785677]
[91]
Vindegaard N, Muñoz-Briones C, El Ali HH, et al. T-cells and macrophages peak weeks after experimental stroke: Spatial and temporal characteristics. Neuropathology 2017; 37(5): 407-14.
[http://dx.doi.org/10.1111/neup.12387] [PMID: 28517732]
[92]
Yuseff MI, Pierobon P, Reversat A, Lennon-Duménil AM. How B cells capture, process and present antigens: a crucial role for cell polarity. Nat Rev Immunol 2013; 13(7): 475-86.
[http://dx.doi.org/10.1038/nri3469] [PMID: 23797063]
[93]
Doyle KP, Quach LN, Solé M, et al. B-lymphocyte-mediated delayed cognitive impairment following stroke. J Neurosci 2015; 35(5): 2133-45.
[http://dx.doi.org/10.1523/JNEUROSCI.4098-14.2015] [PMID: 25653369]
[94]
Schuhmann MK, Langhauser F, Kraft P, Kleinschnitz C. B cells do not have a major pathophysiologic role in acute ischemic stroke in mice. J Neuroinflammation 2017; 14(1): 112.
[http://dx.doi.org/10.1186/s12974-017-0890-x] [PMID: 28576128]
[95]
Kitamura D, Roes J, Kühn R, Rajewsky KA. B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin μ chain gene. Nature 1991; 350(6317): 423-6.
[http://dx.doi.org/10.1038/350423a0] [PMID: 1901381]
[96]
Chen Y, Bodhankar S, Murphy SJ, Vandenbark AA, Alkayed NJ, Offner H. Intrastriatal B-cell administration limits infarct size after stroke in B-cell deficient mice. Metab Brain Dis 2012; 27(4): 487-93.
[http://dx.doi.org/10.1007/s11011-012-9317-7] [PMID: 22618587]
[97]
Ren X, Akiyoshi K, Dziennis S, et al. Regulatory B cells limit CNS inflammation and neurologic deficits in murine experimental stroke. J Neurosci 2011; 31(23): 8556-63.
[http://dx.doi.org/10.1523/JNEUROSCI.1623-11.2011] [PMID: 21653859]
[98]
Hum PD, Subramanian S, Parker SM, et al. T- and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation. J Cereb Blood Flow Metab 2007; 27(11): 1798-805.
[http://dx.doi.org/10.1038/sj.jcbfm.9600482] [PMID: 17392692]
[99]
Bodhankar S, Chen Y, Vandenbark AA, Murphy SJ, Offner H. Treatment of experimental stroke with IL-10-producing B-cells reduces infarct size and peripheral and CNS inflammation in wild-type B-cell-sufficient mice. Metab Brain Dis 2014; 29(1): 59-73.
[http://dx.doi.org/10.1007/s11011-013-9474-3] [PMID: 24374817]
[100]
Bodhankar S, Chen Y, Lapato A, et al. Regulatory CD8+CD122+ T-cells predominate in CNS after treatment of experimental stroke in male mice with IL-10-secreting B-cells. Metab Brain Dis 2015; 30(4): 911-24.
[http://dx.doi.org/10.1007/s11011-014-9639-8] [PMID: 25537181]
[101]
Mohanty I, Arya DS, Gupta SK. Effect of Curcuma longa and Ocimum sanctum on myocardial apoptosis in experimentally induced myocardial ischemic-reperfusion injury. BMC Complement Altern Med 2006; 6: 1-12.
[http://dx.doi.org/10.1186/1472-6882-6-3]
[102]
Mondal S, Varma S, Bamola VD, et al. Double-blinded randomized controlled trial for immunomodulatory effects of Tulsi (Ocimum sanctum Linn.) leaf extract on healthy volunteers. J Ethnopharmacol 2011; 136(3): 452-6.
[http://dx.doi.org/10.1016/j.jep.2011.05.012] [PMID: 21619917]
[103]
Dashputre NL, Naikwade NS. Preliminary immunomodulatory activity of aqueous and ethanolic leaves extracts of Ocimum basilicum Linn in mice. Int J Pharm Tech Res 2010; 2(2): 1342-9.
[104]
Das R, Raman RP, Saha H, Singh R. Effect of Ocimum sanctum Linn. (Tulsi) extract on the immunity and survival of Labeo rohita (Hamilton) infected with Aeromonas hydrophila. Aquacult Res 2015; 46(5): 1111-21.
[http://dx.doi.org/10.1111/are.12264]
[105]
Mediratta PK, Dewan V, Bhattacharya SK, Gupta VS, Maiti PC, Sen P. Effect of Ocimum sanctum Linn. on humoral immune responses. Indian J Med Res 1988; 87: 384-6.
[PMID: 3169894]
[106]
Mukherjee R, Dash PK, Ram GC. Immunotherapeutic potential of Ocimum sanctum (L) in bovine subclinical mastitis. Res Vet Sci 2005; 79(1): 37-43.
[http://dx.doi.org/10.1016/j.rvsc.2004.11.001] [PMID: 15894022]
[107]
Jeba RC, Vaidyanathan R, Rameshkumar G. Immunomodulatory activity of aqueous extract of Ocimum sanctum in rat. Int J Pharm Biomed Res 2011; 2(1): 33-8.
[108]
Sadekar RD, Pimprikar NM, Bhandarkar AG, Barmase BS. Immunopotentiating effect of Ocimum sanctum linn dry leaf powder on Cell Mediated Immune (CMI) response in poultry, naturally infected with IBD virus. Indian Vet J 1998; 75(2): 168-9.
[109]
Shynu M. Effect of Ocimum sanctum extracts on virus and cell multiplication Thesis 1999. Available from: https://krishikosh.egranth.ac.in/handle/1/2040646
[110]
Mediratta PK, Sharma KK, Singh S. Evaluation of immunomodulatory potential of Ocimum sanctum seed oil and its possible mechanism of action. J Ethnopharmacol 2002; 80(1): 15-20.
[http://dx.doi.org/10.1016/S0378-8741(01)00373-7] [PMID: 11891082]
[111]
Lambertsen KL, Biber K, Finsen B. Inflammatory cytokines in experimental and human stroke. J Cereb Blood Flow Metab 2012; 32(9): 1677-98.
[http://dx.doi.org/10.1038/jcbfm.2012.88] [PMID: 22739623]
[112]
Khan IN, Habib MR, Rahman MM, Mannan A, Sarker MMI, Hawlader S. Thrombolytic potential of Ocimum sanctum L., Curcuma longa L., Azadirachta indica L. and Anacardium occidentale L. J Basic Clin Pharm 2011; 2(3): 125-7.
[PMID: 24826011]
[113]
Tuttolomondo A, Pinto A, Corrao S, et al. Immuno-inflammatory and thrombotic/fibrinolytic variables associated with acute ischemic stroke diagnosis. Atherosclerosis 2009; 203(2): 503-8.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.06.030] [PMID: 18715563]
[114]
Intiso D, Zarrelli MM, Lagioia G, et al. Tumor necrosis factor alpha serum levels and inflammatory response in acute ischemic stroke patients. Neurol Sci 2004; 24(6): 390-6.
[http://dx.doi.org/10.1007/s10072-003-0194-z] [PMID: 14767684]
[115]
Domac FM, Misirli H. The role of neutrophils and interleukin-8 in acute ischemic stroke. Neurosciences 2008; 13(2): 136-41.
[PMID: 21063307]
[116]
Ahmad A, Abuzinadah MF, Alkreathy HM, Banaganapalli B, Mujeeb M. Ursolic acid rich Ocimum sanctum L leaf extract loaded nanostructured lipid carriers ameliorate adjuvant induced arthritis in rats by inhibition of COX-1, COX-2, TNF-α and IL-1: Pharmacological and docking studies. PLoS One 2018; 13(3): e0193451.
[http://dx.doi.org/10.1371/journal.pone.0193451] [PMID: 29558494]
[117]
Sharma P, Singh G, Goyal G. The pharmacological activity of tulsi (Ocimum Sanctum): a review article. 2017; 6(02): 369-81.
[118]
Singh S, Majumdar DK. Evaluation of antiinflammatory activity of fatty acids of Ocimum sanctum fixed oil. Indian J Exp Biol 1997; 35(4): 380-3.
[PMID: 9315239]
[119]
Singh S, Nair V, Jain S, Gupta YK. Evaluation of anti-inflammatory activity of plant lipids containing α-linolenic acid. Indian J Exp Biol 2008; 46(6): 453-6.
[PMID: 18697604]
[120]
Godhwani S, Godhwani JL, Vyas DS. Ocimum sanctum: An experimental study evaluating its anti-inflammatory, analgesic and antipyretic activity in animals. J Ethnopharmacol 1987; 21(2): 153-63.
[http://dx.doi.org/10.1016/0378-8741(87)90125-5] [PMID: 3501819]
[121]
Singh B, Jaggi RK. Antiinflammatory effect of Ocimum sanctum Linn. and its cultures. Indian J Pharm Sci 2003; 65(4): 425-8.
[122]
Singh S, Agrawal SS. Anti-asthematic and anti-inflammatory activity of Ocimum sanctum Linn. J Res Educ Indian Med 1991; 7: 23-8.
[123]
Singh S. Comparative evaluation of antiinflammatory potential of fixed oil of different species of Ocimum and its possible mechanism of action. Indian J Exp Biol 1998; 36(10): 1028-31.
[PMID: 10356964]
[124]
Kelm MA, Nair MG, Strasburg GM, DeWitt DL. Antioxidant and cyclooxygenase inhibitory phenolic compounds from Ocimum sanctum Linn. Phytomedicine 2000; 7(1): 7-13.
[http://dx.doi.org/10.1016/S0944-7113(00)80015-X] [PMID: 10782484]
[125]
Thakur K, Pitre KS. Anti-inflammatory activity of extracted eugenol from Ocimum sanctum L. leaves. Rasayan J Chem 2009; 2(2): 472-4.
[126]
Yang S, Li W. Targeting oxidative stress for the treatment of ischemic stroke: Upstream and downstream therapeutic strategies. Brain Circ 2016; 2(4): 153-63.
[http://dx.doi.org/10.4103/2394-8108.195279] [PMID: 30276293]
[127]
Ghosh N, Ghosh R, Mandal SC. Antioxidant protection: A promising therapeutic intervention in neurodegenerative disease. Free Radic Res 2011; 45(8): 888-905.
[http://dx.doi.org/10.3109/10715762.2011.574290] [PMID: 21615270]
[128]
Crack PJ, Taylor JM. Reactive oxygen species and the modulation of stroke. Free Radic Biol Med 2005; 38(11): 1433-44.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.01.019] [PMID: 15890617]
[129]
Saeed SA, Shad KF, Saleem T, Javed F, Khan MU. Some new prospects in the understanding of the molecular basis of the pathogenesis of stroke. Exp Brain Res 2007; 182(1): 1-10.
[http://dx.doi.org/10.1007/s00221-007-1050-9] [PMID: 17665180]
[130]
Yanpallewar S, Rai S, Kumar M, Acharya S. Evaluation of antioxidant and neuroprotective effect of on transient cerebral ischemia and long-term cerebral hypoperfusion. Pharmacol Biochem Behav 2004; 79(1): 155-64.
[http://dx.doi.org/10.1016/j.pbb.2004.07.008] [PMID: 15388295]
[131]
Venuprasad MP, Hemanth Kumar K, Khanum F. Neuroprotective effects of hydroalcoholic extract of Ocimum sanctum against H2O2 induced neuronal cell damage in SH-SY5Y cells via its antioxidative defence mechanism. Neurochem Res 2013; 38(10): 2190-200.
[http://dx.doi.org/10.1007/s11064-013-1128-7] [PMID: 23996399]
[132]
Ahmad A, Khan MM, Raza SS, et al. Ocimum sanctum attenuates oxidative damage and neurological deficits following focal cerebral ischemia/reperfusion injury in rats. Neurol Sci 2012; 33(6): 1239-47.
[http://dx.doi.org/10.1007/s10072-012-0940-1] [PMID: 22278208]
[133]
Gaschler MM, Stockwell BR. Lipid peroxidation in cell death. Biochem Biophys Res Commun 2017; 482: 3-419.
[http://dx.doi.org/10.1016/j.bbrc.2016.10.086]
[134]
Halliwell B, Gutteridge JMC. Role of free radicals and catalytic metal ions in human disease: An overview. Methods Enzymol 1990; 186(C): 1-85.
[http://dx.doi.org/10.1016/0076-6879(90)86093-B] [PMID: 2172697]
[135]
Halliwell B. Reactive oxygen species in living systems: Source, biochemistry, and role in human disease. Am J Med 1991; 91(S3): S14-22.
[http://dx.doi.org/10.1016/0002-9343(91)90279-7] [PMID: 1928205]
[136]
Geetha RK, Kedlaya R, Vasudevan DM. Inhibition of lipid peroxidation by botanical extracts of Ocimum sanctum: In vivo and in vitro studies. Life Sci 2004; 76(1): 21-8.
[http://dx.doi.org/10.1016/j.lfs.2004.05.036] [PMID: 15532130]
[137]
Godhwani S, Godhwani JL, Was DS. Ocimum sanctum— A preliminary study evaluating its immunoregulatory profile in albino rats. J Ethnopharmacol 1988; 24(2-3): 193-8.
[http://dx.doi.org/10.1016/0378-8741(88)90151-1] [PMID: 3253489]
[138]
Vaghasiya J, Vaghasiya J, Datani M, Nandkumar K, Malaviya S, Jivani N. Comparative evaluation of alcoholic and aqueous extracts of ocimum sanctum for immunomodulatory activity. Artic Int J Biol Pharm Res 2010; 1(1): 25-9.
[139]
Sheoran N, Kumar R, Kumar A, et al. Nutrigenomic evaluation of garlic (Allium sativum) and holy basil (Ocimum sanctum) leaf powder supplementation on growth performance and immune characteristics in broilers. Vet World 2017; 10(1): 121-9.
[http://dx.doi.org/10.14202/vetworld.2017.121-129] [PMID: 28246456]
[140]
Huang YC, Wu BN, Lin YT, et al. Eugenodilol: a third-generation β-adrenoceptor blocker, derived from eugenol, with α-adrenoceptor blocking and β2-adrenoceptor agonist-associated vasorelaxant activities. J Cardiovasc Pharmacol 1999; 34(1): 10-20.
[http://dx.doi.org/10.1097/00005344-199907000-00003] [PMID: 10413061]
[141]
Nishijima H, Uchida R, Kameyama K, Kawakami N, Ohkubo T, Kitamura K. Mechanisms mediating the vasorelaxing action of eugenol, a pungent oil, on rabbit arterial tissue. Jpn J Pharmacol 1999; 79(3): 327-34.
[142]
Lin YT, Wu BN, Horng CF, et al. Isoeugenolol: a selective β1-adrenergic antagonist with tracheal and vascular smooth muscle relaxant properties. Jpn J Pharmacol 1999; 80(2): 127-36.
[http://dx.doi.org/10.1254/jjp.80.127] [PMID: 10440531]
[143]
Kusindarta DL, Wihadmadyatami H, Haryanto A. The analysis of hippocampus neuronal density (CA1 and CA3) after Ocimum sanctum ethanolic extract treatment on the young adulthood and middle age rat model. Vet World 2018; 11(2): 135-40.
[http://dx.doi.org/10.14202/vetworld.2018.135-140] [PMID: 29657393]
[144]
Mataram MBA, Hening P, Harjanti FN, et al. The neuroprotective effect of ethanolic extract Ocimum sanctum Linn. in the regulation of neuronal density in hippocampus areas as a central autobiography memory on the rat model of Alzheimer’s disease. J Chem Neuroanat 2021; 111(May 2020)
[http://dx.doi.org/10.1016/j.jchemneu.2020.101885]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy