Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Investigating Physical Properties and Formation Mechanism of Biosynthesized Zinc Oxide Nanoparticles using Dill (Anethum graveolens) Leaf Extract

Author(s): Azeez Abdulla Barzinjy* and Venus Nazim Hamadamen

Volume 12, Issue 6, 2022

Published on: 15 December, 2022

Article ID: e141122210864 Pages: 12

DOI: 10.2174/2210681213666221114094914

Price: $65

Abstract

Background: Nanotechnology is a novel and developing arena of science. The building block of nanotechnology is nanoparticles (NPs); their size is less than 100 nm. The NPs are synthesized using two dissimilar approaches, namely top-down and bottom-up approaches. The leading methods for producing NPs are chemical and physical methods and are frequently expensive and hypothetically dangerous to both the surroundings and the user.

Objective: Consequently, the researchers intended to synthesize NPs using biological ingredients such as plant extracts, bacteria, fungi, algae and yeasts. Nevertheless, the available phytochemicals in plant extracts, compared with other microorganisms, own an extremely extraordinary capacity for metal ions reduction within a short period, which requires a lengthier cultivation time.

Methods: In this study zinc oxide (ZnO) NPs have been produced utilizing Dill (anethum graveolens) leaf extract. This process is an easy, one-pot, inexpensive and green process, i.e. isolated from utilizing toxic materials.

Results: Various characterization techniques have been utilized to inspect the structure, size, morphology, chemical composition and optical properties of the ZnO NPs. Additionally, the mechanism of formation of ZnO NPs from Dill (anethum graveolens) leaf extract has been explained intensively.

Conclusion: This investigation revealed that Dill (anethum graveolens) leaf extract is a suitable environment for producing nanosize ~27 nm, spherical, monodisperse, wide band gap ~ 3.56 eV, highly crystalline and 1:1 Zn to O ratio ZnO NPs.

Graphical Abstract

[1]
Dobrovolskaia, M.A.; Germolec, D.R.; Weaver, J.L. Evaluation of nanoparticle immunotoxicity. Nat. Nanotechnol., 2009, 4(7), 411-414.
[2]
Amidu, M.A.; Addad, Y.; Riahi, M.K.; Abu-Nada, E. Numerical investigation of nanoparticles slip mechanisms impact on the natural convection heat transfer characteristics of nanofluids in an enclosure. Sci. Rep., 2021, 11(1), 15678.
[http://dx.doi.org/10.1038/s41598-021-95269-z] [PMID: 34344981]
[3]
Addad, Y.; Abutayeh, M.; Abu-Nada, E. Effects of nanofluids on the performance of a PCM-based thermal energy storage system. J. Energy Eng., 2017, 143(4), 04017006.
[http://dx.doi.org/10.1061/(ASCE)EY.1943-7897.0000433]
[4]
Taniguchi, N. On the basic concept of nanotechnology. Proceeding of the ICPE, 1974.
[5]
Płaza, G.; Chojniak, J.; Banat, I. Biosurfactant mediated biosynthesis of selected metallic nanoparticles. Int. J. Mol. Sci., 2014, 15(8), 13720-13737.
[http://dx.doi.org/10.3390/ijms150813720] [PMID: 25110864]
[6]
Charitidis, C.A. Quest for ethical and socially responsible nanoscience and nanotechnology. In: Handbook of Research Ethics and Scientific Integrity; Iphofen, R., Ed.; Springer: Cham, 2020.
[http://dx.doi.org/10.1007/978-3-030-16759-2_42]
[7]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[8]
Poh, T.Y.; Ali, N.A.B.M.; Mac Aogáin, M.; Kathawala, M.H.; Setyawati, M.I.; Ng, K.W.; Chotirmall, S.H. Inhaled nanomaterials and the respiratory microbiome: clinical, immunological and toxicological perspectives. Part. Fibre Toxicol., 2018, 15(1), 46.
[http://dx.doi.org/10.1186/s12989-018-0282-0] [PMID: 30458822]
[9]
Khandel, P.; Yadaw, R.K.; Soni, D.K.; Kanwar, L.; Shahi, S.K. Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects. J. Nanostructure Chem., 2018, 8(3), 217-254.
[http://dx.doi.org/10.1007/s40097-018-0267-4]
[10]
Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Materials Advances, 2021, 2(6), 1821-1871.
[http://dx.doi.org/10.1039/D0MA00807A]
[11]
Goutam, S.P. Green synthesis of nanoparticles and their applications in water and wastewater treatment. Bioremediation of Industrial Waste for Environmental Safety; Springer, 2020, pp. 349-379.
[http://dx.doi.org/10.1007/978-981-13-1891-7_16]
[12]
Martínez-Cabanas, M.; López-García, M.; Rodríguez-Barro, P.; Vilariño, T.; Lodeiro, P.; Herrero, R.; Barriada, J.L.; Sastre de Vicente, M.E. Antioxidant capacity assessment of plant extracts for green synthesis of nanoparticles. Nanomaterials, 2021, 11(7), 1679.
[http://dx.doi.org/10.3390/nano11071679] [PMID: 34202397]
[13]
Jadoun, S.; Arif, R.; Jangid, N.K.; Meena, R.K. Green synthesis of nanoparticles using plant extracts: a review. Environ. Chem. Lett., 2021, 19(1), 355-374.
[http://dx.doi.org/10.1007/s10311-020-01074-x]
[14]
Dikshit, P.; Kumar, J.; Das, A.; Sadhu, S.; Sharma, S.; Singh, S.; Gupta, P.; Kim, B. Green synthesis of metallic nanoparticles: Applications and limitations. Catalysts, 2021, 11(8), 902.
[http://dx.doi.org/10.3390/catal11080902]
[15]
Makarov, V.V.; Love, A.J.; Sinitsyna, O.V.; Makarova, S.S.; Yaminsky, I.V.; Taliansky, M.E.; Kalinina, N.O. “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat., 2014, 6(1), 35-44.
[http://dx.doi.org/10.32607/20758251-2014-6-1-35-44] [PMID: 24772325]
[16]
Lu, Y.; Ozcan, S. Green nanomaterials: On track for a sustainable future. Nano Today, 2015, 10(4), 417-420.
[http://dx.doi.org/10.1016/j.nantod.2015.04.010]
[17]
Singh, J.; Dutta, T.; Kim, K.H.; Rawat, M.; Samddar, P.; Kumar, P. ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J. Nanobiotechnology, 2018, 16(1), 84.
[http://dx.doi.org/10.1186/s12951-018-0408-4] [PMID: 30373622]
[18]
Kumar, S.S.; Venkateswarlu, P.; Rao, V.R.; Rao, G.N. Synthesis, characterization and optical properties of zinc oxide nanoparticles. Int. Nano Lett., 2013, 3(1), 30.
[http://dx.doi.org/10.1186/2228-5326-3-30]
[19]
Drummer, S.; Madzimbamuto, T.F.; Chowdhury, M. Green synthesis of transition metals nanoparticle and their oxides. Materials, 2021, 14(11), 2700.
[20]
Siddiqi, K.S. ur Rahman, A.; Tajuddin; Husen, A. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res. Lett., 2018, 13(1), 141.
[http://dx.doi.org/10.1186/s11671-018-2532-3] [PMID: 29740719]
[21]
Barzinjy, A.A.; Azeez, H.H. Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globulus Labill. leaf extract and zinc nitrate hexahydrate salt. SN Applied Sciences, 2020, 2(5), 991.
[http://dx.doi.org/10.1007/s42452-020-2813-1]
[22]
Jiang, J.; Pi, J.; Cai, J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg. Chem. Appl., 2018, 2018, 1-18.
[http://dx.doi.org/10.1155/2018/1062562] [PMID: 30073019]
[23]
Espitia, P.J.P.; Soares, N.F.F.; Coimbra, J.S.R.; de Andrade, N.J.; Cruz, R.S.; Medeiros, E.A.A. Zinc oxide nanoparticles: Synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol., 2012, 5(5), 1447-1464.
[http://dx.doi.org/10.1007/s11947-012-0797-6]
[24]
Handago, D.T.; Zereffa, E.A.; Gonfa, B.A. Effects of Azadirachta indica leaf extract, capping agents, on the synthesis of pure and Cu doped ZnO-nanoparticles: a green approach and microbial activity. Open Chem., 2019, 17(1), 246-253.
[http://dx.doi.org/10.1515/chem-2019-0018]
[25]
Haque, M.J.; Bellah, M.M.; Hassan, M.R.; Rahman, S. Synthesis of ZnO nanoparticles by two different methods & comparison of their structural, antibacterial, photocatalytic and optical properties. Nano Express, 2020, 1(1), 010007.
[http://dx.doi.org/10.1088/2632-959X/ab7a43]
[26]
Santhoshkumar, J.; Kumar, S.V.; Rajeshkumar, S. Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource-Efficient Technolog., 2017, 3(4), 459-465.
[http://dx.doi.org/10.1016/j.reffit.2017.05.001]
[27]
Rasli, N.I.; Basri, H.; Harun, Z. Zinc oxide from aloe vera extract: two-level factorial screening of biosynthesis parameters. Heliyon, 2020, 6(1), e03156.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03156] [PMID: 32042952]
[28]
Elumalai, K.; Velmurugan, S.; Ravi, S.; Kathiravan, V.; Adaikala Raj, G. Bio-approach: Plant mediated synthesis of ZnO nanoparticles and their catalytic reduction of methylene blue and antimicrobial activity. Adv. Powder Technol., 2015, 26(6), 1639-1651.
[http://dx.doi.org/10.1016/j.apt.2015.09.008]
[29]
Dobrucka, R.; Długaszewska, J. Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J. Biol. Sci., 2016, 23(4), 517-523.
[http://dx.doi.org/10.1016/j.sjbs.2015.05.016] [PMID: 27298586]
[30]
Sharmila, G.; Muthukumaran, C.; Sandiya, K.; Santhiya, S.; Pradeep, R.S.; Kumar, N.M.; Suriyanarayanan, N.; Thirumarimurugan, M. Biosynthesis, characterization, and antibacterial activity of zinc oxide nanoparticles derived from Bauhinia tomentosa leaf extract. J. Nanostructure Chem., 2018, 8(3), 293-299.
[http://dx.doi.org/10.1007/s40097-018-0271-8]
[31]
Ansari, M.A.; Murali, M.; Prasad, D.; Alzohairy, M.A.; Almatroudi, A.; Alomary, M.N.; Udayashankar, A.C.; Singh, S.B.; Asiri, S.M.M.; Ashwini, B.S.; Gowtham, H.G.; Kalegowda, N.; Amruthesh, K.N.; Lakshmeesha, T.R.; Niranjana, S.R. Cinnamomum verum bark extract mediated green synthesis of ZnO nanoparticles and their antibacterial potentiality. Biomolecules, 2020, 10(2), 336.
[http://dx.doi.org/10.3390/biom10020336] [PMID: 32092985]
[32]
Irshad, S.; Salamat, A.; Anjum, A.A.; Sana, S.; Saleem, R.S.Z.; Naheed, A.; Iqbal, A. Green tea leaves mediated ZnO nanoparticles and its antimicrobial activity. Cogent Chem., 2018, 4(1), 1469207.
[http://dx.doi.org/10.1080/23312009.2018.1469207]
[33]
Suresh, D.; Shobharani, R.M.; Nethravathi, P.C.; Pavan Kumar, M.A.; Nagabhushana, H.; Sharma, S.C. Artocarpus gomezianus aided green synthesis of ZnO nanoparticles: Luminescence, photocatalytic and antioxidant properties. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 141, 128-134.
[http://dx.doi.org/10.1016/j.saa.2015.01.048] [PMID: 25668693]
[34]
Shekhawat, M.; Ravindran, C.; Manokari, M. Biogenic production of zinc oxide nanoparticles from aqueous extracts of Duranta erecta L. World Sci. News, 2016, 28, 30.
[35]
Elumalai, K. RETRACTED: Green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity; Elsevier: Amsterdam, 2015.
[36]
Ogunyemi, S.O.; Abdallah, Y.; Zhang, M.; Fouad, H.; Hong, X.; Ibrahim, E.; Masum, M.M.I.; Hossain, A.; Mo, J.; Li, B. Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 341-352.
[http://dx.doi.org/10.1080/21691401.2018.1557671] [PMID: 30691311]
[37]
Azeez, H.H.; Barzinjy, A.A. Biosynthesis zinc oxide nanoparticles using Apium graveolens L. leaf extract and its use in removing the organic pollutants in water. Desalination Water Treat., 2020, 190, 179-192.
[http://dx.doi.org/10.5004/dwt.2020.25648]
[38]
Barzinjy, A.A.; Abdul, D.A.; Hussain, F.H.S.; Hamad, S.M. Green synthesis of the magnetite (Fe3O4) nanoparticle using Rhus coriaria extract: a reusable catalyst for efficient synthesis of some new 2-naphthol bis-Betti bases. Inorganic Nano-Metal Chem., 2020, 50(8), 620-629.
[http://dx.doi.org/10.1080/24701556.2020.1723027]
[39]
Barzinjy, A.A.; Hamad, S.M.; Abdulrahman, A.F.; Biro, S.J.; Ghafor, A.A. Biosynthesis, characterization and mechanism of formation of ZnO nanoparticles using Petroselinum crispum leaf extract. Curr. Org. Synth., 2020, 17(7), 558-566.
[http://dx.doi.org/10.2174/1570179417666200628140547] [PMID: 32598261]
[40]
Barzinjy, A.A.; Hamad, S.M.; Aydın, S.; Ahmed, M.H.; Hussain, F.H.S. Green and eco-friendly synthesis of Nickel oxide nanoparticles and its photocatalytic activity for methyl orange degradation. J. Mater. Sci. Mater. Electron., 2020, 31(14), 11303-11316.
[http://dx.doi.org/10.1007/s10854-020-03679-y]
[41]
Barzinjy, A.A.; Hamad, S.M.; Esmaeel, M.M.; Aydın, S.K.; Hussain, F.H.S. Biosynthesis and characterisation of zinc oxide nanoparticles from Punica granatum (pomegranate) juice extract and its application in thin films preparation by spin‐coating method. Micro & Nano Lett., 2020, 15(6), 415-420.
[http://dx.doi.org/10.1049/mnl.2019.0501]
[42]
Nasrollahzadeh, M.; Sajjadi, M.; Maham, M.; Sajadi, S.M.; Barzinjy, A.A. Biosynthesis of the palladium/sodium borosilicate nanocomposite using Euphorbia milii extract and evaluation of its catalytic activity in the reduction of chromium(VI), nitro compounds and organic dyes. Mater. Res. Bull., 2018, 102, 24-35.
[http://dx.doi.org/10.1016/j.materresbull.2018.01.032]
[43]
Sajadi, S.M.; Kolo, K.; Hamad, S.M.; Mahmud, S.A.; Barzinjy, A.A.; Hussein, S.M. Green synthesis of the Ag/Bentonite nanocomposite UsingEuphorbia larica extract: a reusable catalyst for efficient reduction of nitro compounds and organic dyes. ChemistrySelect, 2018, 3(43), 12274-12280.
[http://dx.doi.org/10.1002/slct.201802707]
[44]
Barzinjy, A.A. Characterization of ZnO nanoparticles prepared from green synthesis using Euphorbia petiolata leaves. Eurasian J. Sci. Engin., 2019, 4(3), 74-83.
[45]
Barzinjy, A.A. Structure, synthesis and applications of ZnO nanoparticles: A review. Jordan J. Phy., 2020, 13(2), 123-135.
[http://dx.doi.org/10.47011/13.2.4]
[46]
Talabani, R.F.; Hamad, S.M.; Barzinjy, A.A.; Demir, U. Biosynthesis of silver nanoparticles and their applications in harvesting sunlight for solar thermal generation. Nanomaterials, 2021, 11(9), 2421.
[http://dx.doi.org/10.3390/nano11092421] [PMID: 34578737]
[47]
Shnawa, B.H. Scolicidal activity of biosynthesized zinc oxide nanoparticles by Mentha longifolia L. leaves against Echinococcus granulosus protoscolices; Emergent materials, 2021, 1-11.
[48]
Mustafa, S.M. Biosynthesis of quantum dots and their usage in solar cells: insight from the novel researches. Int. Nano Lett., 2021, 2021, 1-13.
[49]
Rahimzadeh, C.Y.; Barzinjy, A.A.; Mohammed, A.S.; Hamad, S.M. Green synthesis of SiO2 nanoparticles from Rhus coriaria L. extract: Comparison with chemically synthesized SiO2 nanoparticles. PLoS One, 2022, 17(8), e0268184.
[http://dx.doi.org/10.1371/journal.pone.0268184] [PMID: 35930607]
[50]
Barzinjy, A.A. The importance of essential-oils in the green synthesis of silver nanoparticles. J. Korean Chem. Soc., 2022, 66(4), 284-297.
[51]
Shekhawat, G.S.; Jana, S. Anethum graveolens: An Indian traditional medicinal herb and spice. Pharmacogn. Rev., 2010, 4(8), 179-184.
[http://dx.doi.org/10.4103/0973-7847.70915] [PMID: 22228959]
[52]
Sathishkumar, M.; Sneha, K.; Yun, Y.S. Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresour. Technol., 2010, 101(20), 7958-7965.
[http://dx.doi.org/10.1016/j.biortech.2010.05.051] [PMID: 20541399]
[53]
Singh, P.; Kim, Y.J.; Zhang, D.; Yang, D.C. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol., 2016, 34(7), 588-599.
[http://dx.doi.org/10.1016/j.tibtech.2016.02.006] [PMID: 26944794]
[54]
Remini, H. Phytochemical analysis and antioxidant activity of Eucalyptus globulus: a comparative study between fruits and leaves extracts. J. Chem. Engin. Bioanalytical Chem., 2016, 1, 23-29.
[55]
Ovais, M.; Khalil, A.T.; Raza, A.; Khan, M.A.; Ahmad, I.; Islam, N.U.; Saravanan, M.; Ubaid, M.F.; Ali, M.; Shinwari, Z.K. Green synthesis of silver nanoparticles via plant extracts: beginning a new era in cancer theranostics. Nanomedicine, 2016, 11(23), 3157-3177.
[http://dx.doi.org/10.2217/nnm-2016-0279] [PMID: 27809668]
[56]
Mittal, A.K.; Chisti, Y.; Banerjee, U.C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv., 2013, 31(2), 346-356.
[http://dx.doi.org/10.1016/j.biotechadv.2013.01.003] [PMID: 23318667]
[57]
Ahmed, S. Annu; Chaudhry, S.A.; Ikram, S. A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: A prospect towards green chemistry. J. Photochem. Photobiol. B, 2017, 166, 272-284.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.12.011] [PMID: 28013182]
[58]
Wahab, R.; Ansari, S.G.; Kim, Y.S.; Song, M.; Shin, H-S. The role of pH variation on the growth of zinc oxide nanostructures. Appl. Surf. Sci., 2009, 255(9), 4891-4896.
[http://dx.doi.org/10.1016/j.apsusc.2008.12.037]
[59]
Alias, S.S.; Ismail, A.B.; Mohamad, A.A. Effect of pH on ZnO nanoparticle properties synthesized by sol–gel centrifugation. J. Alloys Compd., 2010, 499(2), 231-237.
[http://dx.doi.org/10.1016/j.jallcom.2010.03.174]
[60]
Ochieng, P. Green route synthesis and characterization of ZnO nanoparticles using Spathodea campanulata. Int. J. Biochem. Phys, 2015, 23, 53-61.
[61]
Rajeshkumar, S.; Malarkodi, C.; Vanaja, M.; Annadurai, G. Anticancer and enhanced antimicrobial activity of biosynthesizd silver nanoparticles against clinical pathogens. J. Mol. Struct., 2016, 1116, 165-173.
[http://dx.doi.org/10.1016/j.molstruc.2016.03.044]
[62]
Ovais, M.; Khalil, A.T.; Islam, N.U.; Ahmad, I.; Ayaz, M.; Saravanan, M.; Shinwari, Z.K.; Mukherjee, S. Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Appl. Microbiol. Biotechnol., 2018, 102(16), 6799-6814.
[http://dx.doi.org/10.1007/s00253-018-9146-7] [PMID: 29882162]
[63]
Santos, S.A.O.; Freire, C.S.R.; Domingues, M.R.M.; Silvestre, A.J.D.; Neto, C.P. Characterization of phenolic components in polar extracts of Eucalyptus globulus Labill. bark by high-performance liquid chromatography-mass spectrometry. J. Agric. Food Chem., 2011, 59(17), 9386-9393.
[http://dx.doi.org/10.1021/jf201801q] [PMID: 21761864]
[64]
Pai, S.; H, S.; Varadavenkatesan, T.; Vinayagam, R.; Selvaraj, R. Photocatalytic zinc oxide nanoparticles synthesis using Peltophorum pterocarpum leaf extract and their characterization. Optik, 2019, 185, 248-255.
[http://dx.doi.org/10.1016/j.ijleo.2019.03.101]
[65]
Varadavenkatesan, T.; Lyubchik, E.; Pai, S.; Pugazhendhi, A.; Vinayagam, R.; Selvaraj, R. Photocatalytic degradation of Rhodamine B by zinc oxide nanoparticles synthesized using the leaf extract of Cyanometra ramiflora. J. Photochem. Photobiol. B, 2019, 199, 111621.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111621] [PMID: 31610434]
[66]
Qin, L.; Shing, C.; Sawyer, S.; Dutta, P.S. Enhanced ultraviolet sensitivity of zinc oxide nanoparticle photoconductors by surface passivation. Opt. Mater., 2011, 33(3), 359-362.
[http://dx.doi.org/10.1016/j.optmat.2010.09.020]
[67]
Koch, U.; Fojtik, A.; Weller, H.; Henglein, A. Photochemistry of semiconductor colloids. Preparation of extremely small ZnO particles, fluorescence phenomena and size quantization effects. Chem. Phys. Lett., 1985, 122(5), 507-510.
[http://dx.doi.org/10.1016/0009-2614(85)87255-9]
[68]
Khan, M.M.; Saadah, N.H.; Khan, M.E.; Harunsani, M.H.; Tan, A.L.; Cho, M.H. Potentials of Costus woodsonii leaf extract in producing narrow band gap ZnO nanoparticles. Mater. Sci. Semicond. Process., 2019, 91, 194-200.
[http://dx.doi.org/10.1016/j.mssp.2018.11.030]
[69]
Pantidos, N.; Horsfall, L.E. Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J. Nanomed. Nanotechnol., 2014, 5(5), 1.
[http://dx.doi.org/10.4172/2157-7439.1000233]
[70]
Jiang, J.; Oberdörster, G.; Elder, A.; Gelein, R.; Mercer, P.; Biswas, P. Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology, 2008, 2(1), 33-42.
[http://dx.doi.org/10.1080/17435390701882478] [PMID: 20827377]
[71]
Rodriguez, J.A.; Wang, X.; Hanson, J.C.; Liu, G.; Iglesias-Juez, A.; Fernández-García, M. The behavior of mixed-metal oxides: Structural and electronic properties of Ce1−xCaxO2 and Ce1−xCaxO2−x. J. Chem. Phys., 2003, 119(11), 5659-5669.
[http://dx.doi.org/10.1063/1.1601595]
[72]
Singh, D.P.; Singh, J.; Mishra, P.R.; Tiwari, R.S.; Srivastava, O.N. Synthesis, characterization and application of semiconducting oxide (Cu2O and ZnO) nanostructures. Bull. Mater. Sci., 2008, 31(3), 319-325.
[http://dx.doi.org/10.1007/s12034-008-0051-z]
[73]
Saravanakkumar, D. Green synthesis of ZnO nanoparticles using Trachyspermum ammi seed extract for antibacterial investigation. Pharma Chem., 2016, 8(7), 173-180.
[74]
Sundrarajan, M.; Ambika, S.; Bharathi, K. Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria. Adv. Powder Technol., 2015, 26(5), 1294-1299.
[http://dx.doi.org/10.1016/j.apt.2015.07.001]
[75]
Agarwal, H.; Venkat Kumar, S.; Rajeshkumar, S. A review on green synthesis of zinc oxide nanoparticles – An eco-friendly approach. Res.-. Effici. Technol., 2017, 3(4), 406-413.
[http://dx.doi.org/10.1016/j.reffit.2017.03.002]
[76]
Das, D.; Nath, B.C.; Phukon, P.; Dolui, S.K. Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids Surf. B Biointerfaces, 2013, 101, 430-433.
[http://dx.doi.org/10.1016/j.colsurfb.2012.07.002] [PMID: 23010051]
[77]
Nilavukkarasi, M.; Vijayakumar, S.; Prathipkumar, S. Capparis zeylanica mediated bio-synthesized ZnO nanoparticles as antimicrobial, photocatalytic and anti-cancer applications. Mater. Sci. Energy Technol., 2020, 3, 335-343.
[http://dx.doi.org/10.1016/j.mset.2019.12.004]
[78]
Vidya, C. Green synthesis of ZnO nanoparticles by Calotropis gigantea. Int J Curr Eng Technol, 2013, 1(1), 118-120.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy