Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Dielectric Properties and Phase Transitions of KNO3 Embedded in Porous Aluminum Oxide

Author(s): Alexey Yurievich Milinskii, Sergey Vasilevich Baryshnikov and Elena Vladimirovna Stukova*

Volume 12, Issue 5, 2022

Published on: 16 November, 2022

Article ID: e311022210472 Pages: 6

DOI: 10.2174/2210681213666221031101826

Price: $65

Abstract

Background: The research of nanocomposites based on ferroelectrics has been recently stimulated by the discovery of a number of their unique properties. These properties are of particular interest from both fundamental and applied points of view.

Objective: This paper presents the results of comparative studies of the linear and nonlinear dielectric properties of potassium nitrate embedded from the solution and from the melt into aluminum oxide films with a pore diameter of 100 nm.

Methods: An E7-25 impedance meter with a frequency range of 25 Hz – 1 MHz was used to investigate the linear dielectric properties. The setup for researching nonlinear dielectric properties has a sinusoidal oscillator with an operating frequency of 2 kHz.

Results: The temperature dependences of the permittivity ε' and the third harmonic coefficient γ were measured in the heating and cooling mode. It was found that for a nanocomposite obtained from the solution, the ferroelectric phase of KNO3 was formed only upon cooling in the temperature range 397 – 360 K. At the same time, when KNO3 was embedded into the Al2O3 film from the melt, the polar phase occurred both upon heating and cooling in the temperature range of 300 – 432 K and 300 – 421 K, respectively.

Conclusion: Thus, the conducted studies of the dielectric properties showed a significant difference in the phase transition temperatures for the KNO3/Al2O3 nanocomposites obtained from the solution and from the melt compared to the bulk sample. The phase transition shifts during heating had a different sign for the nanocomposites obtained from the solution and from the melt. The temperature range of the existence of the ferroelectric phase significantly depends on the method of embedding KNO3 into aluminum oxide films. For the nanocomposite obtained from a solution, the polar phase is formed only upon cooling, whereas when potassium nitrate is embedded from the melt, the polar phase is formed both upon heating and cooling.

Graphical Abstract

[1]
Nikitchenko, A.I.; Azovtsev, A.V.; Pertsev, N.A. Dielectric properties of ferroelectric nanocomposites: effects of thermal stresses and filler shape anisotropy. J. Phys. Condens. Matter, 2018, 30(43), 435301.
[http://dx.doi.org/10.1088/1361-648X/aadfc1] [PMID: 30192234]
[2]
Shimoga, G.; Kim, S.Y. High-k polymer nanocomposite materials for technological applications. Appl. Sci., 2020, 10(12), 4249.
[http://dx.doi.org/10.3390/app10124249]
[3]
Chen, Y.; Yue, Y.; Liu, J.; Shu, J.; Liu, A.; Chu, B.; Xu, M.; Xu, W.; Chen, T.; Zhang, J.; Shen, Q.D. Ferroelectric nanocomposite networks with high energy storage capacitance and low ferroelectric loss by designing a hierarchical interface architecture. Phys. Chem. Chem. Phys., 2019, 21(37), 20661-20671.
[http://dx.doi.org/10.1039/C9CP03389K] [PMID: 31508617]
[4]
Mikhaleva, E.A.; Flerov, I.N.; Kartashev, A.V.; Gorev, M.V.; Molokeev, M.S.; Bogdanov, E.V.; Bondarev, V.S.; Korotkov, L.N.; Rysiakiewicz-Pasek, E. Effect of restricted geometry and external pressure on the phase transitions in ammonium hydrogen sulfate confined in a nanoporous glass matrix. J. Mater. Sci., 2018, 53(17), 12132-12144.
[http://dx.doi.org/10.1007/s10853-018-2467-1]
[5]
Baryshnikov, S.V.; Charnaya, E.V.; Milinskiy, A.Y.; Parfenov, V.A.; Egorova, I.V. Impact of nanoconfinement on the diisopropylammonium chloride (C6H16ClN) organic ferroelectric. Phase Transit., 2018, 91(3), 293-300.
[http://dx.doi.org/10.1080/01411594.2017.1378880]
[6]
Golitsyna, O.M.; Drozhdin, S.N.; Zanin, I.E.; Gridnev, A.E. Structure of triglycine sulfate embedded in porous aluminum oxide. Phys. Solid State, 2012, 54(11), 2296-2300.
[http://dx.doi.org/10.1134/S1063783412110091]
[7]
Voĭnov, Y.P.; Gabitova, N.F.; Gorelik, V.S.; Zlobina, L.I.; Sverbil’, P.P. Secondary radiation of synthetic opals loaded by the sodium nitrite ferroelectric. Phys. Solid State, 2009, 51(7), 1409-1413.
[http://dx.doi.org/10.1134/S106378340907021X]
[8]
Poprawski, R.; Rysiakiewicz-Pasek, E.; Sieradzki, A.; Ciżman, A.; Polańska, J. Ferroelectric phase transitions in KNO3 embedded into porous glasses. J. Non-Cryst. Solids, 2007, 353(47-51), 4457-4461.
[http://dx.doi.org/10.1016/j.jnoncrysol.2007.01.086]
[9]
Baryshnikov, S.V.; Charnaya, E.V.; Milinskiy, A.Y.; Patrushev, Y.V. Phase transitions in KNO3 embedded in MCM-41 films with regular nanopores. Phys. Solid State, 2013, 55(12), 2566-2570.
[http://dx.doi.org/10.1134/S1063783413120056]
[10]
Milinskiy, A.Y.; Baryshnikov, S.V. Phase transitions in nanocomposites obtained by introducing KNO3 into the pores of nanosized Al2O3 films. Nanosci. Nanotechnol. Asia, 2018, 9(1), 128-132.
[http://dx.doi.org/10.2174/2210681208666180403112631]
[11]
Naberezhnov, A.A.; Vanina, P.Y.; Sysoeva, A.A.; Ciźman, A.; Rysiakiewicz-Pasek, E.; Hoser, A. Effect of restricted geometry on the structure and phase transitions in potassium nitrate nanoparticles. Phys. Solid State, 2018, 60(3), 442-446.
[http://dx.doi.org/10.1134/S1063783418030204]
[12]
Chen, A.; Chernow, F. Nature of Ferroelectricity in KN O 3. Phys. Rev., 1967, 154(2), 493-505.
[http://dx.doi.org/10.1103/PhysRev.154.493]
[13]
Sawada, S.; Nomura, S.; Asao, Y. Dielectric behavior of KNO3 in its ferroelectric phase III. J. Phys. Soc. Jpn., 1961, 16(12), 2486-2494.
[http://dx.doi.org/10.1143/JPSJ.16.2486]
[14]
Deshpande, V.V.; Karkhanavala, M.D.; Rao, U.R.K. Phase transitions in potassium nitrate. J. Therm. Anal., 1974, 6(6), 613-621.
[http://dx.doi.org/10.1007/BF01911781]
[15]
Nimmo, J.K.; Lucas, B.W. The crystal structures of γ- and β-KNO 3 and the α ← γ ← β phase transformations. Acta Crystallogr. B, 1976, 32(7), 1968-1971.
[http://dx.doi.org/10.1107/S0567740876006894]
[16]
Milinskii, A.Yu.; Baryshnikov, S.V.; Parfenov, V.A.; Kozlola, S.A.; Thuong, N.H. Nonlinear dielectric response of nanocomposites based on potassium dihydrogen phosphate. Transac. Electric. Electr. Mater., 2018, 19(3), 201-205.
[17]
Wang, C.L.; Xin, Y.; Wang, X.S.; Zhong, W.L. Size effects of ferroelectric particles described by the transverse Ising model. Phys. Rev. B Condens. Matter, 2000, 62(17), 11423-11427.
[http://dx.doi.org/10.1103/PhysRevB.62.11423]
[18]
Darinskii, B.; Sidorkin, A.; Sigov, A.; Popravko, N. Influence of depolarizing fields and screening effects on phase transitions in ferroelectric composites. Materials, 2018, 11(1), 85.
[http://dx.doi.org/10.3390/ma11010085] [PMID: 29316630]
[19]
Charnaya, E.V.; Pirozerskii, A.L.; Tien, C.; Lee, M.K. Ferroelectricity in an array of electrically coupled confined small particles. Ferroelectrics, 2007, 350(1), 75-80.
[http://dx.doi.org/10.1080/00150190701369883]
[20]
Fridkin, V.M. Segnetoelektriki – poluprovodniki; Nauka: Moskva, 1976.
[21]
Nechaev, V.N.; Viskovatykh, A.V. Effect of thermal stresses on the phase transition temperature in a ferroelectric-dielectric nanocomposite. Phys. Solid State, 2014, 56(10), 1992-1996.
[http://dx.doi.org/10.1134/S1063783414100217]
[22]
Shchukin, V.A.; Bimberg, D. Spontaneous ordering of nanostructures on crystal surfaces. Rev. Mod. Phys., 1999, 71(4), 1125-1171.
[http://dx.doi.org/10.1103/RevModPhys.71.1125]
[23]
Glinchuk, M.D.; Morozovska, A.N. The internal electric field originating from the mismatch effect and its influence on ferroelectric thin film properties. J. Phys. Condens. Matter, 2004, 16(21), 3517-3531.
[http://dx.doi.org/10.1088/0953-8984/16/21/002]
[24]
Morozovska, A.N.; Glinchuk, M.D.; Eliseev, E.A. Phase transitions induced by confinement of ferroic nanoparticles. Phys. Rev. B Condens. Matter Mater. Phys., 2007, 76(1), 014102.
[http://dx.doi.org/10.1103/PhysRevB.76.014102]
[25]
Yadlovker, D.; Berger, S. Uniform orientation and size of ferroelectric domains. Phys. Rev. B, 2005, 71(18), 184112.
[http://dx.doi.org/10.1103/PhysRevB.71.184112]
[26]
Poyato, R.B.; Huey, B.D.; Padture, N.P. Local piezoelectric and ferroelectric responses in nanotube-patterned thin films of BaTiO3 synthesized hydrothermally at 200 °C. J. Mater., 2006, 21(3), 547-551.
[http://dx.doi.org/10.1557/jmr.2006.0069]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy