Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Development, Characterization and In vivo Pharmacokinetic Studies of Olmesartan Medoxomil Nanosuspension for the Effective Treatment of Hypertension

Author(s): Udit Narayan Singh, Bhargav E*, Haranath C, Chitra Sekhar C, Charitha B and MV Jyothi

Volume 12, Issue 5, 2022

Published on: 01 November, 2022

Article ID: e181022210130 Pages: 12

DOI: 10.2174/2210681213666221018092035

Price: $65

Abstract

Introduction: The present work aims to increase the saturation solubility and the bioavailability of Olmesartan medoxomil (OM) via an acid-base neutralization-based nanosuspension technique.

Methods: The initial screening studies revealed that changes in the concentration of HPMC E15 (100-200 mg), mechanical stirring speed (SS) (900-1200 rpm) and stirring time (ST) (60-120 min) affected the responses. Effects produced by the factors (HPMC E15, SS, and ST) on responses (particle size, PDI, and cumulative % drug release (%CDR)) were investigated using a 2III3-1 fractional factorial design with replicates and four midpoints. For the development of Olmesartan medoxomil nanosuspension, an acid-base neutralization technique was employed.

Results: Pareto chart, perturbation plots and ANOVA were used to identify significant factors. The pvalue <0.05 indicated the factors to be considered significant. The Particle size and PDI of all formulations ranged from 286.7 nm - 718.1 nm and 0.146 – 0.415, respectively. Drug release from all formulations ranged from74.0-103.7%. Pure drug solubility and optimized formula solubility were reported to be 108.6 g/ml and 1650.72 g/ml, respectively. Contour and 3D surface plots led to the identification of design space in which HPMC E15, SS and ST can be oriented at 148.8-151 mg, 959-1000 rpm and 106-120 min, respectively, to get particle size <500 nm, PDI <0.5 and % CDR >95%.SEM results indicated that the particles were nearly spherical.

Conclusion: In vivo pharmacokinetic studies conducted in Wistar rats exhibited ~4.7 folds enhancement in optimized OM nanosuspension oral bioavailability compared to pure drug. It can be concluded that the selected method and application of the design of the experimentation technique enhanced the saturation solubility and bioavailability of OM.

Graphical Abstract

[1]
Bhargav, E.; Chaithanya Barghav, G.; Padmanabha Reddy, Y.; Pavan kumar, C.; Ramalingam, P.; Haranath, C. A Design of Experiment (DoE) based approach for development and optimization of nanosuspensions of telmisartan, a BCS class II antihypertensive drug. Future J. Pharm. Sci, 2020, 6(1), 14.
[http://dx.doi.org/10.1186/s43094-020-00032-2]
[2]
Chen, H.; Khemtong, C.; Yang, X.; Chang, X.; Gao, J. Nanonization strategies for poorly water-soluble drugs. Drug Discov. Today, 2011, 16(7-8), 354-360.
[http://dx.doi.org/10.1016/j.drudis.2010.02.009] [PMID: 20206289]
[3]
Vuppalapati, L.; Cherukuri, S.; Neeli, V.; Reddy Yeragamreddy, P.; Reddy Kesavan, B. Application of central composite design in optimization of valsartan nanosuspension to enhance its solubility and stability. Curr. Drug Deliv., 2016, 13(1), 143-157.
[http://dx.doi.org/10.2174/1567201812666150724094358] [PMID: 26205900]
[4]
Bajaj, A.; Rao, M.R.P.; Pardeshi, A.; Sali, D. Nanocrystallization by evaporative antisolvent technique for solubility and bioavailability enhancement of telmisartan. AAPS Pharm. Sci. Tech., 2012, 13(4), 1331-1340.
[http://dx.doi.org/10.1208/s12249-012-9860-x] [PMID: 23054986]
[5]
Keck, C.; Müller, R. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur. J. Pharm. Biopharm., 2006, 62(1), 3-16.
[http://dx.doi.org/10.1016/j.ejpb.2005.05.009] [PMID: 16129588]
[6]
Rabinow, B.E. Nanosuspensions in drug delivery. Nat. Rev. Drug Discov., 2004, 3(9), 785-796.
[http://dx.doi.org/10.1038/nrd1494] [PMID: 15340388]
[7]
Xu, Y.; Liu, X.; Lian, R.; Zheng, S.; Yin, Z.; Lu, Y.; Wu, W. Enhanced dissolution and oral bioavailability of aripiprazole nanosuspensions prepared by nanoprecipitation/homogenization based on acid-base neutralization. Int. J. Pharm., 2012, 438(1-2), 287-295.
[http://dx.doi.org/10.1016/j.ijpharm.2012.09.020] [PMID: 22989976]
[8]
Pattekari, P.; Zheng, Z.; Zhang, X.; Levchenko, T.; Torchilin, V.; Lvov, Y. Top-down and bottom-up approaches in production of aqueous nanocolloids of low solubility drug paclitaxel. Phys. Chem. Chem. Phys., 2011, 13(19), 9014-9019.
[http://dx.doi.org/10.1039/c0cp02549f] [PMID: 21442095]
[9]
Liu, D.; Xu, H.; Tian, B.; Yuan, K.; Pan, H.; Ma, S.; Yang, X.; Pan, W. Fabrication of carvedilol nanosuspensions through the anti-solvent precipitation-ultrasonication method for the improvement of dissolution rate and oral bioavailability. AAPS Pharm. Sci. Tech., 2012, 13(1), 295-304.
[http://dx.doi.org/10.1208/s12249-011-9750-7] [PMID: 22246736]
[10]
Kocbek, P.; Baumgartner, S.; Kristl, J. Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs. Int. J. Pharm., 2006, 312(1-2), 179-186.
[http://dx.doi.org/10.1016/j.ijpharm.2006.01.008] [PMID: 16469459]
[11]
Odiba, A.; Ukegbu, C.; Anunobi, O.; Chukwunonyelum, I.; Esemonu, J. Making drugs safer: Improving drug delivery and reducing the side effect of drugs on the human biochemical system. Nanotechnol. Rev., 2016, 5(2), 183-194.
[http://dx.doi.org/10.1515/ntrev-2015-0055]
[12]
Attari, Z.; Bhandari, A.; Jagadish, P.C.; Lewis, S. Enhanced ex vivo intestinal absorption of olmesartan medoxomil nanosuspension: Preparation by combinative technology. Saudi Pharm. J., 2016, 24(1), 57-63.
[http://dx.doi.org/10.1016/j.jsps.2015.03.008] [PMID: 26903769]
[13]
Thakkar, H.; Thakkar, S.P.; Patel, B.V. Development and characterization of nanosuspensions of olmesartan medoxomil for bioavailability enhancement. J. Pharm. Bioallied Sci., 2011, 3(3), 426-434.
[http://dx.doi.org/10.4103/0975-7406.84459] [PMID: 21966165]
[14]
Kovács, A.; Erős, I.; Csóka, I. Optimization and development of stable w/o/w cosmetic multiple emulsions by means of the Quality by Design approach. Int. J. Cosmet. Sci., 2016, 38(2), 128-138.
[http://dx.doi.org/10.1111/ics.12248] [PMID: 26084533]
[15]
Rao, M.; Bajaj, A. Study of effect of variables on particle size of telmisartan nanosuspensions using box-Behnken design. Drug Res., 2014, 64(12), 663-667.
[http://dx.doi.org/10.1055/s-0034-1368701] [PMID: 24549965]
[16]
Daebis, N.; El-Massik, M.; Abdelkader, H. Formulation and characterization of itraconazole oral nanosuspension: Methyl cellulose as promising stabilizer. Ely J Pharm Res., 2015, 1, 102.
[17]
Ghosh, A.; Banerjee, T.; Surolia, A.; Bhandary, S. Formulation of nanotized curcumin and demonstration of its antimalarial efficacy. Int. J. Nanomed., 2014, 9, 5373-5387.
[http://dx.doi.org/10.2147/IJN.S62756] [PMID: 25484584]
[18]
Jain, S.; Patel, K.; Arora, S.; Reddy, V.A.; Dora, C.P. Formulation, optimization, and in vitro in vivo evaluation of olmesartan medoxomil nanocrystals. Drug Deliv. Transl. Res., 2017, 7(2), 292-303.
[http://dx.doi.org/10.1007/s13346-016-0355-2]
[19]
Pankaj, J.; Vinod, G.; Vineeta, D.; Pradeep, V. Bioavailability enhancement of olmesartan medoxomil using hot-melt extrusion: In-Silico, in-vitro, and in-vivo evaluation. AAPS Pharm. Sci. Tech., 2020, 4, 254.
[20]
Ahuja, B.K.; Jena, S.K.; Paidi, S.K.; Bagri, S.; Suresh, S. Formulation, optimization and in vitro-in vivo evaluation of febuxostat nanosuspension. Int. J. Pharm., 2015, 478(2), 540-552.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.003] [PMID: 25490182]
[21]
Prajapati, S.T.; Joshi, H.A.; Patel, C.N. Preparation and characterization of self-microemulsifying drug delivery system of olmesartan medoxomil for bioavailability improvement. J. Pharm., 2013, 2013, 1-9.
[http://dx.doi.org/10.1155/2013/728425] [PMID: 26555991]
[22]
Cai, Z.; Wang, Y.; Zhu, L.J.; Liu, Z.Q. Nanocarriers: A general strategy for enhancement of oral bioavailability of poorly absorbed or pre-systemically metabolized drugs. Curr. Drug Metab., 2010, 11(2), 197-207.
[http://dx.doi.org/10.2174/138920010791110836] [PMID: 20384585]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy