Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Heavy Metal Removal with NanoTiO2/Chitosan Modified Poly(Vinylidene Chloride)

Author(s): Sadeaka A. Ahmed, Mahmoud M. El-Bordiny, Abdellatif S. El-Sebaay, Amr A. El-Ella, Mohamed A. Tag El-Din and Yasser A. Attia*

Volume 12, Issue 5, 2022

Published on: 26 September, 2022

Article ID: e190822207705 Pages: 9

DOI: 10.2174/2210681212666220819111215

Price: $65

Abstract

Background: Heavy metal contamination of water resources has been identified as one of the most serious environmental issues. Chemical modification of hydrophobic polymer matrices is another approach for changing their surface properties for water treatment. The addition of nanoparticles to polymers alters surface characteristics such as adsorption capacity, adhesion, catalytic ability, and wettability to heavy metals in wastewater.

Objective: Evaluation of the nanomodified polyvinyl chloride (PVC) polymer as a heavy metal adsorbent from wastewater.

Methods: In the field of emission discharges from industries and domestic wastes that contain unknown inorganic pollutants by PVC using grafting chitosan/TiO2 nanocomposites. The characterization of different thin films was performed using TEM, XRD, and FTIR. The metal concentrations were measured by using inductively coupled plasma (ICP-OES).

Results: Nanomodification of PVC was evaluated by infrared spectroscopy. The presence of chlorine in the PVC structure before and after the nanomodification is confirmed by the presence of a peak at 690 cm-1 attributed to the axial deformation of the C-Cl bond. The nanomodified PVC showed an ion exchange capacity of 1.27 mmol-1, and efficiently removed the heavy metals from aqueous solutions. The heavy metal removal effectiveness (R) was improved by increasing the concentration of TiO2 nanoparticles. The amount adsorbed per gram of adsorbent (Qe) was computed and revealed that the amount of adsorption increased for nanomodified PVC thin film as compared to 100% PVC thin film. The nanomodified PVC thin film showed high stability for 4 cycles of use. This improvement has been attributed to the nanomodified PVC polymer's large surface area (ranging from 0.3 to 282 m2/g).

Conclusion: The modification of PVC with nanoparticles increases the cost of PVC thin film by 15%. However, it offers efficiency 3 times than the original PVC.

Keywords: Nanocomposites, poli(vinyl chloride), water purification, polymer, environment, chitosan.

Graphical Abstract

[1]
Abdelwahab, O.; Amin, N.K.; Ashtoukhy, E.S.Z. Removal of zinc ions from aqueous solution using a cation exchange resin. Chem. Eng. Res. Des., 2013, 91(1), 165-173.
[http://dx.doi.org/10.1016/j.cherd.2012.07.005]
[2]
Cristian, P.; Violeta, P.; Anita-Laura, R.; Raluca, I.; Alexandrescu, E.; Andrei, S.; Daniela, I-E.; Raluca, M.A.; Cristina, M.; Ioana, C.A. Removal of zinc ions from model wastewater system using bicopolymer membranes with fumed silica. J. Water Process Eng., 2015, 8, 1-10.
[http://dx.doi.org/10.1016/j.jwpe.2015.08.001]
[3]
Duffus, J.H. Heavy metals a meaningless term? Pure Appl. Chem., 2002, 74(5), 793-807.
[http://dx.doi.org/10.1351/pac200274050793]
[4]
He, Z.L.; Yang, X.E.; Stoffella, P.J. Trace elements in agroecosystems and impacts on the environment. J. Trace Elem. Med. Biol., 2005, 19(2-3), 125-140.
[http://dx.doi.org/10.1016/j.jtemb.2005.02.010] [PMID: 16325528]
[5]
Kwon, J.S.; Yun, S.T.; Lee, J.H.; Kim, S.O.; Jo, H.Y. Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic(III) from aqueous solutions using scoria: Kinetics and equilibria of sorption. J. Hazard. Mater., 2010, 174(1-3), 307-313.
[http://dx.doi.org/10.1016/j.jhazmat.2009.09.052] [PMID: 19828237]
[6]
Wang, S.; Peng, Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J., 2010, 156(1), 11-24.
[http://dx.doi.org/10.1016/j.cej.2009.10.029]
[7]
Ali, F.; Khan, S.B.; Kamal, T.; Alamry, K.A.; Asiri, A.M. Chitosan-titanium oxide fibers supported zero valent nanoparticles: Highly efficient and easily retrievable catalyst for the removal of organic pollutants. Sci. Rep., 2018, 8(1), 6260.
[http://dx.doi.org/10.1038/s41598-018-24311-4] [PMID: 29674721]
[8]
Ali, F.; Khan, S.B.; Kamal, T.; Anwar, Y.; Alamry, K.A.; Asiri, A.M. Anti-bacterial chitosan/zinc phthalocyanine fibers supported metallic and bimetallic nanoparticles for the removal of organic pollutants. Carbohydr. Polym., 2017, 173, 676-689. a
[http://dx.doi.org/10.1016/j.carbpol.2017.05.074] [PMID: 28732913]
[9]
Ali, H.; Silva, C.; Royer, B.; Rodrigues Filho, G.; Cerqueira, D.; Assunção, R. Chemically modified polyvinyl chloride for removal of thionine dye (Lauth’s Violet). Materials, 2017, 10(11), 1298. b
[http://dx.doi.org/10.3390/ma10111298] [PMID: 29137158]
[10]
El-Maghrabi, H.H.; Barhoum, A.; Nada, A.A.; Moustafa, Y.M.; Seliman, S.M.; Youssef, A.M.; Bechelany, M. Synthesis of mesoporous core-shell CdS@TiO2 (0D and 1D) photocatalysts for solar driven hydrogen fuel production. J. Photochem. Photobiol. Chem., 2018, 351, 261-270.
[http://dx.doi.org/10.1016/j.jphotochem.2017.10.048]
[11]
Youssef, A.M.; Assem, F.M.; Abdel-Aziz, M.E.; Elaaser, M.; Ibrahim, O.A.; Mahmoud, M.; Salam, M.H. Development of bionanocomposite materials and its use in coating of Ras cheese. Food Chem., 2019, 270, 467-475. a
[http://dx.doi.org/10.1016/j.foodchem.2018.07.114] [PMID: 30174073]
[12]
Youssef, A.M.; El-Sayed, S.M. Bionanocomposites materials for food packaging applications: Concepts and future outlook. Carbohydr. Polym., 2018, 193, 19-27.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.088] [PMID: 29773372]
[13]
Wu, Y.H.; Zhou, Q.; Zhao, T.; Deng, M.L.; Zhang, J.; Wang, Y.Z. Poly(ethylene glycol) enhanced dehydrochlorination of poly(vinyl chloride). J. Hazard. Mater., 2009, 163(2-3), 1408-1411.
[http://dx.doi.org/10.1016/j.jhazmat.2008.07.047] [PMID: 18723284]
[14]
Machado, H.M.A.M.M.S. Chemical recycling of PVC: Application of partially dehydrochlorinated PVC for the production of an ion exchanger. 2009.
[15]
Guo, L.; Shi, G.; Liang, Y. Poly(ethylene glycol)s catalyzed homogeneous dehydrochlorination of poly(vinyl chloride) with potassium hydroxide. Polymer, 2001, 42(13), 5581-5587.
[http://dx.doi.org/10.1016/S0032-3861(01)00037-4]
[16]
Keane, M.A. Catalytic conversion of waste plastics: Focus on waste PVC. J. Chem. Technol. Biotechnol., 2007, 82(9), 787-795.
[http://dx.doi.org/10.1002/jctb.1757]
[17]
Haider, S.; Kamal, T.; Khan, S.B.; Omer, M.; Haider, A.; Khan, F.U.; Asiri, A.M. Natural polymers supported copper nanoparticles for pollutants degradation. Appl. Surf. Sci., 2016, 387, 1154-1161.
[http://dx.doi.org/10.1016/j.apsusc.2016.06.133]
[18]
Youssef, A.M.; El-Naggar, M.E.; Malhat, F.M.; El Sharkawi, H.M. Efficient removal of pesticides and heavy metals from wastewater and the antimicrobial activity of f-MWCNTs/PVA nanocomposite film. J. Clean. Prod., 2019, 206, 315-325.
[http://dx.doi.org/10.1016/j.jclepro.2018.09.163]
[19]
Bailey, S.E.; Olin, T.J.; Bricka, R.M.; Adrian, D.D. A review of potentially low cost sorbents for heavy metals. Water Res., 1999, 33(11), 2469-2479.
[http://dx.doi.org/10.1016/S0043-1354(98)00475-8]
[20]
Pourreza, N.; Rastegarzadeh, S.; Larki, A. Simultaneous preconcentration of Cd(II), Cu(II) and Pb(II) on Nano-TiO2 modified with 2-mercaptobenzothiazole prior to flame atomic absorption spectrometric determination. J. Ind. Eng. Chem., 2014, 20(5), 2680-2686.
[http://dx.doi.org/10.1016/j.jiec.2013.10.055]
[21]
Kocabaş, A.Z.; Yürüm, Y. Synthesis and characterization of anatase nanoadsorbent and application in removal of lead, copper and arsenic from water. Chem. Eng. J., 2013, 225, 625-635.
[http://dx.doi.org/10.1016/j.cej.2013.03.106]
[22]
Chen, M.; Yu, M.; Kang, R.; Sun, H.; Zhang, W.; Wang, S.; Wang, N.; Wang, J. Removal of Pb (II) and V (V) from aqueous solution by glutaraldehyde crosslinked chitosan and nanocomposites. Chemosphere, 2022, 297, 134084.
[http://dx.doi.org/10.1016/j.chemosphere.2022.134084] [PMID: 35219708]
[23]
El-Ella, A.A.; Youssef, A.M.; Ghannam, H.E.; Zedan, A.F.; Aboulthana, W.M.; Al-Sherbini, A.A. Synthesis of high efficient CS/PVDC/TiO2-Au nanocomposites for photocatalytic degradation of carcinogenic ethidium bromide in sunlight. Egypt. J. Chem., 2020, 63(5), 1619-1638.
[24]
Dutta, P.K.; Dutta, J.; Tripathi, V.S. Chitin and chitosan: Chemistry, properties and applications. J. Sci. Ind. Res. (India), 2004, 1(1), 20-31, 63.
[25]
Abdelsalam, E.M.; Mohamed, Y.M.A.; Abdelkhalik, S.; El Nazer, H.A.; Attia, Y.A. Photocatalytic oxidation of nitrogen oxides (NOx) using Ag and Pt doped TiO2 nanoparticles under visible light irradiation. Environ. Sci. Pollut. Res. Int., 2020, 27(28), 35828-35836.
[http://dx.doi.org/10.1007/s11356-020-09649-5] [PMID: 32601878]
[26]
Abbas, W.A.; El Feky, S.A.; Salah El-Din, W.; Attia, Y.A.; Elbashar, Y.H. Preparation and optical characterization of magnetic nanoparticles coated active carbon composites and its application in removal of trihalomethane compounds from water. Nonlinear optics. Quantum Opt.: Concepts Modern Opt., 2021, 54(1/2), 127-169.
[27]
Silva, A.C.G.; Assunção, R.M.N.; Vieira, J.G.; Rodrigues Filho, G.; Ribeiro, S.D. Recycling of polyvinyl chloride (PVC) through chemical modification, aiming at application in separation processes. Proceedings of the Congresso Brasileiro de Química, Recife, Brazil14-18 October 2012 10(11), 1298, 2012,
[28]
Lam, B.; Déon, S.; Morin-Crini, N.; Crini, G.; Fievet, P. Polymer enhanced ultrafiltration for heavy metal removal: Influence of chitosan and carboxymethyl cellulose on filtration performances. J. Clean. Prod., 2018, 171, 927-933.
[http://dx.doi.org/10.1016/j.jclepro.2017.10.090]
[29]
Feng, Z.; Odelius, K.; Hakkarainen, M. Tunable chitosan hydrogels for adsorption: Property control by biobased modifiers. Carbohydr. Polym., 2018, 196, 135-145.
[http://dx.doi.org/10.1016/j.carbpol.2018.05.029] [PMID: 29891280]
[30]
Carvalho, T.O.; Matias, A.E.B.; Braga, L.R.; Evangelista, S.M.; Prado, A.G.S. Calorimetric studies of removal of nonsteroidal anti inflammatory drugs diclofenac and dipyrone from water. J. Therm. Anal. Calorim., 2011, 106(2), 475-481.
[http://dx.doi.org/10.1007/s10973-010-1243-5]
[31]
Wan Ngah, W.S.; Teong, L.C.; Hanafiah, M.A.K.M. Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydr. Polym., 2011, 83(4), 1446-1456.
[http://dx.doi.org/10.1016/j.carbpol.2010.11.004]
[32]
Ahmad, M.; Ahmed, S.; Swami, B.; Ikram, S. Adsorption of heavy metal ions: Role of chitosan and cellulose for water treatment. Int. J. Pharm., 2015, 2(6), 280-289.
[33]
Malathi, S.; Kiruba Daniel, S.C.G.; Vaishnavi, S.; Sivakumar, M.; Balasubramaniana, S. Chitosan based polymer nanocomposites for heavy metal removal. In: Nanocomposites in Wastewater Treatment; Mishra, A.K., Ed.; Pan Stanford Publishing Pvt. Ltd., 2014.
[34]
Mojiri, A.; Aziz, H.A.; Ziyang, L.; Nanwen, Z.; Tajuddin, R.; Qarani, S.; Dongdong, G. Zeolite and activated carbon combined with biological treatment for metals removal from mixtures of landfill leachate and domestic waste water. Glob. NEST J., 2015, 17(4), 727-737.
[http://dx.doi.org/10.30955/gnj.001739]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy