Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

Herbal Nanoparticles: A New Perspective of Drug Delivery System- A Review

Author(s): Ayushi Sharma, Anjana Goel* and Sunanda Kulshrestha

Volume 12, Issue 4, 2022

Published on: 06 September, 2022

Article ID: e090622205776 Pages: 17

DOI: 10.2174/2210681212666220609103625

Price: $65

Abstract

The nanoparticle is one of the most intensively studied areas in science, ranging from engineering to medical fields and has been a center of attraction that is explored to find new and promising dimensions for its use. These nanoparticles have obtained eminence because of their potential efficacy, shape, and size. In the field of nanoscience, the use of natural resources is an emerging topic of interest that has been taken into consideration due to the presence of a reservoir of a priceless wellspring of novel and new chemical entities that have a therapeutic effect. The system has found its space in the treatment of many diseases, including Diabetes, Neurological disorders, Cardiovascular Disorders, and even cancer. At present, cancer is one of the most common causes of death all over the world. Various drugs are used to treat numerous types of cancers, but at the same time, they are found to be harmful to the patient and produce several side effects. To meet the gap, herbal nanoparticles have been studied and are found to be nonhazardous and environmentally friendly. Herbal nanoparticles are synthesized to target various biological pathways that induce cancer and pieces of evidence have shown comparable efficacy like other drugs that have been used conventionally for cancer treatment. The review highlights the mechanism of action and prospects of the nanotechnological approach using phytochemicals for the treatment of cancer and will help to bridge the gap between herbal nanotechnology and current knowledge related to it.

Keywords: Cancer, herbal, phytochemicals, nanoparticles, nanotechnology, herbal nanoparticles.

Graphical Abstract

[1]
Tran, S.; DeGiovanni, P.J.; Piel, B.; Rai, P. Cancer nanomedicine: A review of recent success in drug delivery. Clin. Transl. Med., 2017, 6(1), 44.
[http://dx.doi.org/10.1186/s40169-017-0175-0] [PMID: 29230567]
[2]
Ye, F.; Zhao, Y.; El-Sayed, R.; Muhammed, M.; Hassan, M. Advances in nanotechnology for cancer biomarkers. Nano Today, 2018, 18, 103-123.
[http://dx.doi.org/10.1016/j.nantod.2017.12.008]
[3]
Akhter, S.; Ahmad, I.; Ahmad, M.Z.; Ramazani, F.; Singh, A.; Rahman, Z.; Ahmad, F.J.; Storm, G.; Kok, R.J. Nanomedicines as cancer therapeutics: Current status. Curr. Cancer Drug Targets, 2013, 13(4), 362-378.
[http://dx.doi.org/10.2174/1568009611313040002] [PMID: 23517593]
[4]
Wang, J.; Sui, M.; Fan, W. Nanoparticles for tumor targeted therapies and their pharmacokinetics. Curr. Drug Metab., 2010, 11(2), 129-141.
[http://dx.doi.org/10.2174/138920010791110827] [PMID: 20359289]
[5]
Verma, M.; Sheoran, P.; Chaudhury, A. Application of nanotechnology for cancer treatment. Adv. Ani. Biotech. Appl., 2018, 161-178.
[6]
Bharali, D.J.; Mousa, S.A. Emerging nanomedicines for early cancer detection and improved treatment: Current perspective and future promise. Pharmacol. Ther., 2010, 128(2), 324-335.
[http://dx.doi.org/10.1016/j.pharmthera.2010.07.007] [PMID: 20705093]
[7]
Shapira, A.; Livney, Y.D.; Broxterman, H.J.; Assaraf, Y.G. Nanomedicine for targeted cancer therapy: Towards the overcoming of drug resistance. Drug Resist. Updat., 2011, 14(3), 150-163.
[http://dx.doi.org/10.1016/j.drup.2011.01.003] [PMID: 21330184]
[8]
Rotomskis, R.; Streckyte, G.; Karabanovas, V. Nanoparticles in diagnostics and therapy: Towards nanomedicine. Medicina (Kaunas), 2006, 42(7), 542-558.
[PMID: 16861836]
[9]
Biswas, S.; Kumari, P.; Lakhani, P.M.; Ghosh, B. Recent advances in polymeric micelles for anti-cancer drug delivery. Eur. J. Pharm. Sci., 2016, 83, 184-202.
[http://dx.doi.org/10.1016/j.ejps.2015.12.031] [PMID: 26747018]
[10]
De Jong, W.H.; Borm, P.J. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine, 2008, 3(2), 133-149.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[11]
Kim, D.; Jeong, Y.Y.; Jon, S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano, 2010, 4(7), 3689-3696.
[http://dx.doi.org/10.1021/nn901877h] [PMID: 20550178]
[12]
Nie, S.; Xing, Y.; Kim, G.J.; Simons, J.W. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng., 2007, 9, 257-288.
[http://dx.doi.org/10.1146/annurev.bioeng.9.060906.152025] [PMID: 17439359]
[13]
Dong, X.; Yin, W.; Zhang, X.; Zhu, S.; He, X.; Yu, J.; Xie, J.; Guo, Z.; Yan, L.; Liu, X.; Wang, Q.; Gu, Z.; Zhao, Y. Intelligent MoS2 nano theranostics for targeted and enzyme-/pH-/NIR-responsive drug delivery to overcome cancer chemotherapy resistance guided by PET imaging. ACS Appl. Mater. Interfaces, 2018, 10(4), 4271-4284.
[http://dx.doi.org/10.1021/acsami.7b17506] [PMID: 29318879]
[14]
Gu, Z.; Yan, L.; Tian, G.; Li, S.; Chai, Z.; Zhao, Y. Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications. Adv. Mater., 2013, 25(28), 3758-3779.
[http://dx.doi.org/10.1002/adma.201301197] [PMID: 23813588]
[15]
Ji, T.; Zhao, Y.; Wang, J.; Zheng, X.; Tian, Y.; Zhao, Y.; Nie, G. Tumor fibroblast specific activation of a hybrid ferritin nanocage-based optical probe for tumor microenvironment imaging. Small, 2013, 9(14), 2427-2431.
[http://dx.doi.org/10.1002/smll.201300600] [PMID: 23853124]
[16]
Parungo, C.P.; Ohnishi, S.; De Grand, A.M.; Laurence, R.G.; Soltesz, E.G.; Colson, Y.L.; Kang, P.M.; Mihaljevic, T.; Cohn, L.H.; Frangioni, J.V. In vivo optical imaging of pleural space drainage to lymph nodes of prognostic significance. Ann. Surg. Oncol., 2004, 11(12), 1085-1092.
[http://dx.doi.org/10.1245/ASO.2004.03.054] [PMID: 15545502]
[17]
Gao, X.; Cui, Y.; Levenson, R.M.; Chung, L.W.; Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol., 2004, 22(8), 969-976.
[http://dx.doi.org/10.1038/nbt994] [PMID: 15258594]
[18]
Dubertret, B.; Skourides, P.; Norris, D.J.; Noireaux, V.; Brivanlou, A.H.; Libchaber, A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science, 2002, 298(5599), 1759-1762.
[http://dx.doi.org/10.1126/science.1077194] [PMID: 12459582]
[19]
Hirsch, L.R.; Stafford, R.J.; Bankson, J.A.; Sershen, S.R.; Rivera, B.; Price, R.E.; Hazle, J.D.; Halas, N.J.; West, J.L. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA, 2003, 100(23), 13549-13554.
[http://dx.doi.org/10.1073/pnas.2232479100] [PMID: 14597719]
[20]
Loo, C.; Lin, A.; Hirsch, L.; Lee, M.H.; Barton, J.; Halas, N.; West, J.; Drezek, R. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. Treat., 2004, 3(1), 33-40.
[http://dx.doi.org/10.1177/153303460400300104] [PMID: 14750891]
[21]
Alper, J. Shining a light on cancer research; NCI Alliance for Nanotech; Canc: USA, 2005, pp. 1-3.
[22]
Mottram, P.L. Past, present and future drug treatment for rheumatoid arthritis and systemic lupus erythematosus. Immunol. Cell Biol., 2003, 81(5), 350-353.
[http://dx.doi.org/10.1046/j.1440-1711.2003.01184.x] [PMID: 12969322]
[23]
Paciotti, G.F.; Myer, L.; Weinreich, D.; Goia, D.; Pavel, N.; McLaughlin, R.E.; Tamarkin, L. Colloidal gold: A novel nanoparticle vector for tumor directed drug delivery. Drug Deliv., 2004, 11(3), 169-183.
[http://dx.doi.org/10.1080/10717540490433895] [PMID: 15204636]
[24]
Purohit, R.; Singh, S. Fluorescent gold nanoclusters for efficient cancer cell targeting. Int. J. Nanomedicine, 2018, 13(T-NANO 2014 Abstracts), 15-17.
[http://dx.doi.org/10.2147/IJN.S125003] [PMID: 29593390]
[25]
Bangham, A.D.; Standish, M.M.; Weissmann, G. The action of steroids and streptolysin S on the permeability of phospholipid structures to cations. J. Mol. Biol., 1965, 13(1), 253-259.
[http://dx.doi.org/10.1016/S0022-2836(65)80094-8] [PMID: 5859040]
[26]
Yue, X.; Dai, Z. Liposomal nanotechnology for cancer theranostics. Curr. Med. Chem., 2018, 25(12), 1397-1408.
[http://dx.doi.org/10.2174/0929867324666170306105350] [PMID: 28266269]
[27]
Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomedicine, 2015, 10, 975-999.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[28]
Pandey, H.; Rani, R.; Agarwal, V. Liposomes and Their Applications in Cancer Therapy. Human and Animal Health. Braz. Arch. Biol. Technol., 2016, 59, 1-10.
[29]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65(1), 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037] [PMID: 23036225]
[30]
Zhang, L.; Gu, F.X.; Chan, J.M.; Wang, A.Z.; Langer, R.S.; Farokhzad, O.C. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther., 2008, 83(5), 761-769.
[http://dx.doi.org/10.1038/sj.clpt.6100400] [PMID: 17957183]
[31]
Yingchoncharoen, P.; Kalinowski, D.S.; Richardson, D.R. Lipid-based drug delivery systems in cancer therapy: What is available and what is yet to come. Pharmacol. Rev., 2016, 68(3), 701-787.
[http://dx.doi.org/10.1124/pr.115.012070] [PMID: 27363439]
[32]
Sutradhar, K.B.; Amin, M. Nanotechnology in cancer drug delivery and selective targeting. Int. Sch. Res. Notices, 2014, 2014, 12.
[http://dx.doi.org/10.1155/2014/939378]
[33]
James, N.D.; Coker, R.J.; Tomlinson, D.; Harris, J.R.W.; Gompels, M.; Pinching, A.J.; Stewart, J.S.W. Liposomal doxorubicin (Doxil): An effective new treatment for Kaposi’s sarcoma in AIDS. Clin. Oncol. (R. Coll. Radiol.), 1994, 6(5), 294-296.
[http://dx.doi.org/10.1016/S0936-6555(05)80269-9] [PMID: 7530036]
[34]
Singh, S. Liposome encapsulation of doxorubicin and celecoxib in combination inhibits progression of human skin cancer cells. Int. J. Manomed, 2018, 11.
[35]
Berger, J.L.; Smith, A.; Zorn, K.K.; Sukumvanich, P.; Olawaiye, A.B.; Kelley, J.; Krivak, T.C. Outcomes analysis of an alternative formulation of PEGylated liposomal doxorubicin in recurrent epithelial ovarian carcinoma during the drug shortage era. OncoTargets Ther., 2014, 7, 1409-1413.
[PMID: 25143745]
[36]
Chou, H.; Lin, H.; Liu, J.M. A tale of the two PEGylated liposomal doxorubicins. OncoTargets Ther., 2015, 8, 1719-1720.
[PMID: 26203262]
[37]
Muggia, F.M. Clinical efficacy and prospects for use of pegylated liposomal doxorubicin in the treatment of ovarian and breast cancers. Drugs, 1997, 54(4)(Suppl. 4), 22-29.
[http://dx.doi.org/10.2165/00003495-199700544-00006] [PMID: 9361958]
[38]
Barenholz, Y. Doxil®--the first FDA-approved nano-drug: Lessons learned. J. Control. Release, 2012, 160(2), 117-134.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.020] [PMID: 22484195]
[39]
Kam, N.W.S.; O’Connell, M.; Wisdom, J.A.; Dai, H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. USA, 2005, 102(33), 11600-11605.
[http://dx.doi.org/10.1073/pnas.0502680102] [PMID: 16087878]
[40]
Bladé, J.; Sonneveld, P.; San Miguel, J.F.; Sutherland, H.J.; Hajek, R.; Nagler, A.; Spencer, A.; Robak, T.; Lantz, K.C.; Zhuang, S.H.; Harousseau, J.L.; Orlowski, R.Z. Efficacy and safety of pegylated liposomal Doxorubicin in combination with bortezomib for multiple myeloma: Effects of adverse prognostic factors on outcome. Clin. Lymphoma Myeloma Leuk., 2011, 11(1), 44-49.
[http://dx.doi.org/10.3816/CLML.2011.n.005] [PMID: 21454189]
[41]
Riviere, K.; Kieler-Ferguson, H.M.; Jerger, K.; Szoka, F.C., Jr Anti-tumor activity of liposome encapsulated fluoroorotic acid as a single agent and in combination with liposome irinotecan. J. Control. Release, 2011, 153(3), 288-296.
[http://dx.doi.org/10.1016/j.jconrel.2011.05.005] [PMID: 21600250]
[42]
Goldberg, M.S.; Hook, S.S.; Wang, A.Z.; Bulte, J.W.; Patri, A.K.; Uckun, F.M.; Cryns, V.L.; Hanes, J.; Akin, D.; Hall, J.B.; Gharkholo, N.; Mumper, R.J. Biotargeted nanomedicines for cancer: Six tenets before you begin. Nanomedicine, 2013, 8(2), 299-308.
[http://dx.doi.org/10.2217/nnm.13.3] [PMID: 23394158]
[43]
Ko, A.H.; Tempero, M.A.; Shan, Y.S.; Su, W.C.; Lin, Y.L.; Dito, E.; Ong, A.; Wang, Y.W.; Yeh, C.G.; Chen, L.T. A multinational phase 2 study of nanoliposomal irinotecan sucrosofate (PEP02, MM-398) for patients with gemcitabine-refractory metastatic pancreatic cancer. Br. J. Cancer, 2013, 109(4), 920-925.
[http://dx.doi.org/10.1038/bjc.2013.408] [PMID: 23880820]
[44]
Roy, A.C.; Park, S.R.; Cunningham, D.; Kang, Y.K.; Chao, Y.; Chen, L.T.; Rees, C.; Lim, H.Y.; Tabernero, J.; Ramos, F.J.; Kujundzic, M.; Cardic, M.B.; Yeh, C.G.; de Gramont, A. A randomized phase II study of PEP02 (MM-398), irinotecan or docetaxel as a second-line therapy in patients with locally advanced or metastatic gastric or gastro-oesophageal junction adenocarcinoma. Ann. Oncol., 2013, 24(6), 1567-1573.
[http://dx.doi.org/10.1093/annonc/mdt002] [PMID: 23406728]
[45]
Saif, M.W. MM-398 achieves primary endpoint of overall survival in phase III study in patients with gemcitabine refractory metastatic pancreatic cancer. J. Pancreas, 2014, 15(3), 278-279.
[PMID: 24865544]
[46]
Kesharwani, P.; Iyer, A.K. Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discov. Today, 2015, 20(5), 536-547.
[http://dx.doi.org/10.1016/j.drudis.2014.12.012] [PMID: 25555748]
[47]
Bianco, A.; Kostarelos, K.; Prato, M. Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol., 2005, 9(6), 674-679.
[http://dx.doi.org/10.1016/j.cbpa.2005.10.005] [PMID: 16233988]
[48]
Brennan, M.E.; Coleman, J.N.; Drury, A.; Lahr, B.; Kobayashi, T.; Blau, W.J. Nonlinear photoluminescence from van Hove singularities in multiwalled carbon nanotubes. Opt. Lett., 2003, 28(4), 266-268.
[http://dx.doi.org/10.1364/OL.28.000266] [PMID: 12653367]
[49]
Burlaka, A.; Lukin, S.; Prylutska, S.; Remeniak, O.; Prylutskyy, Y.; Shuba, M.; Maksimenko, S.; Ritter, U.; Scharff, P. Hyperthermic effect of multi-walled carbon nanotubes stimulated with near infrared irradiation for anticancer therapy: In vitro studies. Exp. Oncol., 2010, 32(1), 48-50.
[PMID: 20332757]
[50]
Zwicke, G.L.; Mansoori, G.A.; Jeffery, C.J. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev., 2012, 3, 10.3402.
[http://dx.doi.org/10.3402/nano.v3i0.18496]
[51]
Elhissi, A.; Ahmed, W.; Hassan, I.U.; Dhanak, V.; D’Emanuele, A. Carbon nanotubes in cancer therapy and drug delivery. J. Drug. Del., 2012, 837327.
[52]
Bhirde, A.A.; Patel, V.; Gavard, J.; Zhang, G.; Sousa, A.A.; Masedunskas, A.; Leapman, R.D.; Weigert, R.; Gutkind, J.S.; Rusling, J.F. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano, 2009, 3(2), 307-316.
[http://dx.doi.org/10.1021/nn800551s] [PMID: 19236065]
[53]
Liu, K.; Sun, Y.; Zhou, R.; Zhu, H.; Wang, J.; Liu, L.; Fan, S.; Jiang, K. Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method. Nanotechnology, 2010, 21(4), 045708.
[http://dx.doi.org/10.1088/0957-4484/21/4/045708] [PMID: 20009208]
[54]
Lay, C.L.; Liu, H.Q.; Tan, H.R.; Liu, Y. Delivery of paclitaxel by physically loading onto poly(ethylene glycol) (PEG)-graft-carbon nanotubes for potent cancer therapeutics. Nanotechnology, 2010, 21(6), 065101.
[http://dx.doi.org/10.1088/0957-4484/21/6/065101] [PMID: 20057024]
[55]
Son, K.H.; Hong, J.H.; Lee, J.W. Carbon nanotubes as cancer therapeutic carriers and mediators. Int. J. Nanomedicine, 2016, 11, 5163-5185.
[http://dx.doi.org/10.2147/IJN.S112660] [PMID: 27785021]
[56]
Liu, Z.; Cai, W.; He, L.; Nakayama, N.; Chen, K.; Sun, X.; Chen, X.; Dai, H. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol., 2007, 2(1), 47-52.
[http://dx.doi.org/10.1038/nnano.2006.170] [PMID: 18654207]
[57]
Gaucher, G.; Dufresne, M.H.; Sant, V.P.; Kang, N.; Maysinger, D.; Leroux, J.C. Block copolymer micelles: Preparation, characterization and application in drug delivery. J. Control. Release, 2005, 109(1-3), 169-188.
[http://dx.doi.org/10.1016/j.jconrel.2005.09.034] [PMID: 16289422]
[58]
Xiao, K.; Luo, J.; Fowler, W.L.; Li, Y.; Lee, J.S.; Xing, L.; Cheng, R.H.; Wang, L.; Lam, K.S. A self-assembling nanoparticle for paclitaxel delivery in ovarian cancer. Biomaterials, 2009, 30(30), 6006-6016.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.015] [PMID: 19660809]
[59]
Xiao, K.; Li, Y.; Luo, J.; Lee, J.S.; Xiao, W.; Gonik, A.M.; Agarwal, R.G.; Lam, K.S. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials, 2011, 32(13), 3435-3446.
[http://dx.doi.org/10.1016/j.biomaterials.2011.01.021] [PMID: 21295849]
[60]
Trubetskoy, V.S.; Torchilin, V.P. Use of polyoxyethylene-lipid conjugates as long-circulating carriers for delivery of therapeutic and diagnostic agents. Adv. Drug Deliv. Rev., 1995, 16, 311-320.
[http://dx.doi.org/10.1016/0169-409X(95)00032-3]
[61]
Lukyanov, K.A.; Fradkov, A.F.; Gurskaya, N.G.; Matz, M.V.; Labas, Y.A.; Savitsky, A.P.; Markelov, M.L.; Zaraisky, A.G.; Zhao, X.; Fang, Y.; Tan, W.; Lukyanov, S.A. Natural animal coloration can Be determined by a nonfluorescent green fluorescent protein homolog. J. Biol. Chem., 2000, 275(34), 25879-25882.
[http://dx.doi.org/10.1074/jbc.C000338200] [PMID: 10852900]
[62]
Musacchio, T.; Vaze, O.; D’Souza, G.; Torchilin, V.P. Effective stabilization and delivery of siRNA: Reversible siRNA-phospholipid conjugate in nanosized mixed polymeric micelles. Bioconjug. Chem., 2010, 21(8), 1530-1536.
[http://dx.doi.org/10.1021/bc100199c] [PMID: 20669936]
[63]
Gao, Z.; Lukyanov, A.N.; Singhal, A.; Torchilin, V.P. Diacyllipid-polymer micelles as nanocarriers for poorly soluble anticancer drugs. Nano Lett., 2002, 2(9), 979-982.
[http://dx.doi.org/10.1021/nl025604a]
[64]
Wang, H.Z.; Wang, H.Y.; Liang, R.Q.; Ruan, K.C. Detection of tumor marker CA125 in ovarian carcinoma using quantum dots. Acta Biochim. Biophys. Sin., 2004, 36(10), 681-686.
[http://dx.doi.org/10.1093/abbs/36.10.681] [PMID: 15483748]
[65]
Davis, M.E.; Chen, Z.; Shin, D.M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nanoscience and Technology: A Collection of Reviews from Nature Journals, 2010, 239-250.
[66]
Blanco, E.; Kessinger, C.W.; Sumer, B.D.; Gao, J. Multifunctional micellar nanomedicine for cancer therapy. Exp. Biol. Med., 2009, 234(2), 123-131.
[http://dx.doi.org/10.3181/0808-MR-250] [PMID: 19064945]
[67]
Blanco, E.; Bey, E.A.; Khemtong, C.; Yang, S.G.; Setti-Guthi, J.; Chen, H.; Kessinger, C.W.; Carnevale, K.A.; Bornmann, W.G.; Boothman, D.A.; Gao, J. Beta-lapachone micellar nanotherapeutics for non-small cell lung cancer therapy. Cancer Res., 2010, 70(10), 3896-3904.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3995] [PMID: 20460521]
[68]
Mu, C.F.; Balakrishnan, P.; Cui, F.D.; Yin, Y.M.; Lee, Y.B.; Choi, H.G.; Yong, C.S.; Chung, S.J.; Shim, C.K.; Kim, D.D. The effects of mixed MPEG-PLA/Pluronic copolymer micelles on the bioavailability and multidrug resistance of docetaxel. Biomaterials, 2010, 31(8), 2371-2379.
[http://dx.doi.org/10.1016/j.biomaterials.2009.11.102] [PMID: 20031202]
[69]
Zhang, W.; Shi, Y.; Chen, Y.; Ye, J.; Sha, X.; Fang, X. Multifunctional Pluronic P123/F127 mixed polymeric micelles loaded with paclitaxel for the treatment of multidrug resistant tumors. Biomaterials, 2011, 32(11), 2894-2906.
[http://dx.doi.org/10.1016/j.biomaterials.2010.12.039] [PMID: 21256584]
[70]
Wang, Y.; Hao, J.; Li, Y.; Zhang, Z.; Sha, X.; Han, L.; Fang, X. Poly(caprolactone)-modified Pluronic P105 micelles for reversal of paclitaxcel-resistance in SKOV-3 tumors. Biomaterials, 2012, 33(18), 4741-4751.
[http://dx.doi.org/10.1016/j.biomaterials.2012.03.013] [PMID: 22445254]
[71]
Svenson, S.; Tomalia, D.A. Dendrimers in biomedical applications—reflections on the field. Adv. Drug Deliv. Rev., 2012, 64, 102-115.
[http://dx.doi.org/10.1016/j.addr.2012.09.030]
[72]
Tomalia, D.A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Smith, P. Dendritic macromolecules: Synthesis of starburst dendrimers. Macromol., 1986, 19, 2466-2468.
[http://dx.doi.org/10.1021/ma00163a029]
[73]
Tomalia, D.A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. A new class of polymers: Starburst-dendritic macromolecules. Polym. J., 1985, 17(1), 117-132.
[http://dx.doi.org/10.1295/polymj.17.117]
[74]
Hawker, C.J.; Frechet, J.M. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc., 1990, 112(21), 7638-7647.
[http://dx.doi.org/10.1021/ja00177a027]
[75]
Lee, C.C.; Gillies, E.R.; Fox, M.E.; Guillaudeu, S.J.; Fréchet, J.M.; Dy, E.E.; Szoka, F.C. A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc. Natl. Acad. Sci. USA, 2006, 103(45), 16649-16654.
[http://dx.doi.org/10.1073/pnas.0607705103] [PMID: 17075050]
[76]
Wiener, E.C.; Konda, S.; Shadron, A.; Brechbiel, M.; Gansow, O. Targeting dendrimer-chelates to tumors and tumor cells expressing the high-affinity folate receptor. Invest. Radiol., 1997, 32(12), 748-754.
[http://dx.doi.org/10.1097/00004424-199712000-00005] [PMID: 9406015]
[77]
Quintana, A.; Raczka, E.; Piehler, L.; Lee, I.; Myc, A.; Majoros, I.; Patri, A.K.; Thomas, T.; Mulé, J.; Baker, J.R., Jr Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm. Res., 2002, 19(9), 1310-1316.
[http://dx.doi.org/10.1023/A:1020398624602] [PMID: 12403067]
[78]
Kono, K.; Liu, M.; Fréchet, J.M. Design of dendritic macromolecules containing folate or methotrexate residues. Bioconjug. Chem., 1999, 10(6), 1115-1121.
[http://dx.doi.org/10.1021/bc990082k] [PMID: 10563782]
[79]
Woller, E.K.; Cloninger, M.J. Mannose functionalization of a sixth generation dendrimer. Biomacromolecules, 2001, 2(3), 1052-1054.
[http://dx.doi.org/10.1021/bm015560k] [PMID: 11710009]
[80]
Roy, R.; Baek, M.G. Glycodendrimers: Novel glycotope isosteres unmasking sugar coding. Case study with T-antigen markers from breast cancer MUC1 glycoprotein. J. Biotechnol., 2002, 90(3-4), 291-309.
[PMID: 12071230]
[81]
Lagnoux, D.; Darbre, T.; Schmitz, M.L.; Reymond, J.L. Inhibition of mitosis by glycopeptide dendrimer conjugates of colchicine. Chemistry, 2005, 11(13), 3941-3950.
[http://dx.doi.org/10.1002/chem.200401294] [PMID: 15861378]
[82]
Ekimov, A.I.; Onushchenko, A.A. Quantum size effect in three-dimensional microscopic semiconductor crystals. JETP Lett., 1981, 34, 363-366.
[83]
Kastner, M.A.; Klein, O.; Lyszczarz, T.M.; Mankiewich, P.M.; Shaver, D.C.; Wind, S.; Abusch-Magder, D.; Goldhaber-Gordon, D.J.; Morgan, N.Y. Artificial atoms. In: Research Laboratory of Electronics (RLE) at the Massachusetts Institute of Technology; MIT; , 1994; pp. 55-66.
[84]
Yang, L.; Mao, H.; Cao, Z.; Wang, Y.A.; Peng, X.; Wang, X.; Sajja, H.K.; Wang, L.; Duan, H.; Ni, C.; Staley, C.A.; Wood, W.C.; Gao, X.; Nie, S. Molecular imaging of pancreatic cancer in an animal model using targeted multifunctional nanoparticles. Gastroenterology, 2009, 136(5), 1514-25.e2.
[http://dx.doi.org/10.1053/j.gastro.2009.01.006] [PMID: 19208341]
[85]
Soltesz, E.G.; Kim, S.; Kim, S.W.; Laurence, R.G.; De Grand, A.M.; Parungo, C.P.; Cohn, L.H.; Bawendi, M.G.; Frangioni, J.V. Sentinel lymph node mapping of the gastrointestinal tract by using invisible light. Ann. Surg. Oncol., 2006, 13(3), 386-396.
[http://dx.doi.org/10.1245/ASO.2006.04.025] [PMID: 16485157]
[86]
Bostick, R.M.; Kong, K.Y.; Ahearn, T.U.; Chaudry, Q.; Cohen, V.; Wang, M.D. Detecting and quantifying biomarkers of risk for colorectal cancer using quantum dots and novel image analysis algorithms. International Conference of the IEEE Engineering in Medicine and Biology Society2006, pp. 3133-3316.
[87]
Ruan, Y.; Yu, W.; Cheng, F.; Zhang, X.; Rao, T.; Xia, Y.; Larré, S. Comparison of quantum-dots- and fluorescein-isothiocyanate-based technology for detecting prostate-specific antigen expression in human prostate cancer. IET Nanobiotechnol., 2011, 5(2), 47-51.
[http://dx.doi.org/10.1049/iet-nbt.2010.0016] [PMID: 21495780]
[88]
Medintz, I.L.; Uyeda, H.T.; Goldman, E.R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater., 2005, 4(6), 435-446.
[http://dx.doi.org/10.1038/nmat1390] [PMID: 15928695]
[89]
Scholler, N.; Urban, N. CA125 in ovarian cancer. Biomarkers Med., 2007, 1(4), 513-523.
[http://dx.doi.org/10.2217/17520363.1.4.513] [PMID: 20477371]
[90]
Chen, C.; Peng, J.; Xia, H.S.; Yang, G.F.; Wu, Q.S.; Chen, L.D.; Zeng, L.B.; Zhang, Z.L.; Pang, D.W.; Li, Y. Quantum dots-based immunofluorescence technology for the quantitative determination of HER2 expression in breast cancer. Biomaterials, 2009, 30(15), 2912-2918.
[http://dx.doi.org/10.1016/j.biomaterials.2009.02.010] [PMID: 19251316]
[91]
O’Connor, A.E.; Gallagher, W.M.; Byrne, A.T. Porphyrin and nonporphyrin photosensitizers in oncology: Preclinical and clinical advances in photodynamic therapy. Photochem. Photobiol., 2009, 85(5), 1053-1074.
[http://dx.doi.org/10.1111/j.1751-1097.2009.00585.x] [PMID: 19682322]
[92]
Liu, Y.S.; Sun, Y.; Vernier, P.T.; Liang, C.H.; Chong, S.Y.C.; Gundersen, M.A. pH-sensitive photoluminescence of CdSe/ZnSe/ZnS quantum dots in human ovarian cancer cells. J. Phys. Chem. C, 2007, 111(7), 2872-2878.
[http://dx.doi.org/10.1021/jp0654718] [PMID: 18985164]
[93]
Kawashima, N.; Nakayama, K.; Itoh, K.; Itoh, T.; Ishikawa, M.; Biju, V. Reversible dimerization of EGFR revealed by single-molecule fluorescence imaging using quantum dots. Chemistry, 2010, 16(4), 1186-1192.
[http://dx.doi.org/10.1002/chem.200902963] [PMID: 20024999]
[94]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 1-9.
[95]
Pan, X.Q.; Lee, R.J. In vivo antitumor activity of folate receptor-targeted liposomal daunorubicin in a murine leukemia model. Anticancer Res., 2005, 25(1A), 343-346.
[PMID: 15816557]
[96]
Goren, D.; Horowitz, A.T.; Tzemach, D.; Tarshish, M.; Zalipsky, S.; Gabizon, A. Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump. Clin. Cancer Res., 2000, 6(5), 1949-1957.
[PMID: 10815920]
[97]
Esmaeili, F.; Ghahremani, M.H.; Ostad, S.N.; Atyabi, F.; Seyedabadi, M.; Malekshahi, M.R.; Amini, M.; Dinarvand, R. Folate-receptor-targeted delivery of docetaxel nanoparticles prepared by PLGA-PEG-folate conjugate. J. Drug Target., 2008, 16(5), 415-423.
[http://dx.doi.org/10.1080/10611860802088630] [PMID: 18569286]
[98]
Bibby, D.C.; Talmadge, J.E.; Dalal, M.K.; Kurz, S.G.; Chytil, K.M.; Barry, S.E.; Shand, D.G.; Steiert, M. Pharmacokinetics and biodistribution of RGD-targeted doxorubicin-loaded nanoparticles in tumor-bearing mice. Int. J. Pharm., 2005, 293(1-2), 281-290.
[http://dx.doi.org/10.1016/j.ijpharm.2004.12.021] [PMID: 15778066]
[99]
Park, J.W.; Hong, K.; Kirpotin, D.B.; Colbern, G.; Shalaby, R.; Baselga, J.; Shao, Y.; Nielsen, U.B.; Marks, J.D.; Moore, D.; Papahadjopoulos, D.; Benz, C.C. Anti-HER2 immunoliposomes: Enhanced efficacy attributable to targeted delivery. Clin. Cancer Res., 2002, 8(4), 1172-1181.
[PMID: 11948130]
[100]
Sahoo, S.K.; Ma, W.; Labhasetwar, V. Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer. Int. J. Cancer, 2004, 112(2), 335-340.
[http://dx.doi.org/10.1002/ijc.20405] [PMID: 15352049]
[101]
Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer, 2017, 17(1), 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[102]
Sledge, G.W., Jr; Miller, K.D. Exploiting the hallmarks of cancer: The future conquest of breast cancer. Eur. J. Cancer, 2003, 39(12), 1668-1675.
[http://dx.doi.org/10.1016/S0959-8049(03)00273-9] [PMID: 12888360]
[103]
Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol. Rev., 2001, 53(2), 283-318.
[PMID: 11356986]
[104]
Garber, K. Improved Paclitaxel formulation hints at new chemotherapy approach. J. Natl. Cancer Inst., 2004, 96(2), 90-91.
[http://dx.doi.org/10.1093/jnci/96.2.90] [PMID: 14734692]
[105]
Huang, X.; Jain, P.K.; El-Sayed, I.H.; El-Sayed, M.A. Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. Photochem. Photobiol., 2006, 82(2), 412-417.
[http://dx.doi.org/10.1562/2005-12-14-RA-754] [PMID: 16613493]
[106]
Svaasand, L.O.; Gomer, C.J.; Morinelli, E. On the physical rationale of laser induced hyperthermia. Lasers Med. Sci., 1990, 5(2), 121-128.
[http://dx.doi.org/10.1007/BF02031373]
[107]
Jain, P.K.; Huang, X.; El-Sayed, I.H.; El-Sayed, M.A. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res., 2008, 41(12), 1578-1586.
[http://dx.doi.org/10.1021/ar7002804] [PMID: 18447366]
[108]
Zharov, V.P.; Galitovskaya, E.N.; Johnson, C.; Kelly, T. Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: Potential for cancer therapy. Lasers Surg. Med., 2005, 37(3), 219-226.
[http://dx.doi.org/10.1002/lsm.20223] [PMID: 16175635]
[109]
Cross, D.; Burmester, J.K. Gene therapy for cancer treatment: Past, present and future. Clin. Med. Res., 2006, 4(3), 218-227.
[http://dx.doi.org/10.3121/cmr.4.3.218] [PMID: 16988102]
[110]
Wang, Z.; Qiao, R.; Tang, N.; Lu, Z.; Wang, H.; Zhang, Z.; Xue, X.; Huang, Z.; Zhang, S.; Zhang, G.; Li, Y. Active targeting theranostic iron oxide nanoparticles for MRI and magnetic resonance-guided focused ultrasound ablation of lung cancer. Biomaterials, 2017, 127, 25-35.
[http://dx.doi.org/10.1016/j.biomaterials.2017.02.037] [PMID: 28279919]
[111]
Wang, K.; Kievit, F.M.; Zhang, M. Nanoparticles for cancer gene therapy: Recent advances, challenges, and strategies. Pharmacol. Res., 2016, 114, 56-66.
[http://dx.doi.org/10.1016/j.phrs.2016.10.016] [PMID: 27771464]
[112]
Ameres, S.L.; Martinez, J.; Schroeder, R. Molecular basis for target RNA recognition and cleavage by human RISC. Cell, 2007, 130(1), 101-112.
[http://dx.doi.org/10.1016/j.cell.2007.04.037] [PMID: 17632058]
[113]
Bader, A.G.; Brown, D.; Stoudemire, J.; Lammers, P. Developing therapeutic microRNAs for cancer. Gene Ther., 2011, 18(12), 1121-1126.
[http://dx.doi.org/10.1038/gt.2011.79] [PMID: 21633392]
[114]
Oliveira, S.; van Rooy, I.; Kranenburg, O.; Storm, G.; Schiffelers, R.M. Fusogenic peptides enhance endosomal escape improving siRNA-induced silencing of oncogenes. Int. J. Pharm., 2007, 331(2), 211-214.
[http://dx.doi.org/10.1016/j.ijpharm.2006.11.050] [PMID: 17187949]
[115]
Wang, C.E.; Stayton, P.S.; Pun, S.H.; Convertine, A.J. Polymer nanostructures synthesized by controlled living polymerization for tumor-targeted drug delivery. J. Control. Release, 2015, 219, 345-354.
[http://dx.doi.org/10.1016/j.jconrel.2015.08.054] [PMID: 26342661]
[116]
Su, W.P.; Cheng, F.Y.; Shieh, D.B.; Yeh, C.S.; Su, W.C. PLGA nanoparticles codeliver paclitaxel and Stat3 siRNA to overcome cellular resistance in lung cancer cells. Int. J. Nanomedicine, 2012, 7, 4269-4283.
[http://dx.doi.org/10.2147/IJN.S33666] [PMID: 22904633]
[117]
Mattheolabakis, G.; Ling, D.; Ahmad, G.; Amiji, M. Enhanced anti-tumor efficacy of lipid-modified platinum derivatives in combination with survivin silencing siRNA in resistant non-small cell lung cancer. Pharm. Res., 2016, 33(12), 2943-2953.
[http://dx.doi.org/10.1007/s11095-016-2016-z] [PMID: 27528390]
[118]
Oishi, M.; Nakaogami, J.; Ishii, T.; Nagasaki, Y. Smart PEGylated gold nanoparticles for the cytoplasmic delivery of siRNA to induce enhanced gene silencing. Chem. Lett., 2006, 35(9), 1046-1047.
[http://dx.doi.org/10.1246/cl.2006.1046]
[119]
Davis, M.E. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: From concept to clinic. Mol. Pharm., 2009, 6(3), 659-668.
[http://dx.doi.org/10.1021/mp900015y] [PMID: 19267452]
[120]
Wang, K.; Na, M.H.; Hoffman, A.S.; Shim, G.; Han, S.E.; Oh, Y.K.; Kwon, I.C.; Kim, I.S.; Lee, B.H. In situ dose amplification by apoptosis-targeted drug delivery. J. Control. Release, 2011, 154(3), 214-217.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.043] [PMID: 21763738]
[121]
Chen, H.; Kim, S.; Li, L.; Wang, S.; Park, K.; Cheng, J.X. Release of hydrophobic molecules from polymer micelles into cell membranes revealed by Forster resonance energy transfer imaging. Proc. Natl. Acad. Sci. USA, 2008, 105(18), 6596-6601.
[http://dx.doi.org/10.1073/pnas.0707046105] [PMID: 18445654]
[122]
Kwon, K.C.; Jo, E.; Kwon, Y.W.; Lee, B.; Ryu, J.H.; Lee, E.J.; Kim, K.; Lee, J. Superparamagnetic gold nanoparticles synthesized on protein particle scaffolds for cancer theragnosis. Adv. Mater., 2017, 29(38), 1701146.
[http://dx.doi.org/10.1002/adma.201701146] [PMID: 28741689]
[123]
Ryu, J.H.; Lee, S.; Son, S.; Kim, S.H.; Leary, J.F.; Choi, K.; Kwon, I.C. Theranostic nanoparticles for future personalized medicine. J. Control. Release, 2014, 190, 477-484.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.027] [PMID: 24780269]
[124]
Huh, M.S.; Lee, S.Y.; Park, S.; Lee, S.; Chung, H.; Lee, S.; Choi, Y.; Oh, Y.K.; Park, J.H.; Jeong, S.Y.; Choi, K.; Kim, K.; Kwon, I.C. Tumor-homing glycol chitosan/polyethylenimine nanoparticles for the systemic delivery of siRNA in tumor-bearing mice. J. Control. Release, 2010, 144(2), 134-143.
[http://dx.doi.org/10.1016/j.jconrel.2010.02.023] [PMID: 20184928]
[125]
Caldorera-Moore, M.E.; Liechty, W.B.; Peppas, N.A. Responsive theranostic systems: Integration of diagnostic imaging agents and responsive controlled release drug delivery carriers. Acc. Chem. Res., 2011, 44(10), 1061-1070.
[http://dx.doi.org/10.1021/ar2001777] [PMID: 21932809]
[126]
Montero, A.J.; Adams, B.; Diaz-Montero, C.M.; Glück, S. Nab-paclitaxel in the treatment of metastatic breast cancer: A comprehensive review. Expert Rev. Clin. Pharmacol., 2011, 4(3), 329-334.
[http://dx.doi.org/10.1586/ecp.11.7] [PMID: 22114779]
[127]
Mamot, C.; Ritschard, R.; Wicki, A.; Stehle, G.; Dieterle, T.; Bubendorf, L.; Hilker, C.; Deuster, S.; Herrmann, R.; Rochlitz, C. Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: A phase 1 dose-escalation study. Lancet Oncol., 2012, 13(12), 1234-1241.
[http://dx.doi.org/10.1016/S1470-2045(12)70476-X] [PMID: 23153506]
[128]
Potera, C. Houston biostartups strong in innovation: Companies ride robust economic wave that’s been washing over the state of Texas. Genet. Eng. Biotechnol. News, 2011, 31(2), 45-47.
[http://dx.doi.org/10.1089/gen.31.02.20]
[129]
Egusquiaguirre, S.P.; Igartua, M.; Hernández, R.M.; Pedraz, J.L. Nanoparticle delivery systems for cancer therapy: Advances in clinical and preclinical research. Clin. Transl. Oncol., 2012, 14(2), 83-93.
[http://dx.doi.org/10.1007/s12094-012-0766-6] [PMID: 22301396]
[130]
O’Brien, M.E.; Wigler, N.; Inbar, M.; Rosso, R.; Grischke, E.; Santoro, A.; Catane, R.; Kieback, D.G.; Tomczak, P.; Ackland, S.P.; Orlandi, F.; Mellars, L.; Alland, L.; Tendler, C. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann. Oncol., 2004, 15(3), 440-449.
[http://dx.doi.org/10.1093/annonc/mdh097] [PMID: 14998846]
[131]
Friedman, R. Nano dot technology enters clinical trials. J. Natl. Cancer Inst., 2011, 103(19), 1428-1429.
[http://dx.doi.org/10.1093/jnci/djr400] [PMID: 21934074]
[132]
Lazarus, D.; Kabir, S.; Eliasof, S. CRLX301, a novel tumor-targeted taxane nanopharmaceutical. Proceedings: AACR 103rd Annual Meeting, Mar 31‐Apr 4 Chicago, IL2012.
[133]
Petre, C.E.; Dittmer, D.P. Liposomal daunorubicin as treatment for Kaposi’s sarcoma. Int. J. Nanomedicine, 2007, 2(3), 277-288.
[134]
Oerlemans, C.; Bult, W.; Bos, M.; Storm, G.; Nijsen, J.F.W.; Hennink, W.E. Polymeric micelles in anticancer therapy: Targeting, imaging and triggered release. Pharm. Res., 2010, 27(12), 2569-2589.
[http://dx.doi.org/10.1007/s11095-010-0233-4] [PMID: 20725771]
[135]
Gil, L.; Shepard, R.C.; Silberman, S.L.; Zak, E.M.; Priebe, W. Clinical efficacy of L-Annamycin, a liposomal formulated non-cross-resistant and non-cardiotoxic anthracycline in relapsed/refractory AML patients. Blood, 2019, 134(1), 5147.
[http://dx.doi.org/10.1182/blood-2019-129268]
[136]
Matsumura, Y.; Gotoh, M.; Muro, K.; Yamada, Y.; Shirao, K.; Shimada, Y.; Okuwa, M.; Matsumoto, S.; Miyata, Y.; Ohkura, H.; Chin, K.; Baba, S.; Yamao, T.; Kannami, A.; Takamatsu, Y.; Ito, K.; Takahashi, K. Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer. Ann. Oncol., 2004, 15(3), 517-525.
[http://dx.doi.org/10.1093/annonc/mdh092] [PMID: 14998859]
[137]
Kato, K.; Chin, K.; Yoshikawa, T.; Yamaguchi, K.; Tsuji, Y.; Esaki, T.; Matsumura, Y. Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Investigat. New drugs., 2012, 30, 1621-1627.
[138]
Reimer, P.; Balzer, T. Ferucarbotran (Resovist): A new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: Properties, clinical development, and applications. Eur. Radiol., 2003, 13(6), 1266-1276.
[http://dx.doi.org/10.1007/s00330-002-1721-7] [PMID: 12764641]
[139]
Ventola, C.L. The nanomedicine revolution: Part 2: Current and future clinical applications. P&T, 2012, 37(10), 582-591.
[PMID: 23115468]
[140]
Cheng, J.; Teply, B.A.; Sherifi, I.; Sung, J.; Luther, G.; Gu, F.X.; Levy-Nissenbaum, E.; Radovic-Moreno, A.F.; Langer, R.; Farokhzad, O.C. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials, 2007, 28(5), 869-876.
[http://dx.doi.org/10.1016/j.biomaterials.2006.09.047] [PMID: 17055572]
[141]
Davis, M.E.; Zuckerman, J.E.; Choi, C.H.J.; Seligson, D.; Tolcher, A.; Alabi, C.A.; Yen, Y.; Heidel, J.D.; Ribas, A. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature, 2010, 464(7291), 1067-1070.
[http://dx.doi.org/10.1038/nature08956] [PMID: 20305636]
[142]
Libutti, S.K.; Paciotti, G.F.; Byrnes, A.A.; Alexander, H.R., Jr; Gannon, W.E.; Walker, M.; Seidel, G.D.; Yuldasheva, N.; Tamarkin, L. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin. Cancer Res., 2010, 16(24), 6139-6149.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0978] [PMID: 20876255]
[143]
Jung, K.H.; Kim, K.P.; Yoon, D.H.; Hong, Y.S.; Choi, C.M.; Ahn, J.H.; Lee, D.H.; Lee, J.L.; Ryu, M.H.; Ryoo, B.Y.; Chang, H.M. A phase I trial to determine the maximum tolerated dose and evaluate the safety and pharmacokinetics (PK) of docetaxel-PNP, polymeric nanoparticle formulation of docetaxel, in subjects with advanced solid malignancies. J. Clin. Oncol., 2012, 30(15), e13104.
[144]
Moradi, S.Z.; Momtaz, S.; Bayrami, Z.; Farzaei, M.H.; Abdollahi, M. Nanoformulations of herbal extracts in treatment of neurodegenerative disorders. Front. Bioeng. Biotechnol., 2020, 8, 238.
[http://dx.doi.org/10.3389/fbioe.2020.00238] [PMID: 32318551]
[145]
Ee, G.C.L.; Lim, C.M.; Rahmani, M.; Shaari, K.; Bong, C.F.J. Pellitorine, a potential anti-cancer lead compound against HL6 and MCT-7 cell lines and microbial transformation of piperine from Piper Nigrum. Molecules, 2010, 15(4), 2398-2404.
[http://dx.doi.org/10.3390/molecules15042398] [PMID: 20428051]
[146]
Dark, G.G.; Hill, S.A.; Prise, V.E.; Tozer, G.M.; Pettit, G.R.; Chaplin, D.J. Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature. Cancer Res., 1997, 57(10), 1829-1834.
[PMID: 9157969]
[147]
Anand, K.; Gengan, R.M.; Phulukdaree, A.; Chuturgoon, A. Agroforestrywaste Moringa oleifera petalsmediated green synthesis of gold nanoparticles and their anti-cancer and catalytic activity. J. Ind. Eng. Chem., 2015, 21, 1105-1111.
[http://dx.doi.org/10.1016/j.jiec.2014.05.021]
[148]
Abel, E.E.; Poonga, P.R.J.; Panicker, S.G. Characterization and in vitro studies on anticancer, antioxidant activity against colon cancer cell line of gold nanoparticles capped with Cassia tora SM leaf extract. Appl. Nanosci., 2016, 6(1), 121-129.
[149]
Arunachalam, K.D.; Arun, L.B.; Annamalai, S.K.; Arunachalam, A.M. Potential anticancer properties of bioactive compounds of Gymnema sylvestre and its biofunctionalized silver nanoparticles. Int. J. Nanomedicine, 2014, 10, 31-41.
[http://dx.doi.org/10.2147/IJN.S71182] [PMID: 25565802]
[150]
Ahmad, M.Z.; Akhter, S.; Rahman, Z.; Akhter, S.; Anwar, M.; Mallik, N.; Ahmad, F.J. Nanometric gold in cancer nanotechnology: Current status and future prospect. J. Pharm. Pharmacol., 2013, 65(5), 634-651.
[http://dx.doi.org/10.1111/jphp.12017] [PMID: 23600380]
[151]
Wilhelmi, V.; Fischer, U.; Weighardt, H.; Schulze-Osthoff, K.; Nickel, C.; Stahlmecke, B.; Kuhlbusch, T.A.; Scherbart, A.M.; Esser, C.; Schins, R.P.; Albrecht, C. Zinc oxide nanoparticles induce necrosis and apoptosis in macrophages in a p47phox- and Nrf2-independent manner. PLoS One, 2013, 8(6), e65704.
[http://dx.doi.org/10.1371/journal.pone.0065704] [PMID: 23755271]
[152]
Siddiqui, I.A.; Sanna, V.; Ahmad, N.; Sechi, M.; Mukhtar, H. Resveratrol nanoformulation for cancer prevention and therapy. Ann. N. Y. Acad. Sci., 2015, 1348(1), 20-31.
[http://dx.doi.org/10.1111/nyas.12811] [PMID: 26109073]
[153]
Liu, Y. Nanoparticle-based delivery vectors: Design, preparation,characterization, cellular internalization and nuclear targeting; ProQuest, 2007.
[154]
Sahu, A.N. Nanotechnology in herbal medicines and cosmetics. Int. J. Res. Ayurveda Pharm., 2013, 4(3), 472-474.
[http://dx.doi.org/10.7897/2277-4343.04334]
[155]
Rao, P.V.; Nallappan, D.; Kondeti, M.; Shafiqur, R.; Jun, W.L.; Gan, S.H. Phytochemicals and biogenic metallic nanoparticles as anticancer agents. Oxid. Med. Cell. Longev., 2016, 2016, 15.
[156]
Huang, Q.; Yu, H.; Ru, Q. Bioavailability and delivery of nutraceuticals using nanotechnology. J. Food Sci., 2010, 75(1), R50-R57.
[http://dx.doi.org/10.1111/j.1750-3841.2009.01457.x] [PMID: 20492195]
[157]
Jain, K.K. Current status and future prospects of nanoneurology. J. Nanoneurosci., 2009, 1(1), 56-64.
[http://dx.doi.org/10.1166/jns.2009.006]
[158]
Zidorn, C.; Jöhrer, K.; Ganzera, M.; Schubert, B.; Sigmund, E.M.; Mader, J.; Greil, R.; Ellmerer, E.P.; Stuppner, H. Polyacetylenes from the Apiaceae vegetables carrot, celery, fennel, parsley, and parsnip and their cytotoxic activities. J. Agric. Food Chem., 2005, 53(7), 2518-2523.
[http://dx.doi.org/10.1021/jf048041s] [PMID: 15796588]
[159]
Xu, W.; Li, T.; Qiu, J.F.; Wu, S.S.; Huang, M.Q.; Lin, L.G.; Zhang, Q.W.; Chen, X.P.; Lu, J.J. Anti-proliferative activities of terpenoids isolated from Alisma orientalis and their structure-activity relationships. Anticancer. Agents Med. Chem., 2015, 15(2), 228-235.
[http://dx.doi.org/10.2174/1871520614666140601213514] [PMID: 24893804]
[160]
Wiart, C. Lead Compounds from Medicinal Plants for the Treatment of Cancer; Academic Press, 2013.
[161]
Wu, T.S.; Damu, A.G.; Su, C.R.; Kuo, P.C. Terpenoids of Aristolochia and their biological activities. Nat. Prod. Rep., 2004, 21(5), 594-624.
[http://dx.doi.org/10.1039/b401950d] [PMID: 15459757]
[162]
Abd El-Wahab, A.E.; Ghareeb, D.A.; Sarhan, E.E.M.; Abu-Serie, M.M.; El Demellawy, M.A. In vitro biological assessment of Berberis vulgaris and its active constituent, berberine: Antioxidants, anti-acetylcholinesterase, anti-diabetic and anticancer effects. BMC Complement. Altern. Med., 2013, 13(1), 218-230.
[http://dx.doi.org/10.1186/1472-6882-13-218] [PMID: 24007270]
[163]
Songsiang, U.; Thongthoom, T.; Zeekpudsa, P. Antioxidant activity and cytotoxicity against cholangiocarcinoma of carbazoles and coumarins from Clausena harmandiana. Sci. Asia, 2012, 38(1), 75-81.
[http://dx.doi.org/10.2306/scienceasia1513-1874.2012.38.075]
[164]
Zhang, H.; Yang, S.P.; Fan, C.Q.; Ding, J.; Yue, J.M. Daphniyunnines A-E, alkaloids from Daphniphyllum yunnanense. J. Nat. Prod., 2006, 69(4), 553-557.
[http://dx.doi.org/10.1021/np050490e] [PMID: 16643024]
[165]
Lei, J.; Yu, J.; Yu, H.; Liao, Z. Composition, cytotoxicity and antimicrobial activity of essential oil from Dictamnus dasycarpus. Food Chem., 2008, 107(3), 1205-1209.
[166]
Khan, K. Roles of Emblica officinalis in medicine—A Review. Bot. Res. Int., 2009, 2(4), 218-228.
[167]
Liu, G.F. Isolation and identification of antitumor constituents of diterpenoids lactone in Euphorbia fischeriana Steud. Zhong Yao Tong Bao, 1988, 13(5), 35-36, 63.
[PMID: 3197209]
[168]
Pretner, E.; Amri, H.; Li, W.; Brown, R.; Lin, C.S.; Makariou, E.; Defeudis, F.V.; Drieu, K.; Papadopoulos, V. Cancer-related overexpression of the peripheral-type benzodiazepine receptor and cytostatic anticancer effects of Ginkgo biloba extract (EGb 761). Anticancer Res., 2006, 26(1A), 9-22.
[PMID: 16475673]
[169]
Sajuthi, D. Extraction, fractionation, and in vitro biological tested on Gynura pseudochina (Linn.) DC.) as anticancer, second phase. Bul. Kimia., 2001, 1(2), 75-79.
[170]
Ding, X.; Bai, D.; Qian, J. Novel cyclotides from Hedyotis biflora inhibit proliferation and migration of pancreatic cancer cell in vitro and in vivo. Med. Chem. Res., 2014, 23(3), 1406-1413.
[http://dx.doi.org/10.1007/s00044-013-0746-6]
[171]
Miao, L.; Han, N.; Liu, Z.; Hu, D.; Yin, J. Investigation of the chemical constituents and pharmacological functions of Ixeris sonchifolia (Bge.). Hance. J. Trad. Med., 2011, 6(5), 179-187.
[172]
Li, Z.B.; Wang, J.Y.; Jiang, B.; Zhang, X.L.; An, L.J.; Bao, Y.M. Benzobijuglone, a novel cytotoxic compound from Juglans mandshurica, induced apoptosis in HeLa cervical cancer cells. Phytomedicine, 2007, 14(12), 846-852.
[http://dx.doi.org/10.1016/j.phymed.2007.09.004] [PMID: 17959366]
[173]
Deng, A.J.; Qin, H.L. Cytotoxic dihydrobenzophenanthridine alkaloids from the roots of Macleaya microcarpa. Phytochemistry, 2010, 71(7), 816-822.
[http://dx.doi.org/10.1016/j.phytochem.2010.02.007] [PMID: 20226485]
[174]
Matić I.Z.; Juranić Z.; Savikin, K.; Zdunić G.; Nađvinski, N.; Gođevac, D. Chamomile and marigold tea: Chemical characterization and evaluation of anticancer activity. Phytother. Res., 2013, 27(6), 852-858.
[http://dx.doi.org/10.1002/ptr.4807] [PMID: 22899374]
[175]
Sichaem, J.; Surapinit, S.; Siripong, P.; Khumkratok, S.; Jong-aramruang, J.; Tip-pyang, S. Two new cytotoxic isomeric indole alkaloids from the roots of Nauclea orientalis. Fitoter., 2010, 81(7), 830-833.
[http://dx.doi.org/10.1016/j.fitote.2010.05.004] [PMID: 20472039]
[176]
Moirangthem, D.S.; Talukdar, N.C.; Bora, U.; Kasoju, N.; Das, R.K. Differential effects of Oroxylum indicum bark extracts: Antioxidant, antimicrobial, cytotoxic and apoptotic study. Cytotechnology, 2013, 65(1), 83-95.
[http://dx.doi.org/10.1007/s10616-012-9463-0] [PMID: 22821054]
[177]
Siripong, P.; Yahuafai, J.; Shimizu, K.; Ichikawa, K.; Yonezawa, S.; Asai, T.; Kanokmedakul, K.; Ruchirawat, S.; Oku, N. Antitumor activity of liposomal naphthoquinone esters isolated from Thai medicinal plant: Rhinacanthus nasutus KURZ. Biol. Pharm. Bull., 2006, 29(11), 2279-2283.
[http://dx.doi.org/10.1248/bpb.29.2279] [PMID: 17077529]
[178]
Son, J.K.; Jung, S.J.; Jung, J.H.; Fang, Z.; Lee, C.S.; Seo, C.S.; Moon, D.C.; Min, B.S.; Kim, M.R.; Woo, M.H. Anticancer constituents from the roots of Rubia cordifolia L. Chem. Pharm. Bull., 2008, 56(2), 213-216.
[http://dx.doi.org/10.1248/cpb.56.213] [PMID: 18239313]
[179]
Chen, Y.G.; Wu, Z.C.; Lv, Y.P.; Gui, S.H.; Wen, J.; Liao, X.R.; Yuan, L.M.; Halaweish, F. Triterpenoids from Schisandra henryi with cytotoxic effect on leukemia and Hela cells in vitro. Arch. Pharm. Res., 2003, 26(11), 912-916.
[http://dx.doi.org/10.1007/BF02980199] [PMID: 14661856]
[180]
Ko, W.G.; Kang, T.H.; Lee, S.J.; Kim, N.Y.; Kim, Y.C.; Sohn, D.H.; Lee, B.H. Polymethoxyflavonoids from Vitex rotundifolia inhibit proliferation by inducing apoptosis in human myeloid leukemia cells. Food Chem. Toxicol., 2000, 38(10), 861-865.
[http://dx.doi.org/10.1016/S0278-6915(00)00079-X] [PMID: 11039319]
[181]
Gan, L.S.; Yang, S.P.; Wu, Y.; Ding, J.; Yue, J.M. Terpenoid indole alkaloids from Winchia calophylla. J. Nat. Prod., 2006, 69(1), 18-22.
[http://dx.doi.org/10.1021/np0502701] [PMID: 16441061]
[182]
Christina, A.J.M.; Joseph, D.G.; Packialakshmi, M.; Kothai, R.; Robert, S.J.; Chidambaranathan, N.; Ramasamy, M. Anticarcinogenic activity of Withania somnifera Dunal against Dalton’s ascitic lymphoma. J. Ethnopharmacol., 2004, 93(2-3), 359-361.
[http://dx.doi.org/10.1016/j.jep.2004.04.004] [PMID: 15234777]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy