Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Upgrading CO2 by Incorporating into Quinazolinones: A Review

Author(s): Simranpreet K. Wahan, Sangeeta Sharma and Pooja A. Chawla

Volume 20, Issue 4, 2023

Published on: 19 August, 2022

Page: [403 - 414] Pages: 12

DOI: 10.2174/1570193X19666220516140456

Price: $65

Abstract

Efficient translation of CO2 into value-added compounds is a fascinating topic in green chemistry. The effective conversion of CO2 into useful chemicals and materials helps civilization flourish in the long run. Carbon dioxide has shown tremendous applications by replacing dangerous chemicals like phosgene, isocyanates, or carbon monoxide, resulting in more environment-friendly operations. This article is an overview in which we highlight current advances in synthesizing quinazolinone, a favoured scaffold in the pharmaceutical industry for its therapeutic value in the treatment of various pathologies. The complementarity of succinct methods aids the ability to generate libraries of functionalized quinazolinone derivatives.

Keywords: CO2, quinazolinones, synthesis, ionic liquids, layered smectites

Graphical Abstract

[1]
Global Carbon Project Report. UK Met Office, IPCC and WMO. 2021.
[2]
Thonemann, N. Environmental impacts of CO2-based chemical production: A systematic literature review and meta-analysis. Appl. Energy, 2020, 263, 114599.
[http://dx.doi.org/10.1016/j.apenergy.2020.114599]
[3]
Schmalensee, R.; Stoker, T.M.; Judson, R.A. World carbon dioxide emissions: 1950-2050. Rev. Econ. Stat., 1998, 80(1), 15-27.
[http://dx.doi.org/10.1162/003465398557294]
[4]
Solomon, S.; Plattner, G.K.; Knutti, R.; Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. USA, 2009, 106(6), 1704-1709.
[http://dx.doi.org/10.1073/pnas.0812721106] [PMID: 19179281]
[5]
O’Neill, B.C.; Liddle, B.; Jiang, L.; Smith, K.R.; Pachauri, S.; Dalton, M.; Fuchs, R. Demographic change and carbon dioxide emissions. Lancet, 2012, 380(9837), 157-164.
[http://dx.doi.org/10.1016/S0140-6736(12)60958-1] [PMID: 22784534]
[6]
Zhang, T.; Zhang, W.; Yang, R.; Liu, Y.; Jafari, M. CO2 capture and storage monitoring based on remote sensing techniques: a review. J. Clean. Prod., 2021, 281, 124409.
[http://dx.doi.org/10.1016/j.jclepro.2020.124409]
[7]
Osman, A.I.; Hefny, M.; Abdel Maksoud, M.I.A.; Elgarahy, A.M.; Rooney, D.W. Recent advances in carbon capture storage and utilisation technologies: A review. Environ. Chem. Lett., 2021, 19(2), 797-849.
[http://dx.doi.org/10.1007/s10311-020-01133-3]
[8]
Olajire, A.A. CO2 capture and separation technologies for end-of-pipe applications–a review. Energy, 2010, 35(6), 2610-2628.
[http://dx.doi.org/10.1016/j.energy.2010.02.030]
[9]
Yu, C.H.; Huang, C.H.; Tan, C.S. A review of CO2 capture by absorption and adsorption. Aerosol Air Qual. Res., 2012, 12(5), 745-769.
[http://dx.doi.org/10.4209/aaqr.2012.05.0132]
[10]
Cary, M. Molecules of inefficiency: How tariffs impact carbon intensities, carbon dioxide emissions, and the environment. Sci. Total Environ., 2020, 713, 136531.
[http://dx.doi.org/10.1016/j.scitotenv.2020.136531] [PMID: 32019014]
[11]
Parson, E.A.; Buck, H.J. Large-scale carbon dioxide removal: the problem of phasedown. Glob. Environ. Polit., 2020, 20(3), 70-92.
[http://dx.doi.org/10.1162/glep_a_00575]
[12]
Yang, Z.Z.; He, L.N.; Gao, J.; Liu, A.H.; Yu, B. Carbon dioxide utilization with C–N bond formation: Carbon dioxide capture and subsequent conversion. Energy Environ. Sci., 2012, 5(5), 6602-6639.
[http://dx.doi.org/10.1039/c2ee02774g]
[13]
Song, Q.W.; He, L.N. Heterocyclic synthesis through cn bond formation with carbon dioxide. In: Chemistry Beyond Chlorine; , 2016; pp. 435-453.
[14]
Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Using carbon dioxide as a building block in organic synthesis. Nat. Commun., 2015, 6(1), 5933.
[http://dx.doi.org/10.1038/ncomms6933] [PMID: 25600683]
[15]
Ngo, H.L.; Mishra, D.K.; Mishra, V.; Truong, C.C. Recent advances in the synthesis of heterocycles and pharmaceuticals from the photo/electrochemical fixation of carbon dioxide. Chem. Eng. Sci., 2021, 229, 116142.
[http://dx.doi.org/10.1016/j.ces.2020.116142]
[16]
Song, C. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal. Today, 2006, 115(1-4), 2-32.
[http://dx.doi.org/10.1016/j.cattod.2006.02.029]
[17]
Arshadi, S.; Banaei, A.; Ebrahimiasl, S.; Monfared, A.; Vessally, E. Solvent-free incorporation of CO2 into 2-oxazolidinones: a review. RSC Advances, 2019, 9(34), 19465-19482.
[http://dx.doi.org/10.1039/C9RA00551J]
[18]
Hosseinian, A.; Ahmadi, S.; Mohammadi, R.; Monfared, A.; Rahmani, Z. Three-component reaction of amines, epoxides, and carbon dioxide: A straightforward route to organic carbamates. J. CO2 Utiliz., 2018, 7, 381-389.
[19]
Reddy, M.M.; Sivaramakrishna, A. Remarkably flexible quinazolinones-synthesis and biological applications. J. Heterocycl. Chem., 2020, 57(3), 942-954.
[http://dx.doi.org/10.1002/jhet.3844]
[20]
Xing, Z.; Wu, W.; Miao, Y.; Tang, Y.; Zhou, Y.; Zheng, L.; Fu, Y.; Song, Z.; Peng, Y. Recent advances in quinazolinones as an emerging molecular platform for luminescent materials and bioimaging. Org. Chem. Front., 2021, 8(8), 1867-1889.
[http://dx.doi.org/10.1039/D0QO01425G]
[21]
Demeunynck, M.; Baussanne, I. Survey of recent literature related to the biologically active 4(3H)-quinazolinones containing fused heterocycles. Curr. Med. Chem., 2013, 20(6), 794-814.
[PMID: 23276134]
[22]
Chaudhary, A.P.; Shukla, A.K.; Pandey, J.; Kant, P. Study of developments of biologically active Quinazolinones derivatives: a review. Chem. Biol. Interact., 2018, 8(2), 62-83.
[23]
Plescia, F.; Maggio, B.; Daidone, G.; Raffa, D. 4-(3H)-quinazolinones N-3 substituted with a five membered heterocycle: a promising scaffold towards bioactive molecules. Eur. J. Med. Chem., 2021, 213, 113070.
[http://dx.doi.org/10.1016/j.ejmech.2020.113070] [PMID: 33309162]
[24]
He, L.; Li, H.; Chen, J.; Wu, X.F. Recent advances in 4 (3 H)-quinazolinone syntheses. RSC Advances, 2014, 4(24), 12065-12077.
[http://dx.doi.org/10.1039/C4RA00351A]
[25]
Bhat, M.; Belagali, S.L.; Mamatha, S.V.; Sagar, B.K.; Sekhar, E.V. Importance of quinazoline and quinazolinone derivatives in medicinal chemistry. Stud. Natural Products Chem., 2021, 71, 185-219.
[http://dx.doi.org/10.1016/B978-0-323-91095-8.00005-2]
[26]
Rajput, R.; Mishra, A.P. A review on biological activity of quinazolinones. Int. J. Pharm. Pharm. Sci., 2012, 4(2), 66-70.
[27]
Wahan, S.K.; Sharma, B.; Chawla, P.A. Medicinal perspective of quinazolinone derivatives: recent developments and structure-activity relationship studies. J. Heterocycl. Chem., 2021, 59(2), 239-257.
[http://dx.doi.org/10.1002/jhet.4382]
[28]
Hameed, A.; Al-Rashida, M.; Uroos, M.; Ali, S.A. Arshia; Ishtiaq, M.; Khan, K.M. Quinazoline and quinazolinone as important medicinal scaffolds: A comparative patent review (2011-2016). Expert Opin. Ther. Pat., 2018, 28(4), 281-297.
[http://dx.doi.org/10.1080/13543776.2018.1432596] [PMID: 29368977]
[29]
Michman, M.; Patai, S.; Wiesel, Y. The synthesis of 2, 4 [1H, 3H] quinazolinedione and some of its 3-aryl substituted derivatives. Org. Prep. Proced. Int., 1978, 10(1), 13-16.
[http://dx.doi.org/10.1080/00304947809354998]
[30]
Khalifa, M.; Osman, A.N.; Ibrahim, M.G.; el Rahman, A.; Ossman, E.; Ismail, M.A. Synthesis and biological activity of certain derivatives of 2,4-dioxo-1,2,3,4-tetrahydroquinazoline. Part 2. Pharmazie, 1982, 37(2), 115-117.
[PMID: 6978491]
[31]
Lange, N.A.; Sheibley, F.E. Benzoylene Urea: 2, 4 (1, 3)‐Quinazolinedione. Org. Synth., 2003, 17, 16.
[32]
Vorbrüggen, H.; Krolikiewicz, K. The introduction of nitrile-groups into heterocycles and conversion of carboxyic groups into their corresponding nitriles with chlorosulfonylisocyanate and triethylamine. Tetrahedron, 1994, 50(22), 6549-6558.
[http://dx.doi.org/10.1016/S0040-4020(01)89685-X]
[33]
Khan, I.; Ibrar, A.; Ahmed, W.; Saeed, A. Synthetic approaches, functionalization and therapeutic potential of quinazoline and quinazolinone skeletons: The advances continue. Eur. J. Med. Chem., 2015, 90, 124-169.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.084] [PMID: 25461317]
[34]
Khan, I.; Ibrar, A.; Abbas, N.; Saeed, A. Recent advances in the structural library of functionalized quinazoline and quinazolinone scaffolds: Synthetic approaches and multifarious applications. Eur. J. Med. Chem., 2014, 76, 193-244.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.005] [PMID: 24583357]
[35]
Mizuno, T.; Okamoto, N.; Ito, T.; Miyata, T. Synthesis of quinazolines using carbon dioxide (or carbon monoxide with sulfur) under mild conditions. Heteroatom Chem., 2000, 11(6), 428-433.
[http://dx.doi.org/10.1002/1098-1071(2000)11:6<428:AID-HC12>3.0.CO;2-Z]
[36]
Mizuno, T.; Okamoto, N.; Ito, T.; Miyata, T. Synthesis of 2, 4-dihydroxyquinazolines using carbon dioxide in the presence of DBU under mild conditions. Tetrahedron Lett., 2000, 41(7), 1051-1053.
[http://dx.doi.org/10.1016/S0040-4039(99)02231-5]
[37]
Mizuno, T.; Ishino, Y. Highly efficient synthesis of 1H-quinazoline-2, 4-diones using carbon dioxide in the presence of catalytic amount of DBU. Tetrahedron, 2002, 58(16), 3155-3158.
[http://dx.doi.org/10.1016/S0040-4020(02)00279-X]
[38]
Mizuno, T.; Iwai, T.; Ishino, Y. The simple solvent-free synthesis of 1H-quinazoline-2, 4-diones using supercritical carbon dioxide and catalytic amount of base. Tetrahedron Lett., 2004, 45(38), 7073-7075.
[http://dx.doi.org/10.1016/j.tetlet.2004.07.152]
[39]
Mizuno, T.; Mihara, M.; Nakai, T.; Iwai, T.; Ito, T. Solvent-free synthesis of quinazoline-2, 4 (1H, 3H)-diones using carbon dioxide and a catalytic amount of DBU. Synthesis, 2007, 16(16), 2524-2528.
[http://dx.doi.org/10.1055/s-2007-983808]
[40]
Ma, J.; Han, B.; Song, J.; Hu, J.; Lu, W.; Yang, D.; Zhang, Z.; Jiang, T.; Hou, M. Efficient synthesis of quinazoline-2, 4 (1H, 3H)-diones from CO2 and 2-aminobenzonitriles in water without any catalyst. Green Chem., 2013, 15(6), 1485-1489.
[http://dx.doi.org/10.1039/c3gc00091e]
[41]
Lu, W.; Ma, J.; Hu, J.; Song, J.; Zhang, Z.; Yang, G.; Han, B. Efficient synthesis of quinazoline-2, 4 (1H, 3H)-diones from CO2 using ionic liquids as a dual solvent–catalyst at atmospheric pressure. Green Chem., 2014, 16(1), 221-225.
[http://dx.doi.org/10.1039/C3GC41467A]
[42]
Nale, D.B.; Saigaonkar, S.D.; Bhanage, B.M. An efficient synthesis of quinazoline-2, 4 (1H, 3H)-dione from CO2 and 2- aminobenzonitrile using [Hmim] OH/SiO2 as a base functionalized supported ionic liquid phase catalyst. J. CO2 Utiliz., 2014, 8, 67-73.
[43]
Zhao, Y.; Yu, B.; Yang, Z.; Zhang, H.; Hao, L.; Gao, X.; Liu, Z. A protic ionic liquid catalyzes CO2; conversion at atmospheric pressure and room temperature: Synthesis of quinazoline-2,4(1H,3H)-diones. Angew. Chem. Int. Ed. Engl., 2014, 53(23), 5922-5925.
[http://dx.doi.org/10.1002/anie.201400521] [PMID: 24788820]
[44]
Lang, X.D.; Yu, Y.C.; Li, Z.M.; He, L.N. Protic ionic liquidspromoted efficient synthesis of quinazolines from 2- aminobenzonitriles and CO2 at ambient conditions. J. CO2 Utilization, 2016, 15, 115-122.
[45]
Shi, G.; Chen, K.; Wang, Y.; Li, H.; Wang, C. Highly efficient synthesis of quinazoline-2, 4 (1H, 3H)-diones from CO2 by hydroxyl functionalized aprotic ionic liquids. ACS Sustain. Chem.& Eng., 2018, 6(5), 5760-5765.
[http://dx.doi.org/10.1021/acssuschemeng.8b01109]
[46]
Zhu, A.; Tang, M.; Lv, Q.; Li, L.; Bai, S.; Li, Q.; Feng, W.; Li, Q.; Wang, J. Fixation of CO2 in structurally diverse quinazoline-2, 4 (1H, 3H)-diones under ambient conditions. J. CO2 Utiliz., 2019, 34, 500-506.
[47]
Liu, F.; Ping, R.; Gu, Y.; Zhao, P.; Liu, B.; Gao, J.; Liu, M. Efficient one pot capture and conversion of CO2 into quinazoline-2, 4 (1H, 3H)-diones using triazolium-based ionic liquids. ACS Sustain. Chem.& Eng., 2020, 8(7), 2910-2918.
[http://dx.doi.org/10.1021/acssuschemeng.9b07242]
[48]
Ping, R.; Zhao, P.; Zhang, Q.; Zhang, G.; Liu, F.; Liu, M. Catalytic conversion of CO2 from simulated flue gases with aminophenol-based protic ionic liquids to produce Quinazoline-2, 4 (1H, 3H)-diones under mild conditions. ACS Sustain. Chem.& Eng., 2021, 9(14), 5240-5249.
[http://dx.doi.org/10.1021/acssuschemeng.1c01466]
[49]
Sadeghzadeh, S.M. A heteropolyacid-based ionic liquid immobilized onto fibrous nano-silica as an efficient catalyst for the synthesis of cyclic carbonate from carbon dioxide and epoxides. Green Chem., 2015, 17(5), 3059-3066.
[http://dx.doi.org/10.1039/C5GC00377F]
[50]
Sadeghzadeh, S.M. Ionic liquid immobilized onto fibrous nano-silica: a highly active and reusable catalyst for the synthesis of quinazoline-2, 4 (1H, 3H)-diones. Catal. Commun., 2015, 72, 91-96.
[http://dx.doi.org/10.1016/j.catcom.2015.09.016]
[51]
Fujita, S.I.; Tanaka, M.; Arai, M. Synthesis of quinazoline-2, 4 (1H, 3H)-dione from carbon dioxide and 2-aminobenzonitrile using mesoporous smectites incorporating alkali hydroxide. Catal. Sci. Technol., 2014, 4(6), 1563-1569.
[http://dx.doi.org/10.1039/c3cy00977g]
[52]
Rasal, K.B.; Yadav, G.D. La–Mg mixed oxide as a highly basic water resistant catalyst for utilization of CO2 in the synthesis of quinazoline-2, 4 (1H, 3 H)-dione. RSC Advances, 2016, 6(112), 111079-111089.
[http://dx.doi.org/10.1039/C6RA15802A]
[53]
Cheng, H.; Zhao, B.; Yao, Y.; Lu, C. Carboxylation of terminal alkynes with CO2 catalyzed by bis (amidate) rare-earth metal amides. Green Chem., 2015, 17(3), 1675-1682.
[http://dx.doi.org/10.1039/C4GC02200A]
[54]
Wu, Q.; Zhou, J.; Yao, Z.; Xu, F.; Shen, Q. Lanthanide amides [(Me(3)Si)(2)N](3)Ln(μ-Cl)Li(THF)(3) catalyzed hydrophosphonylation of aryl aldehydes. J. Org. Chem., 2010, 75(21), 7498-7501.
[http://dx.doi.org/10.1021/jo101743e] [PMID: 20925336]
[55]
Wang, Q.; Lu, C.; Zhao, B.; Yao, Y. Synthesis and characterization of amidato divalent lanthanide complexes and their use in forming 2, 4-Quinazolidinones from CO2 and 2-aminobenzonitriles. Eur. J. Org. Chem., 2016, 14(14), 2555-2559.
[http://dx.doi.org/10.1002/ejoc.201600291]
[56]
Xu, P.; Wang, F.; Wei, T.Q.; Yin, L.; Wang, S.Y.; Ji, S.J. Palladium-catalyzed incorporation of two c1 building blocks: The reaction of atmospheric CO2 and isocyanides with 2-Iodoanilines leading to the synthesis of Quinazoline-2,4(1H,3H)-diones. Org. Lett., 2017, 19(17), 4484-4487.
[http://dx.doi.org/10.1021/acs.orglett.7b01877] [PMID: 28763234]
[57]
Zhang, W.Z.; Li, H.; Zeng, Y.; Tao, X.; Lu, X. Palladium-catalyzed cyclization reaction of o-Haloanilines, CO2 and Isocyanides: Access to Quinazoline-2, 4 (1H, 3H)-diones. Chin. J. Chem., 2018, 36(2), 112-118.
[http://dx.doi.org/10.1002/cjoc.201700581]
[58]
Zhou, Z.; Ma, J.G.; Gao, J.; Cheng, P. Quasi-homogeneous catalytic conversion of CO2 into quinazolinones inside a metal–organic framework microreactor. Green Chem., 2021, 23(15), 5456-5460.
[http://dx.doi.org/10.1039/D1GC01677F]
[59]
Kumar, S.; Verma, S.; Shawat, E.; Nessim, G.D.; Jain, S.L. Amino-functionalized carbon nanofibres as an efficient metal free catalyst for the synthesis of quinazoline-2, 4 (1H, 3H)-diones from CO2 and 2-aminobenzonitriles. RSC Advances, 2015, 5(31), 24670-24674.
[http://dx.doi.org/10.1039/C5RA01900A]
[60]
Fujii, A.; Matsuo, H.; Choi, J.C.; Fujitani, T.; Fujita, K.I. Efficient synthesis of 2-oxazolidinones and quinazoline-2, 4 (1H, 3H)-diones from CO2 catalyzed by tetrabutylammonium fluoride. Tetrahedron, 2018, 74(24), 2914-2920.
[http://dx.doi.org/10.1016/j.tet.2018.04.059]
[61]
Sheng, Z.Z.; Huang, M.M.; Xue, T.; Xia, F.; Wu, H.H. Alcohol amine-catalyzed CO2 conversion for the synthesis of quinazoline-2, 4-(1H, 3H)-dione in water. RSC Advances, 2020, 10(57), 34910-34915.
[http://dx.doi.org/10.1039/D0RA06439D]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy