Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

State of the Art in Industrial Application of Amino-1,2,4-Triazoles

Author(s): Valerii Nazarov, Denis Miroshnichenko, Oleksandra Ivakh, Serhiy Pyshyev* and Bohdan Korchak

Volume 20, Issue 4, 2023

Published on: 19 August, 2022

Page: [394 - 402] Pages: 9

DOI: 10.2174/1570193X19666220331155015

Price: $65

Abstract

The review summarizes information regarding the industrial use of 3- and 4-amino-1,2,4- triazoles, the basic raw material for the industry of fine organic synthesis. A description of the existing production methods for the synthesis of 3- and 4-amino-1,2,4-triazoles under laboratory conditions is provided. Three main areas of use of these amines and their derivatives have been identified: Agriculture, medicine, high-energy substances and gas-generating composition. It has been shown that one of the earliest areas of widespread use of 3- and 4-amino-1,2,4-triazoles is the production of plant protection products. The mass production of various insecticides, fungicides, plant growth regulators, retardants, and nitrification inhibitors of nitrogen fertilizers has been organized. The use of these amines in medicine consists of the production of known drugs, such as furazonal, thiotriazoline and cardiotril, which have hepatoprotective, antioxidant, and anti-ischemic activity. The industrial processing of 3- and 4-amino-1,2,4-triazoles into explosives, solid propellants and gas-generating compositions is a third well-known field of application. The high reactivity of amines and the variety of areas for their use are explained. A significant emphasis is given to the analysis of aminotriazoles. This is the production of new types of salts and electrically conductive ionic liquids, corrosion inhibitors of non-ferrous metals, and catalysts for curing epoxy resins. The results of recent studies are discussed, and the prospects for using 3- and 4-amino-1,2,4-triazoles as raw materials for the production of new reagents in analytical chemistry, proton-exchange membranes, and new condensed nitrogen-containing heterocycles are explained.

Keywords: amino-1, 2, 4-triazoles, raw materials for synthesis, pesticides, medicines, high energy products, industrial processing

Graphical Abstract

[1]
Yu, Y.; Ostresh, J.M.; Houghten, R.A. Solid-phase synthesis of 3-amino-1,2,4-triazoles. Tetrahedron Lett., 2003, 44(42), 7841-7843.
[http://dx.doi.org/10.1016/j.tetlet.2003.08.074]
[2]
Naito, Y.; Akahoshi, F.; Takeda, S.; Okada, T.; Kajii, M.; Nishimura, H.; Sugiura, M.; Fukaya, C.; Kagitani, Y. Synthesis and pharmacological activity of triazole derivatives inhibiting eosinophilia. J. Med. Chem., 1996, 39(15), 3019-3029.
[http://dx.doi.org/10.1021/jm9507993] [PMID: 8709136]
[3]
Chernyshev, V.M.; Tarasova, E.V.; Chernysheva, A.V. Single-reaction synthesis of 3-substituted-5-amino-1,2,4-triazoles based on the reaction of aminoguanidine with carboxylic acids. News of Higher Educational Institutions, 2013, 3, 66-70.
[4]
Guennoun, L. El jastimi, J.; Guédira, F.; Marakchi, K.; Kabbaj, O.K.; El Hajji, A.; Zaydoun, S. Molecular geometry and vibrational studies of 3,5-diamino-1,2,4-triazole using quantum chemical calculations and FT-IR and FT-Raman spectroscopies. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 78(1), 347-353.
[http://dx.doi.org/10.1016/j.saa.2010.10.019] [PMID: 21112810]
[5]
Barmin, M.I.; Melnikov, V.V. New amino-1,2,4-triazolyl and tetrazolyl alkanes; SPGUTD: St. Petersburg, 2002, p. 240.
[6]
Castanedo, G.M.; Seng, P.S.; Blaquiere, N.; Trapp, S.; Staben, S.T. Rapid synthesis of 1,3,5-trisubstituted 1,2,4-triazoles from carboxylic acids, amidines and hydrazines. J. Org. Chem., 2011, 76, 1177-1179.
[http://dx.doi.org/10.1021/jo1023393] [PMID: 21235245]
[7]
Chai, B.; Qian, X.; Cao, S.; Liu, H.; Song, G. Synthesis and insecticidal activity of 1,2,4- triazole derivatives. ARKIVOC, 2003, 2(2), 141-145.
[http://dx.doi.org/10.3998/ark.5550190.0004.216]
[8]
Wang, H.Y.; Zhao, P.S.; Li, R.Q.; Zhou, S.M. Synthesis, crystal structure and quantum chemical study on 3-phenylamino-4-phenyl-1,2,4-triazole-5-thione. Molecules, 2009, 14(2), 608-620.
[http://dx.doi.org/10.3390/molecules14020608] [PMID: 19214151]
[9]
Rubtsov, M.V.; Baichikov, A.G. Synthetic Chemical and Pharmaceutical Preparations (reference book); Meditsina: Moscow, 1971.
[10]
Liu, L.L.; Yang, G. Synthesis of 3,5-di-(4-pyridyl)-1H-1,2,4-triazole. Molbank, 2008, 63(1), M563.
[http://dx.doi.org/10.3390/M563]
[11]
Kumar, S.P.; Mishra, D.; Ghosh, G.; Panda, C.S. Synthesis and Schiff and mannich bases of isatin derivatives with 4-amino-4,5-dihydro-1H-1,2,4-triazole-5-ones. Pharma Chem., 2010, 2(3), 209-216.
[http://dx.doi.org/10.26717/BJSTR.2020.30.004991]
[12]
Gilchrist, T.L. Heterocyclic Chemistry; John Wiley & Sons: New York, 1996.
[13]
Joule, J.A.; Smith, G.F. Heterocyclic Chemistry; Van Nostrand Reinhold Company: London, 1972.
[14]
Voronkov, M.G.; Kashyk, T.V.; Makarsky, V.V. Basicity 5(3)-substituted-3(5)-amino-1,2,4-triazole and their protonation. Dokl., 1976, 227(5), 1116-1119.
[15]
Jawad, K.S.; Yusra, H.A. Chemistry of 1,2,4-triazole: A review article. Int. J. Sci. Res., 2016, 5(3), 1411-1423.
[http://dx.doi.org/10.4103/1735-5362.253360]
[16]
Fiedler, Zh.N.; Shibanova, E.F.; Makerov, P.V.; Kalikhman, I.D. Acyl derivatives of 3-amino-1,2,4-triazole. KHGS, 1980, 10, 1414-1419.
[17]
Makarsky, V.V.; Zubkov, V.A.; Lopyrev, V.A.; Voronkov, M.G. Quantum-chemical analysis of the tautomerism of 1,2,4-triazole and its amino- and diamine derivatives. Chem. Heterocycl. Compd., 1977, 13(4), 436-440.
[18]
Zhou, C-H.; Wang, Y. Recent researches in triazole compounds as medicinal drugs. Curr. Med. Chem., 2012, 19(2), 239-280.
[http://dx.doi.org/10.2174/092986712803414213] [PMID: 22320301]
[19]
Kaplan, G.I.; Kukalenko, S.S. Triazoles and their Pesticide Activity; Niitekhim: Moscow, 1983.
[20]
Kumar, S.S.; Kavitha, H.P. Synthesis and biological applications of triazole derivatives – A review. Mini Rev. Org. Chem., 2013, 10, 40-65.
[http://dx.doi.org/10.2174/1570193X11310010004]
[21]
Shamshurin, A.A.; Krimer, M.Z. Physico-Chemical Properties of Pesticides. Reference book; Chemistry: Moscow, 1976.
[22]
Melnikov, N.N. Substitution of 1,2,4-triazoles. Systemic fungicides Moscow, Mir, 1975.
[23]
Cao, K.; Yang, X. Fungicides of 1,2,4-triazole compaunds. Spec. Petrochem., 2007, 24(6), 82-86.
[http://dx.doi.org/10.3390/ph14030224]
[24]
Barmin, M.I.; Gromova, S.A.; Lebedintseva, O.V.; Tyuterev, S.L.; Mel’nikov, V.V. Fungicide activity of new azole derivatives. Russ. J. Appl. Chem., 1995, 68(8), 1163-1167.
[25]
Chukalenko, S.S.; Volodkovich, S.D. Systemic Fungicides and Seed Treatments; Niitekhim: Moscow, 1981.
[26]
Singh, S.; Kumar, V.; Dhanjal, D.S.; Singh, J. Herbicides and Plant Growth Regulators: Current Developments and Future Challenges. In: Natural Bioactive Products in Sustainable Agriculture; Singh, J.; Yadav, A., Eds.;
[27]
Umirov, F.E.; Khudoiberdiev, F.I.; Tukhtaev, S.T. Preparation of defoliants based on 4-amino-1,2,4-triazole with sodium and magnesium chlorates. Bulletin of Science and Education, 2018, 3(39), 14-16.
[28]
Zubkova, N.F.; Gruzinskaya, N.A. Application and features of the action of defoliants and desikants. Agrokhimia, 1991, 8, 126-143.
[29]
Protsenko, A.N.; Shakirova, O.G. Study of the condensation product of 4-amino-1,2,4-triazole and formaldehyde, preparation of a copper (II) complex based on it and comparison of their biological activity. Molecules, 2015, 5, 38-42.
[30]
Prusakova, L.D.; Chizhova, S.I. Application of triazole derivatives in crop production. Agrokhimia, 1998, 10, 37-44.
[31]
Belei, D.; Bicu, E.; Birsa, L. 1,3-Dipolar cycloaddition reactions of N-acetylazido-2-chlorophenothiazine. Acta Chem. Ias, 2009, 17, 197-207.
[32]
Kumeyko, Y.V.; Parashchenko, V.N.; Kremzin, N.M. Influence of the nitrification inhibitor on the efficiency of nitrogen fertilizer and preservation of soil fertility in the development of rice. Dostyzhenye nauki i tekhniki APC, 2015, 29(12), 85-87.
[33]
Georgievsky, G.V. Biological activity of 1,2,4-triazole derivatives. Farmakom, 2006, 3, 27-31.
[34]
Georgievsky, G.V. Development of a complex of physical and chemical methods that ensure the creation and quality control of original domestic preparations produced by 1,2,4-triazole. Zaporozhye Med. J., 2011, 13(1), 58-69.
[35]
Georgievsky, G.V. Targeted search for new pharmacologically active drugs among the production of triazoles. Farmakom, 2007, 2, 60-66.
[36]
Kucherenko, L.I.; Georgievsky, G.V.; Shapovalova, L.I. Development of methods of standardization of a new drug – cardiotril. Farmakom, 2008, 3, 55-60.
[37]
Arul, K. Synthesis and in vitro Anticancer evaluation of some novel 1,2,4-triazole derivatives. Experiment, 2014, 21(1), 1439-1452.
[http://dx.doi.org/10.15421/021830]
[38]
Mobinikhaledi, A.; Foroughifar, N.; Khanpour, M.; Ebrahimi, S. Synthesis of some novel schiff bases containing 1,2,4-triazole ring. Eur. J. Chem., 2010, 1(1), 33-36.
[http://dx.doi.org/10.5155/eurjchem.1.1.33-36.5]
[39]
Sahoo, S. Synthesis and biological activity of certain mahnich bases derivatives from 1,2,4-triazoles. Iranian J. Pharma. Sci, 2013, 9(4), 51-60.
[http://dx.doi.org/10.5155/eurjchem.11.2.113-119.1968]
[40]
Holam, S.C.; Straub, B.F. Synthesis of N-substituted 1,2,4-Triazole: A review. Org. Prep. Proced. Int., 2011, 43(4), 319-347.
[http://dx.doi.org/10.1080/00304948.2011.593999]
[41]
Fan, Y.; Xia, Y.; Tang, J.; Rocchi, P.; Qu, F.; Iovanna, J.; Peng, L. Ligand-mediated highly effective and selective C-N coupling for synthesizing bioactive N-aryltriazole acyclonucleosides. Org. Lett., 2010, 12(24), 5712-5715.
[http://dx.doi.org/10.1021/ol102537p] [PMID: 21086980]
[42]
Hu, G.Q.; Wang, H.Y.; Wu, X.Q.; Wang, X. Synthesis and antitumor activity of pyridy s-triazole Schiff-bases containing functional side-chain of poly (thio-oxo) ether. Chung Kuo Yao Hsueh Tsa Chih, 2009, 44, 1511-1514.
[http://dx.doi.org/10.1080/14786419.2019.1645660]
[43]
Bekircan, O.; Kahveci, B.; Kucuk, M. Synthesis and anticancer evaluation of some new unsymmetrical 3,5-diaryl-4H-1,2,4-triazole derivatives. Turk. J. Chem., 2006, 30, 29-40.
[44]
Goyal, P.K.; Bhandan, A.; Rana, A.C.; Jain, C.B. Synthesis of some 3-substituted-4H-1,2,4-triazole derivatives with potent anti-inflammatory activity. As. J. Pharm. Clin. Res, 2010, 3(3), 244-246.
[45]
Kshirsagar, A.; Toraskar, M.P.; Kulkami, V.M.; Kadam, V. Microwave-assisted synthesis of potential anti-infective and anticonvulsant thiosemicarbazones. Int. J. Chemtech Res., 2009, 1, 696-701.
[46]
Abdel-Megeed, A.M.; Abdel-Rahman, H.M.; Alkaramany, G.E.; El-Gendy, M.A. Design, synthesis and molecular modeling study of acylated 1,2,4-triazole-3-acetates with potential anti-inflammatory activity. Eur. J. Med. Chem., 2009, 44(1), 117-123.
[http://dx.doi.org/10.1016/j.ejmech.2008.03.017] [PMID: 18455273]
[47]
Singh, R.J.; Singh, D.K. Synthesis, characterization and biological activity of some 1,2,4-triazole derivatives. J. Chem., 2009, 6(3), 796-800.
[48]
Gumrukcuoglu, N.; Serdar, M.; Celik, E.; Sevim, A.; Demirbas, N. Sinthesis and antimicrobial activities of some new 1,2,4-triazole derivatives. Turk. J. Chem., 2007, 31, 335-348.
[49]
Mavrova, A.T.; Wesselinova, D.; Tsenov, Y.A.; Denkova, P. Synthesis, cytotoxicity and effects of some 1,2,4-triazole and 1,3,4-thiadiazole derivatives on immunocompetent cells. Eur. J. Med. Chem., 2009, 44(1), 63-69.
[http://dx.doi.org/10.1016/j.ejmech.2008.03.006] [PMID: 18439727]
[50]
Gobis, K.; Foks, H.; Zwolska, Z. Augustynowicz-Kopeć, E. Synthesis and tuberculostatic activity of novel 1,2,4-triazoles obtained from heterocyclic carbohydrazides. Heterocycles, 2010, 81(4), 917-934.
[http://dx.doi.org/10.3987/COM-09-11888]
[51]
Murti, Y.; Agnihotri, R.; Pathak, D. Synthesis characterization and pharmacological screening of some substituted 1,2,3 & 1,2,4-triazoles. American J. Chem, 2011, 1(2), 42-46.
[http://dx.doi.org/10.5923/j.chemistry.20110102.09]
[52]
Maddila, S.; Jonnalagadda, S.B. New class of triazole derivatives and their antimicrobial activity. Lett. Drug Des. Discov., 2012, 9(7), 687-693.
[http://dx.doi.org/10.2174/157018012801319526]
[53]
Pyatakov, D.A.; Chernyshev, V.M. Novocherkassk, High-Energy Materials Based on Nitrogen-Containing Heterocycles, YURSPU (NPI).
[54]
Pozharsky, A.F. Theoretical Foundations of the Chemistry of Heterocycles; Khimiya: Moscow, 1985.
[55]
Zinoviev, V.M.; Kutsenko, G.V.; Ermilov, A.S. High-energy fillers of solid rocket fuels and other high-energy condensed systems, 2011.
[56]
Lee, K.Y.; Storm, C.B.; Hiskey, M.A.; Coburn, M.D. An improved synthesis of 5-amino-3-nitro-1H-1,2,4-triazole (ANTA), a useful intermediate for the preparation of insensitive high explosives. J. Energ. Mater., 1991, 9(5), 415-428.
[http://dx.doi.org/10.1080/07370659108019382]
[57]
Pevsner, M.S. Derivatives of 1,2,4-triazole-high-energy compounds. Ross. Chem. Zhurnal, 1997, 41(2), 73-83.
[58]
Mirzaei, Y.R.; Twamley, B.; Shreeve, J.M. Syntheses of 1-alkyl-1,2,4-triazoles and the formation of quaternary 1-alkyl-4-polyfluoroalkyl-1,2,4-triazolium salts leading to ionic liquids. J. Org. Chem., 2002, 67(26), 9340-9345.
[http://dx.doi.org/10.1021/jo026350g] [PMID: 12492336]
[59]
Voronkov, M.G.; Shagun, L.G.; Dorofeev, I.A. Unusual interaction of 3-amino-1,2,4-triazole with 1,3-diiodpropane-2-one. Izvestiya RAN. Chemical Series, 2013, 11, 2554-2556.
[60]
Gruzdev, M.S.; Kolker, A.M.; Aslanov, L.A. Ionic liquids: Theory and Practice; Ivanovo Publishing House: Ivanovo, 2019.
[61]
Lei, R.; Gao, L.; Jin, R.; Qiu, X. Sulfonated polyimides containing 1,2,4-triazole groups for proton exchange membranes. Chin. J. Polym. Sci., 2014, 32(7), 941-952.
[http://dx.doi.org/10.1007/s10118-014-1460-7]
[62]
Saito, J.; Miyatake, K.; Watanabe, M. Synthesis and properties of polyimide ionomers containing 1H-1,2,4-triazole groups. Macromolecules, 2008, 41(7), 2415-2420.
[http://dx.doi.org/10.1021/ma7028055]
[63]
Subbaraman, R.; Ghassemi, H.; Zawodzinski, T., Jr Triazole and triazole derivatives as proton transport facilitators in polymer electrolyte membrane fuel cells. Solid State Ion., 2009, 180(20-22), 20-22, 1143-1150.
[http://dx.doi.org/10.1016/j.ssi.2009.05.018]
[64]
Potrekar, R.A.; Kulkarni, M.P.; Kulkarni, R.A.; Vernekar, S.P. Polybenzimidazoles tethered with N-phenyl 1,2,4-triazole units as polymer electrolytes for fuel cells. J. Polym. Sci. A Polym. Chem., 2009, 47(9), 2289-2303.
[http://dx.doi.org/10.1002/pola.23310]
[65]
Nenitsescu, K.D. Org. Chem; Publishing House of Foreign Literature: Moscow, 1963.
[66]
Blumenthal, G.; Engels, C.; Fitz, I.; Haberzettl, V. Inorganicos; Mir: Moscow, 1984.
[67]
Kharitonov, Y. Analytical chemistry. In: General theoretical foundations: Qualitative analysis. Textbook for Universities; Higher School: Moscow, 2001.
[68]
Liu, K.; Shi, W.; Cheng, P. The coordination chemistry of Zn(II), Cd(II) and Hg(II) complexes with 1,2,4-triazole derivatives. Dalton Trans., 2011, 40(34), 8475-8490.
[http://dx.doi.org/10.1039/c0dt01578d] [PMID: 21629962]
[69]
Kuznetsov, Y.I.; Kazansky, L.P. Physico-chemical aspects of metal protection by corrosion inhibitors of the azoles class. Russ. Chem. Rev., 2008, 77(3), 219.
[70]
Garcia-Ochoa, E.; Genesca, J. Understanding the inhibiting properties of 3-amino-1,2,4-triazole from fractal analysis. Surf. Coat. Tech., 2004, 184(2), 322-330.
[http://dx.doi.org/10.1016/j.surfcoat.2003.11.019]
[71]
Sripriyal, S.; Subha, C. The inhibition chemistry of 3-amino- 5-phenyl 1,2,4-triazole for aluminium in hydrochloric acid solution. IOSR-. J. Appl. Chem., 2013, 6(2), 25-29.
[http://dx.doi.org/10.9790/5736-0622529]
[72]
Qafsaoui, W.; Takenouti, H. Corrosion protection of 2024-T3 aluminium alloy by electro-polymerized 3-amino-1,2,4-triazole in sulphate solution containing chloride. Corros. Sci., 2010, 52(11), 3667-3676.
[http://dx.doi.org/10.1016/j.corsci.2010.07.014]
[73]
Ramesh, S.; Rajeswari, S. Corrosion inhibition of mild steel in neutral aqueous solution by new triazole derivatives. Electrochim. Acta, 2004, 49(5), 811-820.
[http://dx.doi.org/10.1016/j.electacta.2003.09.035]
[74]
Qun, J.X.; Sijing, D.; Hong, Y. Inhibition action and adsorption behavior of 3-amino-1,2,4-triazole on copper in 3% NaCl solution. Adv. Mat. Res., 2010, 148-149, 1343-1346.
[75]
Sherif, S.M.; Erasmus, R.M.; Comins, J.D. Corrosion of copper in aerated synthetic sea water solutions and its inhibition by 3-amino-1,2,4-triazole. J. Colloid Interface Sci., 2007, 309(2), 470-477.
[http://dx.doi.org/10.1016/j.jcis.2007.01.003] [PMID: 17346723]
[76]
Sherif, S.M.; Erasmus, R.M.; Comins, J.D. Effects of 3-amino-1,2,4-triazole on the inhibition of copper corrosion in acidic chloride solutions. J. Colloid Interface Sci., 2007, 311(1), 144-151.
[http://dx.doi.org/10.1016/j.jcis.2007.02.064] [PMID: 17416388]
[77]
Trachli, B.; Keddam, M. Protective effect of electropolymerized 3-amino-1,2,4-Triazole towards corrosion of copper in 0.5 M NaCl. Corros. Sci., 2002, 44(2), 997-1008.
[http://dx.doi.org/10.1016/S0010-938X(01)00124-X]
[78]
Godovikova, T.N.; Rakitin, O.A.; Khmelnitsky, L.I. Diazotization in highly acidic environments of weakly basic aromatic and heterocyclic amines. Usp. Khim., 1983, 52(5), 777-786.
[http://dx.doi.org/10.1070/RC1983v052n05ABEH002830]
[79]
Stepanov, S. D.; Pevsner, M. S.; Temchenko, T. P. Diazocompounds in the series 1,2,4-triazole. Structure and transformations of diazotization products of 1-methyl-3-amino-5-R-1,2,4-triazoles. Zh.org.kh, 1988, 24(10), 2145-2151.
[80]
Venkataraman, K. Chemistry of Synthetic Dyes; Khimiya: Leningrad, 1975, p. 4.
[81]
Vinyukova, G.N. Chemistry of Dyes; Khimiya: Moscow, 1979.
[82]
Bratichak, M.M. Peroxide Derivatives of Epoxy Resins; Publishing house of NU "Lviv Polytechnic": Lviv 2003.
[83]
Bratychak, M.; Astakhova, O.; Shyshchak, O.; Zubal, O.; Sienkiewicz, M.; Ivashkiv, O. Epoxy composites filled with natural calcium carbonate. 1. Epoxy composites obtained in the presence of monoperoxy derivative of epidian-6 epoxy resin. Chem. Chem. Technol., 2019, 13(3), 360-364.
[http://dx.doi.org/10.23939/chcht13.03.360]
[84]
Bratychak, M.; Brostow, W. Synthesis and properties of peroxy derivatives of epoxy resins based on Bisphenol A. 1. Effects of the presence of inorganic bases. Polym. Eng. Sci., 1999, 39(8), 1541-1549.
[http://dx.doi.org/10.1002/pen.11547]
[85]
Bratychak, M.; Bashta, B.; Astakhova, O.; Shyshchak, O.; Zubal, O. Synthesis mechanism and properties of epoxy resins modified with adipic acid. Chem. Chem. Technol., 2019, 13(1), 52-58.
[http://dx.doi.org/10.23939/chcht13.01.052]
[86]
Bratychak, M.; Brostow, W.; Donchak, V. Functional peroxides and peroxy oligoesters on the basis of pyromellitic dianhydride. Mater. Res. Innov., 2002, 5(6), 250-256.
[http://dx.doi.org/10.1007/s10019-002-0166-6]
[87]
Desenko, S.M.; Orlov, V.D. Folio publ: Kharkiv, Azageterocycles based on aromatic non-specific ketones 1998.
[88]
Izatt, G.C.; Lindh, R.L.; Bruening, R.; Huszthy, C.W.; McDaniel, C.W.; Bradshaw, J.S.; Christensen, J.J. Separation of silver from other metal cations using pyridine and triazole macrocycles in liquid membrane systems. Anal. Chem., 1988, 60(17), 1694-1699.
[http://dx.doi.org/10.1021/ac00168a013]
[89]
Gad, E.K.; Mahmoud, A. Synthesis of surface active agents from some novel class of oxadiazole, thiadiazole and triazole derivatives having microbiological activities. J. Surfactants Deterg., 2013, 17(3), 509-523.
[http://dx.doi.org/10.1007/s11743-013-1530-9]
[90]
Lamanna, M.E.; De la Horra, E.; Jacobo, S. Synthesis of an organic semiconductor by polymerization of 3-amino-1,2,4-triazole. React. Funct. Polym., 2009, 69(10), 759-765.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2009.06.005]
[91]
Zheng, Y.; Li, S.; Weng, Z.; Gao, C. Hyperbranched polymers: Advances from synthesis to applications. Chem. Soc. Rev., 2015, 44(12), 4091-4130.
[http://dx.doi.org/10.1039/C4CS00528G] [PMID: 25902871]
[92]
Wu, X.; Tong, H.; Wang, L. Fluorescent polymer materials for detection of explosives. Prog. Chem., 2019, 31(11), 1509-1527.
[http://dx.doi.org/10.7536/PC190734]
[93]
Wu, Y.; Qin, A.; Tang, B.Z. AIE-active polymers for explosive detection. Chin. J. Polym. Sci., 2017, 35(2), 141-154.
[http://dx.doi.org/10.1007/s10118-017-1882-0]
[94]
Zhou, H.; Chua, M.H.; Tang, B.Z.; Xu, J. Aggregation-Induced Emission (AIE)-active polymers for explosive detection. Polym. Chem., 2019, 10(28), 3822-3840.
[http://dx.doi.org/10.1039/C9PY00322C]
[95]
Chi, W.W.; Zhang, R.Y.; Han, T.; Du, J.; Li, H.K.; Zhang, W-J.; Li, Y-F.; Tang, B.Z. Facile synthesis of functional poly(methyltriazolylcarboxylate)s by solvent- and catalyst-free butynoate-azide polycycloaddition. Chin. J. Polym. Sci., 2020, 38(1), 17-23.
[http://dx.doi.org/10.1007/s10118-019-2316-y]
[96]
Lang, M.N.; Chi, W.W.; Han, T.; Zhao, Q-Z.; Li, H-K.; Tang, B.Z.; Li, Y-F. Synthesis of Functional Hyperbranched Poly(methyltriazolylcarboxylate)s by Catalyst-free click Polymerization of Butynoates and Azides. Chin. J. Polym. Sci., 2020, 38(11), 1171-1177.
[http://dx.doi.org/10.1007/s10118-020-2421-y]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy