Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Green is the New Black: Emerging Environmentally Friendly Prospects in the Synthesis of Quinoxaline Derivatives

Author(s): Lacksany Phongphane and Mohamad Nurul Azmi*

Volume 20, Issue 4, 2023

Published on: 25 August, 2022

Page: [415 - 435] Pages: 21

DOI: 10.2174/1570193X19666220606100319

Price: $65

Abstract

Functionalized polysubstituted quinoxalines have been widely reported to possess appealing biological activities of great pharmaceutical importance, which drew researchers into exploring promising synthetic protocols. On top of that, prospects on green chemistry are driving research paradigms into more cost-effective, facile, environmental-friendly, sustainable, and scalable approaches. This paper reviews the green synthesis methods of quinoxaline derivatives using recyclable heterogeneous catalysts, green solvents and energy-mediated methods that have been extensively studied and published since 2010 to offer an insight into the ongoing greener trend in the scientific field.

Keywords: Quinoxaline, green synthesis, recyclable heterogeneous catalyst, green solvents, energy-mediated methods

« Previous
[1]
Dua, R.; Shrivastava, S.; Sonwane, S.K.; Srivastava, S.K. Pharmacological significance of synthetic heterocycles scaffold: A review. Adv. Biol. Res. (Faisalabad), 2011, 5(3), 120-144.
[2]
Sunderhaus, J.D.; Martin, S.F. Applications of multicomponent reactions to the synthesis of diverse heterocyclic scaffolds. Chemistry, 2009, 15(6), 1300-1308.
[http://dx.doi.org/10.1002/chem.200802140] [PMID: 19132705]
[3]
Irfan, A.; Sabeeh, I.; Umer, M.; Naqvi, A.Z.; Fatima, H.; Yousaf, S.; Fatima, Z. A review on the therapeutic potential of quinoxaline derivatives. World J. Pharm. Res., 2017, 13(6), 47-68.
[4]
Irfan, A.; Ahmad, S.; Hussain, S.; Batool, F.; Riaz, H.; Zafar, R.; Kotwica-Mojzych, K.; Mojzych, M. Recent updates on the synthesis of bioactive quinoxaline-containing sulfonamides. Appl. Sci. (Basel), 2021, 11(12), 5702.
[http://dx.doi.org/10.3390/app11125702]
[5]
Pereira, J.A.; Pessoa, A.M.; Cordeiro, M.N.D.; Fernandes, R.; Prudêncio, C.; Noronha, J.P.; Vieira, M. Quinoxaline, its derivatives and applications: A State of the Art review. Eur. J. Med. Chem., 2015, 97, 664-672.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.058] [PMID: 25011559]
[6]
Liu, R.; Huang, Z.; Murray, M.G.; Guo, X.; Liu, G. Quinoxalin-2(1H)-one derivatives as inhibitors against hepatitis C virus. J. Med. Chem., 2011, 54(16), 5747-5768.
[http://dx.doi.org/10.1021/jm200394x] [PMID: 21761853]
[7]
Montana, M.; Mathias, F.; Terme, T.; Vanelle, P. Antitumoral activity of quinoxaline derivatives: A systematic review. Eur. J. Med. Chem., 2019, 163, 136-147.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.059] [PMID: 30503938]
[8]
De Sarro, G.; Gitto, R.; Russo, E.; Ibbadu, G.F.; Barreca, M.L.; De Luca, L.; Chimirri, A. AMPA receptor antagonists as potential anticonvulsant drugs. Curr. Top. Med. Chem., 2005, 5(1), 31-42.
[http://dx.doi.org/10.2174/1568026053386999] [PMID: 15638776]
[9]
Olayiwola, G.; Obafemi, C.; Taiwo, F. Synthesis and neuropharmacological activity of some quinoxalinone derivatives. Afr. J. Biotechnol., 2007, 6(6), 777-786.
[10]
Tang, X.; Zhou, Q.; Zhan, W.; Hu, D.; Zhou, R.; Sun, N.; Chen, S.; Wu, W.; Xue, W. Synthesis of novel antibacterial and antifungal quinoxaline derivatives. RSC Advances, 2022, 12(4), 2399-2407.
[http://dx.doi.org/10.1039/D1RA07559D] [PMID: 35425241]
[11]
Montana, M.; Montero, V.; Khoumeri, O.; Vanelle, P. Quinoxaline derivatives as antiviral agents: A systematic review. Molecules, 2020, 25(12), 2784.
[http://dx.doi.org/10.3390/molecules25122784] [PMID: 32560203]
[12]
Sarges, R.; Howard, H.R.; Browne, R.G.; Lebel, L.A.; Seymour, P.A.; Koe, B.K. 4-Amino[1,2,4]triazolo[4,3-a]quinoxalines. A novel class of potent adenosine receptor antagonists and potential rapid-onset antidepressants. J. Med. Chem., 1990, 33(8), 2240-2254.
[http://dx.doi.org/10.1021/jm00170a031] [PMID: 2374150]
[13]
Badran, M.M.; Moneer, A.A.; Refaat, H.M. El-Malah, A.A. Synthesis and antimicrobial activity of novel quinoxaline derivatives. J. Chin. Chem. Soc. (Taipei), 2007, 54(2), 469-478.
[http://dx.doi.org/10.1002/jccs.200700066]
[14]
Abu-Hashem, A.A.; Gouda, M.A.; Badria, F.A. Synthesis of some new pyrimido[2′,1′2,3]thiazolo[4,5-b]quinoxaline derivatives as anti-inflammatory and analgesic agents. Eur. J. Med. Chem., 2010, 45(5), 1976-1981.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.042] [PMID: 20149490]
[15]
Burguete, A.; Pontiki, E.; Hadjipavlou-Litina, D.; Villar, R.; Vicente, E.; Solano, B.; Ancizu, S.; Pérez-Silanes, S.; Aldana, I.; Monge, A. Synthesis and anti-inflammatory/antioxidant activities of some new ring substituted 3-phenyl-1-(1,4-di-N-oxide quinoxalin-2-yl)-2-propen-1-one derivatives and of their 4,5-dihydro-(1H)-pyrazole analogues. Bioorg. Med. Chem. Lett., 2007, 17(23), 6439-6443.
[http://dx.doi.org/10.1016/j.bmcl.2007.10.002] [PMID: 17942306]
[16]
Ibrahim, M.K.; Eissa, I.H.; Alesawy, M.S.; Metwaly, A.M.; Radwan, M.M.; ElSohly, M.A. Design, synthesis, molecular modeling and anti-hyperglycemic evaluation of quinazolin-4(3H)-one derivatives as potential PPARγ and SUR agonists. Bioorg. Med. Chem., 2017, 25(17), 4723-4744.
[http://dx.doi.org/10.1016/j.bmc.2017.07.015] [PMID: 28720328]
[17]
Heravi, M.M.; Taheri, S.; Bakhtiari, K.; Oskooie, H.A. On water: A practical and efficient synthesis of quinoxaline derivatives catalyzed by CuSO4• 5H2O. Catal. Commun., 2007, 8(2), 211-214.
[http://dx.doi.org/10.1016/j.catcom.2006.06.013]
[18]
Heravi, M.M.; Bakhtiari, K.; Oskooie, H.A.; Taheri, S. MnCl2-promoted synthesis of quinoxaline derivatives at room temperature. Heteroatom Chem., 2008, 19(2), 218-220.
[http://dx.doi.org/10.1002/hc.20401]
[19]
Bhosale, R.S.; Sarda, S.R.; Ardhapure, S.S.; Jadhav, W.N.; Bhusare, S.R.; Pawar, R.P. An efficient protocol for the synthesis of quinoxaline derivatives at room temperature using molecular iodine as the catalyst. Tetrahedron Lett., 2005, 46(42), 7183-7186.
[http://dx.doi.org/10.1016/j.tetlet.2005.08.080]
[20]
More, S.V.; Sastry, M.; Wang, C-C.; Yao, C-F. Molecular iodine: A powerful catalyst for the easy and efficient synthesis of quinoxalines. Tetrahedron Lett., 2005, 46(37), 6345-6348.
[http://dx.doi.org/10.1016/j.tetlet.2005.07.026]
[21]
Robinson, R.S.; Taylor, R.J.K. Quinoxaline synthesis from α-hydroxy ketones via a tandem oxidation process using catalysed aerobic oxidation. Synlett, 2005, 2005(06), 1003-1005.
[http://dx.doi.org/10.1055/s-2005-864830]
[22]
Venkatesh, C.; Singh, B.; Mahata, P.K.; Ila, H.; Junjappa, H. Heteroannulation of nitroketene N,S-arylaminoacetals with POCl3: A novel highly regioselective synthesis of unsymmetrical 2,3-substituted quinoxalines. Org. Lett., 2005, 7(11), 2169-2172.
[http://dx.doi.org/10.1021/ol0505095] [PMID: 15901161]
[23]
Cai, J-J.; Zou, J-P.; Pan, X-Q.; Zhang, W. Gallium (III) triflate-catalyzed synthesis of quinoxaline derivatives. Tetrahedron Lett., 2008, 49(52), 7386-7390.
[http://dx.doi.org/10.1016/j.tetlet.2008.10.058]
[24]
Aoyama, N.; Kobayashi, S. Dehydrative glycosylation in water using a Brønsted acid–surfactant-combined catalyst. Chem. Lett., 2006, 35(2), 238-239.
[http://dx.doi.org/10.1246/cl.2006.238]
[25]
Antoniotti, S.; Duñach, E. Direct and catalytic synthesis of quinoxaline derivatives from epoxides and ene-1, 2-diamines. Tetrahedron Lett., 2002, 43(22), 3971-3973.
[http://dx.doi.org/10.1016/S0040-4039(02)00715-3]
[26]
Sharma, S.; Gangal, S.; Rauf, A. Green chemistry approach to the sustainable advancement to the synthesis of heterocyclic chemistry. Rasayan J. Chem., 2008, 1(4), 693-717.
[27]
Kalidindi, S.B.; Jagirdar, B.R. Nanocatalysis and prospects of green chemistry. ChemSusChem, 2012, 5(1), 65-75.
[http://dx.doi.org/10.1002/cssc.201100377] [PMID: 22190344]
[28]
Borah, B.; Chowhan, L.R. Recent advances in the transition-metal-free synthesis of quinoxalines. RSC Advances, 2021, 11(59), 37325-37353.
[http://dx.doi.org/10.1039/D1RA06942J] [PMID: 35496411]
[29]
Capello, C.; Fischer, U.; Hungerbühler, K. What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem., 2007, 9(9), 927-934.
[http://dx.doi.org/10.1039/b617536h]
[30]
Byrne, F.P.; Jin, S.; Paggiola, G.; Petchey, T.H.; Clark, J.H.; Farmer, T.J.; Hunt, A.J.; McElroy, C.R.; Sherwood, J. Tools and techniques for solvent selection: Green solvent selection guides. Sustain. Chem. Process, 2016, 4(1), 1-24.
[http://dx.doi.org/10.1186/s40508-016-0051-z]
[31]
Lupacchini, M.; Mascitti, A.; Giachi, G.; Tonucci, L.; d’Alessandro, N.; Martinez, J.; Colacino, E. Sonochemistry in non-conventional, green solvents or solvent-free reactions. Tetrahedron, 2017, 73(6), 609-653.
[http://dx.doi.org/10.1016/j.tet.2016.12.014]
[32]
Banerjee, B. Recent developments on ultrasound assisted catalyst-free organic synthesis. Ultrason. Sonochem., 2017, 35(Pt A), 1-14.
[http://dx.doi.org/10.1016/j.ultsonch.2016.09.023] [PMID: 27771266]
[33]
Puri, S.; Kaur, B.; Parmar, A.; Kumar, H. Applications of ultrasound in organic synthesis-A green approach. Curr. Org. Chem., 2013, 17(16), 1790-1828.
[http://dx.doi.org/10.2174/13852728113179990018]
[34]
Baig, R.B.; Varma, R.S. Alternative energy input: Mechanochemical, microwave and ultrasound-assisted organic synthesis. Chem. Soc. Rev., 2012, 41(4), 1559-1584.
[http://dx.doi.org/10.1039/C1CS15204A] [PMID: 22076552]
[35]
Moseley, J.D.; Kappe, C.O. A critical assessment of the greenness and energy efficiency of microwave-assisted organic synthesis. Green Chem., 2011, 13(4), 794-806.
[http://dx.doi.org/10.1039/c0gc00823k]
[36]
Kranjc, K.; Kocevar, M. Microwave-assisted organic synthesis: General considerations and transformations of heterocyclic compounds. Curr. Org. Chem., 2010, 14(10), 1050-1074.
[http://dx.doi.org/10.2174/138527210791130488]
[37]
Lambat, T.L.; Chopra, P.K.P.; Mahmood, S.H. Microwave: A Green Contrivance for the Synthesis of N-Heterocyclic Compounds. Curr. Org. Chem., 2020, 24(22), 2527-2554.
[http://dx.doi.org/10.2174/1385272824999200622114919]
[38]
Tarpada, U.P.; Thummar, B.B.; Raval, D.K. A green protocol for the synthesis of quinoxaline derivatives catalyzed by polymer supported sulphanilic acid. Arab. J. Chem., 2017, 10, S2902-S2907.
[http://dx.doi.org/10.1016/j.arabjc.2013.11.021]
[39]
Rahmatpour, A. Polystyrene−supported AlCl3 as a highly active and reusable heterogeneous Lewis acid catalyst for the one−pot synthesis of quinoxalines. Heteroatom Chem., 2012, 23(5), 472-477.
[http://dx.doi.org/10.1002/hc.21039]
[40]
Rahmatpour, A.; Aalaie, J. One-pot synthesis of N-substituted pyrroles catalyzed by polystyrene-supported aluminum chloride as a reusable heterogeneous Lewis acid catalyst. Heteroatom Chem., 2011, 22(1), 85-90.
[http://dx.doi.org/10.1002/hc.20661]
[41]
Rahmatpour, A.; Aalaie, J. Polystyrene-supported aluminum chloride: An efficient and recyclable green catalyst for one-pot synthesis of 14-aryl or alkyl-14H-dibenzo [a, j] xanthenes. Heteroatom Chem., 2011, 22(1), 51-54.
[http://dx.doi.org/10.1002/hc.20655]
[42]
Sajjadifar, S.; Azizkhania, V.; Pal, K.; Jabbari, H.; Pouralimardan, O.; Divsar, F.; Mohammadi-Aghdam, S.; Amini, I.; Hamidi, H. Characterization of catalyst: Comparison of Brønsted and Lewis acidic power in Boron sulfonic acid as a heterogeneous catalyst in green synthesis of quinoxaline derivatives. Chem. Methodol., 2019, 3(2), 226-236.
[43]
Sajjadifar, S.; Hamidi, H.; Pal, K. Revisiting of Boron Sulfonic Acid Applications in Organic Synthesis: Mini-Review. Chem. Rev., 2019, 1(1), 35-46.
[http://dx.doi.org/10.33945/SAMI/JCR.2019.1.3546]
[44]
Sajjadifar, S.; Amini, I.; Amoozadeh, T. Silica Boron sulfonic acid as a new and efficient catalyst for the green synthesis of quinoxaline derivatives at room temperature. Chem. Methodol., 2017, 1(1), 1-11.
[http://dx.doi.org/10.22631/chemm.2017.88920.1000]
[45]
Bashirzadeh, M.; Behbahani, F. Ethylene glycol and H2SO4/SiO2 as a green medium for the preparation of quinoxaline derivatives at room temperature. Eur. Chem. Bull., 2020, 9(1), 33.
[http://dx.doi.org/10.17628/ecb.2020.9.33-37]
[46]
Behbahani, F.K.; Lotfi, A. Catalytic performance of SiO2-Supported Fe(ClO4)3.6H2O in synthesis of 2-substituted benzimidazoles. Eur. Chem. Bull., 2013, 2(9), 694-697.
[47]
Zolfigol, M.A.; Chehardoli, G.; Mallakpour, S. Silica sulfuric acid/NaNO2 as a novel heterogeneous system for the oxidation of urazoles under mild conditions. Synth. Commun., 2006, 33(5), 833-841.
[http://dx.doi.org/10.1081/SCC-120016329]
[48]
Aghapoor, K.; Ebadi-Nia, L.; Mohsenzadeh, F.; Morad, M.; Balavar, Y.; Darabi, R. ChemInform abstract: Silica-supported Bismuth(III) chloride as a new recyclable heterogeneous catalyst for the paal-knorr pyrrole synthesis. J. Organomet. Chem., 2012, 708–709, 25-30.
[http://dx.doi.org/10.1016/j.jorganchem.2012.02.008]
[49]
Aghapoor, K.; Mohsenzadeh, F.; Darabi, R.; Ghassemzadeh, M.; Neumueller, B. Catalytic application of recyclable silica-supported bismuth(iii) chloride in the benzo[n,n]-heterocyclic condensation. J. Organomet. Chem., 2014, 743, 170-178.
[http://dx.doi.org/10.1016/j.jorganchem.2013.06.037]
[50]
Dânoun, K.; Essamlali, Y.; Amadine, O.; Mahi, H.; Zahouily, M. Eco-friendly approach to access of quinoxaline derivatives using nanostructured pyrophosphate Na2PdP2O7 as a new, efficient and reusable heterogeneous catalyst. BMC Chem., 2020, 14(1), 6.
[http://dx.doi.org/10.1186/s13065-020-0662-z] [PMID: 32025664]
[51]
Ruiz, D. M.; Autino, J. C.; Quaranta, N.; Vázquez, P. G.; Romanelli, G. P. An efficient protocol for the synthesis of quinoxaline derivatives at room temperature using recyclable alumina-supported heteropolyoxometalates. Sci. World J, 2012, 2012
[http://dx.doi.org/10.1100/2012/174784]
[52]
Sosa, A.A.; Palermo, V.; Langer, P.; Luque, R.; Romanelli, G.P.; Pizzio, L.R. Tungstophosphoric acid/mesoporous silicas as suitable catalysts in quinoxaline synthesis. Mol. Catal., 2022, 517, 112046.
[http://dx.doi.org/10.1016/j.mcat.2021.112046]
[53]
Sosa, A.A.; Rivera, T.S.; Blanco, M.N.; Pizzio, L.R.; Romanelli, G.P. Tungstophosphoric Acid Supported on Zirconia: A Recyclable catalyst for the green synthesis on quinoxaline derivatives under solvent-free conditions. Phosphorus Sulfur Silicon Relat. Elem., 2013, 188(8), 1071-1079.
[http://dx.doi.org/10.1080/10426507.2012.710678]
[54]
Rekunge, D.S.; Khatri, C.K.; Chaturbhuj, G.U. Sulfated polyborate: An efficient and reusable catalyst for one pot synthesis of Hantzsch 1,4-dihydropyridines derivatives using ammonium carbonate under solvent free conditions. Tetrahedron Lett., 2017, 58(12), 1240-1244.
[http://dx.doi.org/10.1016/j.tetlet.2017.02.038]
[55]
Indalkar, K.S.; Khatri, C.K.; Chaturbhuj, G.U. Rapid, efficient and eco-friendly procedure for the synthesis of quinoxaline under solvent-free conditions using sulfated polyborate as a recycle catalyst. J. Chem. Sci., 2017, 129(2), 141-148.
[http://dx.doi.org/10.1007/s12039-017-1235-0]
[56]
Tajbakhsh, M.; Bazzar, M.; Ramzanian, S.F.; Tajbakhsh, M. Sulfonated nanoclay minerals as a recyclable eco-friendly catalyst for the synthesis of quinoxaline derivatives in green media. Appl. Clay Sci., 2014, 88, 178-185.
[http://dx.doi.org/10.1016/j.clay.2013.12.023]
[57]
Krishnakumar, B.; Swaminathan, M. Solvent free synthesis of quinoxalines, dipyridophenazines and chalcones under microwave irradiation with sulfated Degussa titania as a novel solid acid catalyst. J. Mol. Catal. Chem., 2011, 350(1-2), 16-25.
[http://dx.doi.org/10.1016/j.molcata.2011.08.026]
[58]
Krishnakumar, B.; Velmurugan, R.; Jothivel, S.; Swaminathan, M. An efficient protocol for the green synthesis of quinoxaline and dipyridophenazine derivatives at room temperature using sulfated titania. Catal. Commun., 2010, 11(12), 997-1002.
[http://dx.doi.org/10.1016/j.catcom.2010.04.021]
[59]
Krishnakumar, B.; Swaminathan, M. A recyclable and highly effective sulfated TiO2-P25 for the synthesis of quinoxaline and dipyridophenazine derivatives at room temperature. J. Organomet. Chem., 2010, 695(24), 2572-2577.
[http://dx.doi.org/10.1016/j.jorganchem.2010.08.055]
[60]
Samantaray, S.; Parida, K.M. Effect of anions on the textural and catalytic activity of titania. J. Mater. Sci., 2003, 38(9), 1835-1848.
[http://dx.doi.org/10.1023/A:1023575607846]
[61]
Manesh, R.; Dhar, A.K.; Sasank, T.; Thirunavukkarasu, S.; Devadoss, T. Citric acid: An efficient and green catalyst for rapid one pot synthesis of quinoxaline derivatives at room temperature. Chin. Chem. Lett., 2011, 22, 389-392.
[http://dx.doi.org/10.1016/j.cclet.2010.11.002]
[62]
Zhang, P.M.; Li, Y.W.; Zhou, J.; Gan, L.L.; Chen, Y.J.; Gan, Z.J.; Yu, Y.A. One-pot facile synthesis of 2, 3-dihydroxyquinoxaline and 2, 3-dichloroquinoxaline derivatives using silica gel as an efficient catalyst. J. Heterocycl. Chem., 2018, 55(7), 1809-1814.
[http://dx.doi.org/10.1002/jhet.3224]
[63]
Jafarpour, M.; Rezaeifard, A.; Danehchin, M. Easy access to quinoxaline derivatives using alumina as an effective and reusable catalyst under solvent-free conditions. Appl. Catal., A., 2011, 394, 48-51.
[64]
Javidi, J.; Esmaeilpour, M. Fe3O4@ SiO2–imid–PMAn magnetic porous nanosphere as recyclable catalyst for the green synthesis of quinoxaline derivatives at room temperature and study of their antifungal activities. Mater. Res. Bull., 2016, 73, 409-422.
[http://dx.doi.org/10.1016/j.materresbull.2015.10.002]
[65]
Navgire, M.; Yelwande, A.; Lande, M. Synthesis and characterizations of carbon doped MoO3-TiO2 nanocrystalline composite materials; Synthesis and Reactivity in Inorganic, 2013, p. 43.
[66]
Lande, M.; Navgire, M.; Rathod, S.; Katkar, S.; Yelwande, A.; Arbad, B.; Chemistry, E. An efficient green synthesis of quinoxaline derivatives using carbon-doped MoO3–TiO2 as a heterogeneous catalyst. J. Ind. Eng. Chem., 2012, 18(1), 277-282.
[http://dx.doi.org/10.1016/j.jiec.2011.11.048]
[67]
Rashidizadeh, A.; Ghafuri, H. g-C3N4/Ni nanocomposite: An efficient and eco-friendly recyclable catalyst for the synthesis of quinoxalines Proceeding of the 22nd International Electronic Conference on Synthetic Organic Chemistry, 15 November-15 December, 20182019.
[http://dx.doi.org/10.3390/ecsoc-22-05651]
[68]
Hasaninejad, A.; Zare, A.; Mohammadizadeh, M.R.; Shekouhy, M. Reviews, Lithium bromide as an efficient, green, and inexpensive catalyst for the synthesis of quinoxaline derivatives at room temperature. Green Chem. Lett. Rev., 2010, 3(2), 143-148.
[http://dx.doi.org/10.1080/17518251003619192]
[69]
Mulik, A.; Chandam, D.; Patil, P.; Sawant, S.; Deshmukh, M. Proficient synthesis of quinoxaline and phthalazinetrione derivatives using [C8dabco]Br ionic liquid as catalyst in aqueous media. J. Mol. Liq., 2013, 179, 104-109.
[http://dx.doi.org/10.1016/j.molliq.2012.12.006]
[70]
Pretti, C.; Renzi, M.; Focardi, S.E.; Giovani, A.; Monni, G.; Melai, B.; Rajamani, S.; Chiappe, C. Acute toxicity and biodegradability of N-alkyl-N-methylmorpholinium and N-alkyl-DABCO based ionic liquids. Ecotoxicol. Environ. Saf., 2011, 74(4), 748-753.
[http://dx.doi.org/10.1016/j.ecoenv.2010.10.032] [PMID: 21093055]
[71]
Kolvari, E.; Zolfigol, M.A.; Peiravi, M. Reviews, Green synthesis of quinoxaline derivatives using p-dodecylbenzensulfonic acid as a surfactant-type Bronsted acid catalyst in water. Green Chem. Lett. Rev., 2012, 5(2), 155-159.
[http://dx.doi.org/10.1080/17518253.2011.606849]
[72]
Beheshtiha, Y.S.; Heravi, M.M.; Saeedi, M.; Karimi, N.; Zakeri, M.; Tavakoli-Hossieni, N. Efficient and green synthesis of 1,2-disubstituted benzimidazoles and quinoxalines using bronsted acid ionic liquid, [(CH2)4SO3HMIM][HSO4], in water at room temperature. Synth. Commun., 2010, 40(8), 1216-1223.
[http://dx.doi.org/10.1080/00397910903062280]
[73]
Chatterjee, R.; Mahato, S.; Mukherjee, A.; Zyryanov, G.; Majee, A. Synthesis of quinoxaline derivatives catalyzed by Bronsted acidic ionic liquid under solvent-free conditions; , 2020, p. 050012.
[http://dx.doi.org/10.1063/5.0018532]
[74]
Sajjadifar, S.; Miri, S. Green synthesis of quinoxaline derivatives using phthalic acid as difunctional Brønsted acid at room temperature. Int. J. Chemtech Res., 2014, 6(14), 5433-5440.
[75]
Nagarapu, L.; Mallepalli, R.; Arava, G.; Yeramanchi, L. Polyethylene glycol (PEG-400) mediated synthesis of quinoxalines. Eur. J. Chem., 2010, 1(3), 228-231.
[http://dx.doi.org/10.5155/eurjchem.1.3.228-231.172]
[76]
Maryamabadi, A.; Hasaninejad, A.; Nowrouzi, N.; Mohebbi, G.; Asghari, B. Application of PEG-400 as a green biodegradable polymeric medium for the catalyst-free synthesis of spiro-dihydropyridines and their use as acetyl and butyrylcholinesterase inhibitors. Bioorg. Med. Chem., 2016, 24(6), 1408-1417.
[http://dx.doi.org/10.1016/j.bmc.2016.02.019] [PMID: 26879857]
[77]
Maryamabadi, A.; Hasaninejad, A.; Nowrouzi, N.; Mohebbi, G. Green synthesis of novel spiro-indenoquinoxaline derivatives and their cholinesterases inhibition activity. Bioorg. Med. Chem., 2017, 25(7), 2057-2064.
[http://dx.doi.org/10.1016/j.bmc.2017.02.017] [PMID: 28279561]
[78]
Kiran, G.; Laxminarayana, E.; Thirumala, C.M.; Ravinder, M. A green synthesis of quinoxaline derivatives & their biological actives. Int. J. Appl. Chem., 2017, 13, 421-432.
[79]
Nagarajaiah, H.; Mishra, A.K.; Moorthy, J.N. Mechanochemical solid-state synthesis of 2-aminothiazoles, quinoxalines and benzoylbenzofurans from ketones by one-pot sequential acid- and base-mediated reactions. Org. Biomol. Chem., 2016, 14(17), 4129-4135.
[http://dx.doi.org/10.1039/C6OB00351F] [PMID: 27072599]
[80]
Zhang, X.; Wang, J.; Sun, Y.; Zhan, H. Synthesis of quinoxaline derivatives catalyzed by PEG-400. Chin. Chem. Lett., 2010, 21(4), 395-398.
[http://dx.doi.org/10.1016/j.cclet.2009.12.015]
[81]
Ghafuri, H. Fast and green synthesis of biologically important quinoxalines with high yields in water. Curr. Chem. Lett, 2014, 3(3), 183-188.
[http://dx.doi.org/10.5267/j.ccl.2014.3.002]
[82]
Kumar, K.; Mudshinge, S.R.; Goyal, S.; Gangar, M.; Nair, V.A. catalyst free, one pot approach for the synthesis of quinoxaline derivatives via oxidative cyclisation of 1,2-diamines and phenacyl bromides. Tetrahedron Lett., 2015, 56(10), 1266-1271.
[http://dx.doi.org/10.1016/j.tetlet.2015.01.138]
[83]
Keivanloo, A.; Bakherad, M.; Rahimi, A.; Taheri, S.A.N. One-pot synthesis of 1,2-disubstituted pyrrolo[2,3-b]quinoxalines via palladium-catalyzed heteroannulation in water. Tetrahedron Lett., 2010, 51(18), 2409-2412.
[http://dx.doi.org/10.1016/j.tetlet.2010.02.123]
[84]
Bakherad, M.; Keivanloo, A.; Jajarmi, S. Synthesis of pyrrolo[2,3-b]quinoxalines by the Pd/C-catalyzed multicomponent reaction of 1,2-dichloroquinoxaline with hydrazine hydrate, phenylacetylene, and a variety of aldehydes in water. Tetrahedron, 2012, 68(9), 2107-2112.
[http://dx.doi.org/10.1016/j.tet.2012.01.045]
[85]
Keivanloo, A.; Bakherad, M.; Nasr-Isfahani, H.; Esmaily, S. Highly efficient synthesis of 5,6-Disubstituted-5H-pyrrolo[2,3-b]pyrazine-2,3-dicarbonitriles through a one-pot palladium-catalyzed coupling reaction/cyclization in water. Tetrahedron Lett., 2012, 53(25), 3126-3130.
[http://dx.doi.org/10.1016/j.tetlet.2012.04.016]
[86]
Ghosh, P.; Mandal, A. Reviews, Sodium dodecyl sulfate in water: Greener approach for the synthesis of quinoxaline derivatives. Green Chem. Lett. Rev., 2013, 6(1), 45-54.
[http://dx.doi.org/10.1080/17518253.2012.703245]
[87]
Zare, A.; Hasaninejad, A.; Parhami, A.; Moosavi-Zare, A.R.; Khedri, F.; Parsaee, Z.; Abdolalipoor-Saretoli, M.; Khedri, M.; Roshankar, M.; Deisi, H. Ionic liquid 1-butyl-3-methylimidazolium bromide ([bmim] Br): A green and neutral reaction media for the efficient, catalyst-free synthesis of quinoxaline derivatives. J. Serb. Chem. Soc., 2010, 75(10), 1315-1324.
[http://dx.doi.org/10.2298/JSC091014109Z]
[88]
Bhargava, S.; Soni, P.; Rathore, D. An environmentally benign attribute for the expeditious synthesis of quinoxaline and its derivatives. J. Mol. Struct., 2019, 1198, 126758.
[http://dx.doi.org/10.1016/j.molstruc.2019.07.005]
[89]
Achutha, L.; Parameshwar, R.; Reddy, B.M.; Babu, V.H. Microwave-assisted synthesis of some quinoxaline-incorporated schiff bases and their biological evaluation. J. Chem., 2013, 2013, 578438.
[http://dx.doi.org/10.1155/2013/578438]
[90]
Ravula, P.; Babu, H.; Manichandrika, P.; Ramanachary, N.; Narendra Sharath Chandra, J.N. Microwave assisted synthesis, biological evaluation and docking studies of novel pyrazoline derivatives as potent antiinflammatory and antibacterial agents. Int. J. Chem. Sci., 2016, 14(2)
[91]
Zhou, W-J.; Zhang, X-Z.; Sun, X-B.; Wang, B.; Wang, J-X.; Bai, L. Microwave-assisted synthesis of quinoxaline derivatives using glycerol as a green solvent. Russ. Chem. Bull., 2013, 62(5), 1244-1247.
[http://dx.doi.org/10.1007/s11172-013-0171-5]
[92]
Zhang, X-Z.; Wang, J-X.; Bai, L. Microwave-assisted synthesis of quinoxalines in PEG-400. Synth. Commun., 2011, 41(14), 2053-2063.
[http://dx.doi.org/10.1080/00397911.2010.496134]
[93]
Mishra, A.; Singh, S.; Quraishi, M.; Srivastava, V. A catalyst-free expeditious green synthesis of quinoxaline, oxazine, thiazine, and dioxin derivatives in water under ultrasound irradiation. Org. Prep. Proced. Int., 2019, 51(4), 1-12.
[http://dx.doi.org/10.1080/00304948.2019.1596469]
[94]
Chauhan, S.; Verma, P.; Mishra, A.; Srivastava, V. An expeditious ultrasound-initiated green synthesis of 1, 2, 4-thiadiazoles in water. Chem. Heterocycl. Compd., 2020, 56(1), 123-126.
[http://dx.doi.org/10.1007/s10593-020-02632-5]
[95]
Verma, P.; Pal, S.; Chauhan, S.; Mishra, A.; Sinha, I.; Singh, S.; Srivastava, V. Starch functionalized magnetite nanoparticles: A green, biocatalyst for one-pot multicomponent synthesis of imidazopyrimidine derivatives in aqueous medium under ultrasound irradiation. J. Mol. Struct., 2020, 1203, 127410.
[http://dx.doi.org/10.1016/j.molstruc.2019.127410]
[96]
Alizadeh, A.; Ghasemzadeh, H.; Roosta, A.; Halvagar, M.R. An efficient ultrasound promoted three-component and regioselective synthesis of indenoquinoxaline compounds containing pyrrolopyrimidine skeleton. ChemistrySelect, 2019, 4(15), 4483-4486.
[http://dx.doi.org/10.1002/slct.201900639]
[97]
Alizadeh, A.; Mohammadi, R.; Bayat, F.; Zhu, L-G. Metal-free regioselective construction of diazabenzo [e] acephenanthrylene-1, 2-dicarboxylates via a phosphine-mediated cycloadditon. Tetrahedron, 2017, 73(30), 4433-4438.
[http://dx.doi.org/10.1016/j.tet.2017.06.010]
[98]
Alizadeh, A.; Roosta, A.; Rezaiyehrad, R.; Halvagar, M. Efficient one pot and chemoselective synthesis of functionalized 3-bromo-4, 5-dihydroisoxazole derivatives via 1, 3-dipolar cycloaddition reactions of nitrile oxides. Tetrahedron, 2017, 73(48), 6706-6711.
[http://dx.doi.org/10.1016/j.tet.2017.10.003]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy