Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Potential Application of Cephalosporins Carried in Organic or Inorganic Nanosystems against Gram-Negative Pathogens

Author(s): Brenda Maria Silva Bezerra, Sara Efigênia Dantas de Mendonça y Araujo, Analara Cordeiro de Macêdo, Kammila Martins Nicolau Costa, Mariana Rillo Sato and João Augusto Oshiro-Junior*

Volume 29, Issue 31, 2022

Published on: 23 May, 2022

Page: [5212 - 5229] Pages: 18

DOI: 10.2174/0929867329666220329201817

Price: $65

Abstract

Cephalosporins are β-lactam antibiotics, classified into five generations and extensively used in clinical practice against infections caused by Gram-negative pathogens, including Enterobacteriaceae and P. aeruginosa. Commercially, conventional pharmaceutical forms require high doses to ensure clinical efficacy. Additionally, β-lactam resistance mechanisms, such as the production of enzymes (called extended-spectrum β-lactamases) and the low plasma half-life of these antibiotics, have been challenging in clinical therapy based on the use of cephalosporins. In this context, its incorporation into nanoparticles, whether organic or inorganic, is an alternative to temporally and spatially control the drug release and improve its pharmacokinetic and pharmacodynamic limitations. Considering this, the present review unites the cephalosporins encapsulated into organic and inorganic nanoparticles against resistant and nonresistant enterobacteria. We divide cephalosporin generation into subtopics in which we discuss all molecules approved by regulatory agencies. In addition, changes in the side chains at positions R1 and R2 of the central structure of cephalosporins for all semisynthetic derivatives developed were discussed and presented, as the changes in these groups are related to modifications in pharmacological and pharmacokinetic properties, respectively. Ultimately, we exhibit the advances and differences in the release profile and in vitro activity of cephalosporins incorporated in different nanoparticles.

Keywords: Cephalosporins, nanoparticles, antimicrobial activity, infections, enterobacteriaceae, P. aeruginosa, organic or inorganic Nanosystems, gram-negative pathogens.

[1]
Han, Y.; Zhang, J.; Hu, C. A systematic toxicity evaluation of cephalosporins via transcriptomics in zebrafish and in silico ADMET studies. Food Chem. Toxicol., 2018, 116(Pt B), 264-271.
[http://dx.doi.org/10.1016/j.fct.2018.04.046] [PMID: 29689360]
[2]
Tauzin, M.; Ouldali, N.; Béchet, S.; Caeymaex, L.; Cohen, R. Pharmacokinetic and pharmacodynamic considerations of cephalosporin use in children. Expert Opin. Drug Metab. Toxicol., 2019, 15(11), 869-880.
[http://dx.doi.org/10.1080/17425255.2019.1678585] [PMID: 31597049]
[3]
Turner, J.V.; Maddalena, D.J.; Cutler, D.J.; Agatonovic-Kustrin, S. Multiple pharmacokinetic parameter prediction for a series of cephalosporins. J. Pharm. Sci., 2003, 92(3), 552-559.
[http://dx.doi.org/10.1002/jps.10314] [PMID: 12587116]
[4]
Bergan, T. Pharmacokinetic properties of the cephalosporins. Drugs, 1987, 34(Suppl. 2), 89-104.
[http://dx.doi.org/10.2165/00003495-198700342-00008] [PMID: 3319507]
[5]
Harrison, C.J.; Bratcher, D. Cephalosporins: A review. Pediatr. Rev., 2008, 29(8), 264-267.
[PMID: 18676578]
[6]
Iredell, J.; Brown, J.; Tagg, K. Antibiotic resistance in Enterobacteriaceae: Mechanisms and clinical implications. BMJ, 2016, 352, h6420.
[http://dx.doi.org/10.1136/bmj.h6420] [PMID: 26858245]
[7]
United Nations meeting on antimicrobial resistance. Bull. World Health Organ., 2016, 94(9), 638-639.
[http://dx.doi.org/10.2471/BLT.16.020916] [PMID: 27708467]
[8]
de Oliveira, M.S.; Oshiro-Junior, J.A.; Sato, M.R.; Conceição, M.M.; Medeiros, A.C.D. Polymeric nanoparticle associated with ceftriaxone and extract of Schinopsis brasiliensis engler against Multiresistant enterobacteria. Pharmaceutics, 2020, 12(8), 695.
[http://dx.doi.org/10.3390/pharmaceutics12080695] [PMID: 32718016]
[9]
de Oliveira, M.S.; Oshiro-Junior, J.A.; Dantas, M.M.; da Fonsêca, N.F.; Ramos, H.A.; da Silva, J.V.B.; de Medeiros, A.C.D. An overview of the antimicrobial activity of polymeric nanoparticles against enterobacteriaceae. Curr. Pharm. Des., 2021, 27(10), 1311-1322.
[http://dx.doi.org/10.2174/1381612826666201029095327] [PMID: 33121399]
[10]
Zhang, S.; Gao, H.; Bao, G. Physical principles of nanoparticle cellular endocytosis. ACS Nano, 2015, 9(9), 8655-8671.
[http://dx.doi.org/10.1021/acsnano.5b03184] [PMID: 26256227]
[11]
Barros, R.M.; de Oliveira, M.S.; Costa, K.M.N.; Sato, M.R.; Santos, K.L.M.; de L Damasceno, B.P.G.; Cuberes, T.; Oshiro-Junior, J.A. Physicochemical characterization of bioactive compounds in nanocarriers. Curr. Pharm. Des., 2020, 26(33), 4163-4173.
[http://dx.doi.org/10.2174/1381612826666200310144533] [PMID: 32156229]
[12]
Alves, L.P.; da Silva Oliveira, K.; da Paixão Santos, J.A.; da Silva Leite, J.M.; Rocha, B.P.; de Lucena Nogueira, P.; de Araújo Rêgo, R.I.; Oshiro-Junior, J.A.; Damasceno, B.P.G. Review on developments and prospects of anti-inflammatory in microemulsions. J. Drug Deliv. Sci. Technol., 2020, 60(102008), 102008.
[http://dx.doi.org/10.1016/j.jddst.2020.102008]
[13]
Boraschi, D.; Italiani, P.; Palomba, R.; Decuzzi, P.; Duschl, A.; Fadeel, B.; Moghimi, S.M. Nanoparticles and innate immunity: New perspectives on host defence. Semin. Immunol., 2017, 34, 33-51.
[http://dx.doi.org/10.1016/j.smim.2017.08.013] [PMID: 28869063]
[14]
Oshiro-Júnior, J. A.; Rodero, C.; Hanck-Silva, G.; Sato, M. R.; Alves, R. C.; Eloy, J. O.; Chorilli, M. Stimuli-responsive drug delivery nanocarriers in the treatment of breast cancer. Curr. Med. Chem., 2020, 27(15), 2494-2513.
[15]
Khameneh, B.; Diab, R.; Ghazvini, K.; Fazly Bazzaz, B.S.; Alves, R.C.; Eloy, J.O.; Chorilli, M. Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microb. Pathog., 2016, 95, 32-42.
[http://dx.doi.org/10.1016/j.micpath.2016.02.009] [PMID: 26911646]
[16]
de Assis, K.M.A.; de A Rêgo, R.I.; de Melo, D.F.; da Silva, L.M.; Oshiro-Júnior, J.A.; Formiga, F.R.; Pires, V.C.; de Lima, Á.A.N.; Converti, A.; de L Damasceno, B.P.G. Therapeutic potential of Melaleuca alternifolia essential oil in new drug delivery systems. Curr. Pharm. Des., 2020, 26(33), 4048-4055.
[http://dx.doi.org/10.2174/1381612826666200305124041] [PMID: 32133957]
[17]
Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release, 2010, 148(2), 135-146.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[18]
Radovic-Moreno, A.F.; Lu, T.K.; Puscasu, V.A.; Yoon, C.J.; Langer, R.; Farokhzad, O.C. Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano, 2012, 6(5), 4279-4287.
[http://dx.doi.org/10.1021/nn3008383] [PMID: 22471841]
[19]
Silvestre, A.L.P.; Oshiro-Júnior, J.A.; Garcia, C.; Turco, B.O.; da Silva Leite, J.M.; de Lima Damasceno, B.P.G.; Soares, J.C.M.; Chorilli, M. Monoclonal antibodies carried in drug delivery nanosystems as a strategy for cancer treatment. Curr. Med. Chem., 2021, 28(2), 401-418.
[http://dx.doi.org/10.2174/0929867327666200121121409] [PMID: 31965938]
[20]
Sato, M.R.; Oshiro-Junior, J.A.; Souza, P.C.; Campos, D.L.; Pereira-Da-Silva, M.A.; Pavan, F.R.; Da Silva, P.B.; Chorilli, M. Copper(II) complex-loaded castor oil-based nanostructured lipid carriers used against Mycobacterium tuberculosis: Development, characterisation, in vitro and in vivo biological assays. Pharmazie, 2019, 74(12), 715-720.
[http://dx.doi.org/10.1691/ph.2019.9110] [PMID: 31907109]
[21]
Yeh, Y-C.; Huang, T-H.; Yang, S-C.; Chen, C-C.; Fang, J-Y. Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: A review of recent advances. Front Chem., 2020, 8, 286.
[http://dx.doi.org/10.3389/fchem.2020.00286] [PMID: 32391321]
[22]
Dantas Lopes Dos Santos, D.; Besegato, J.F.; de Melo, P.B.G.; Oshiro, J.A., Jr.; Chorilli, M.; Deng, D.; Bagnato, V.S.; Rastelli, A.N. Curcumin-loaded pluronic® F-127 micelles as a drug delivery system for curcumin-mediated photodynamic therapy for oral application. Photochem. Photobiol., 2021, 97(5), 1072-1088.
[23]
Santos, K.L.M.; Barros, R.M.; da Silva Lima, D.P.; Nunes, A.M.A.; Sato, M.R.; Faccio, R.; de Lima Damasceno, B.P.G.; Oshiro-Junior, J.A. Prospective application of phthalocyanines in the photodynamic therapy against microorganisms and tumor cells: A mini-review. Photodiagn. Photodyn. Ther., 2020, 32(102032), 102032.
[http://dx.doi.org/10.1016/j.pdpdt.2020.102032] [PMID: 33017659]
[24]
Cephalosporins and Enterobacteriaceae. Available from: https://pubmed.ncbi.nlm.nih.gov/?term=cephalosporins+and+enterobacteriaceae&filter=simsearch3.fft&filter=datesearch.y_10 (Accessed on: Jan 27, 2021).
[25]
Cephalosporins and Enterobacteriaceae and Nanoparticles. Available from: https://pubmed.ncbi.nlm.nih.gov/?term=cephalosporins+and+enterobacteriaceae+and+nanoparticles&filter=simsearch3.fft&filter=datesearch.y_10 (Accessed on: Jan 27, 2021).
[26]
Lima, L.M.; Silva, B.N.M.D.; Barbosa, G.; Barreiro, E.J. β-lactam antibiotics: An overview from a medicinal chemistry perspective. Eur. J. Med. Chem., 2020, 208(112829), 112829.
[http://dx.doi.org/10.1016/j.ejmech.2020.112829] [PMID: 33002736]
[27]
Pedroso, T.M.; Salgado, H.R.N. Validation of Cefazolin Sodium by UV-Spectrophotometric Method. Phys. chem., 2013, 3(1), 11-20.
[http://dx.doi.org/10.5923/j.pc.20130301.03]
[28]
Mahdi, B.M. Role of antimicrobial agents in the management of perianal abscess. In: New Concepts in the Management of Septic Perianal Conditions; Elsevier, Amsterdam, 2018, pp. 71-77.
[http://dx.doi.org/10.1016/B978-0-12-816111-1.00007-0]
[29]
Gustaferro, C.A.; Steckelberg, J.M. Cephalosporin antimicrobial agents and related compounds. Mayo Clinic Proceedings, 2019, 66(10), 1064-1073.
[http://dx.doi.org/10.1016/S0025-6196(12)61731-5] [PMID: 1921490]
[30]
Dąbrowska, M.; Starek, M.; Komsta, Ł.; Szafrański, P.; Stasiewicz-Urban, A.; Opoka, W. Assessment of the chromatographic lipophilicity of eight cephalosporins on different stationary phases. Eur. J. Pharm. Sci., 2017, 101, 115-124.
[http://dx.doi.org/10.1016/j.ejps.2017.01.034] [PMID: 28137472]
[31]
Ribeiro, A.R.; Sures, B.; Schmidt, T.C. Cephalosporin antibiotics in the aquatic environment: A critical review of occurrence, fate, ecotoxicity and removal technologies. Environ. Pollut., 2018, 241, 1153-1166.
[http://dx.doi.org/10.1016/j.envpol.2018.06.040] [PMID: 30029325]
[32]
Jamil, B.; Habib, H.; Abbasi, S.; Nasir, H.; Rahman, A.; Rehman, A.; Bokhari, H.; Imran, M. Cefazolin loaded chitosan nanoparticles to cure multi drug resistant Gram-negative pathogens. Carbohydr. Polym., 2016, 136, 682-691.
[http://dx.doi.org/10.1016/j.carbpol.2015.09.078] [PMID: 26572401]
[33]
Munir, M.U.; Ihsan, A.; Javed, I.; Ansari, M.T.; Bajwa, S.Z.; Bukhari, S.N.A.; Ahmed, A.; Malik, M.Z.; Khan, W.S. Controllably biodegradable hydroxyapatite nanostructures for Cefazolin delivery against antibacterial resistance. ACS Omega, 2019, 4(4), 7524-7532.
[http://dx.doi.org/10.1021/acsomega.9b00541]
[34]
Jubeh, B.; Breijyeh, Z.; Karaman, R. Antibacterial prodrugs to overcome bacterial resistance. Molecules, 2020, 25(7), 1-16.
[http://dx.doi.org/10.3390/molecules25071543] [PMID: 32231026]
[35]
Doerr, B.I.; Glomot, R.; Kief, H.; Kramer, M.; Sakaguchi, T. Toxicology of cefotaxime in comparison to other cephalosporins. J. Antimicrob. Chemother., 1980, 6(Suppl. A), 79-82.
[http://dx.doi.org/10.1093/jac/6.suppl_A.79] [PMID: 6252183]
[36]
Hari, N.; Thomas, T.K.; Nair, A.J. Comparative study on the synergistic action of differentially synthesized silver nanoparticles with β-cephem antibiotics and chloramphenicol. J. Nanosci., 2014, 2014, 1-8.
[http://dx.doi.org/10.1155/2014/201482]
[37]
Castle, S.S. Cephalexin. In: xPharm: The Comprehensive Pharmacology Reference; Elsevier, Amsterdam, 2007, pp. 1-5.
[http://dx.doi.org/10.1016/B978-008055232-3.61417-5]
[38]
Rayegan, A.; Allafchian, A.; Abdolhosseini Sarsari, I.; Kameli, P. Synthesis and characterization of basil seed mucilage coated Fe3O4 magnetic nanoparticles as a drug carrier for the controlled delivery of cephalexin. Int. J. Biol. Macromol., 2018, 113, 317-328.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.134] [PMID: 29481957]
[39]
Vivekanandan, K.E.; Raj, K.G.; Kumaresana, S.; Pandib, M. Biosynthesis of silver nanoparticle activity against bacterial strain, cephalexin antibiotic synergistic activity. Int. J. Curr. Sci., 2012, 4, 1-7.
[40]
Singh, P.; Raja, R. B. Synergistic effect of silver nanoparticles with the cephalexin antibiotic against the test strains. Biores. Bull., 2012, 2(4), 171-179.
[41]
Öztürk, A.A.; Aygül, A. Design of cefaclor monohydrate containing nanoparticles with extended antibacterial effect by nano-spray dryer: A nanoenglobing study. J. Res. Pharm., 2020, 24(1), 1-12.
[42]
Belveyre, T.; Guerci, P.; Pape, E.; Thilly, N.; Hosseini, K.; Brunaud, L.; Gambier, N.; Meistelman, C.; Losser, M-R.; Birckener, J.; Scala-Bertola, J.; Novy, E. Observational, prospective single-center study of antibiotic prophylaxis with high-dose cefoxitin in bariatric surgery. Antimicrob. Agents Chemother., 2019, 63(12), e01613-19.
[http://dx.doi.org/10.1128/AAC.01613-19] [PMID: 31591127]
[43]
Cefoxitin. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/441199 (Accessed on: May 24, 2021)
[44]
Refat, M.S.; Sharshar, T.; Elsabawy, K.M.; El-Sayed, M.Y.; Adam, A.M.A. Synthesis of new drug model has an effective antimicrobial and antitumors by combination of cephalosporin antibiotic drug with silver(I) ion in nano scale range: chemical, physical and biological studies. J. Mol. Liq., 2017, 244, 169-181.
[http://dx.doi.org/10.1016/j.molliq.2017.09.005]
[45]
Jamil, B.; Habib, H.; Abbasi, S.A.; Ihsan, A.; Nasir, H.; Imran, M. Development of cefotaxime impregnated chitosan as nano-antibiotics: De novo strategy to combat biofilm forming multi-drug resistant pathogens. Front. Microbiol., 2016, 7, 1-11.
[http://dx.doi.org/10.3389/fmicb.2016.00330] [PMID: 27047457]
[46]
Halawani, E.M.; Hassan, A.M.; Gad El-Rab, S.M.F. Nanoformulation of biogenic cefotaxime-conjugated-silver nanoparticles for enhanced antibacterial efficacy against multidrug-resistant bacteria and anticancer studies. Int. J. Nanomedicine, 2020, 15, 1889-1901.
[http://dx.doi.org/10.2147/IJN.S236182] [PMID: 32256066]
[47]
Arora, B.; Murar, M.; Dhumale, V. Antimicrobial potential of tio2nanoparticles against MDR Pseudomonas aeruginosa. J. Exp. Nanosci., 2015, 10(11), 819-827.
[http://dx.doi.org/10.1080/17458080.2014.902544]
[48]
Hasanova, U.A.; Ramazanov, M.A.; Maharramov, A.M.; Eyvazova, Q.M.; Agamaliyev, Z.A.; Parfyonova, Y.V.; Hajiyeva, S.F.; Hajiyeva, F.V.; Veliyeva, S.B. Nano-coupling of cephalosporin antibiotics with Fe3o4 nanoparticles: Trojan horse approach in antimicrobial chemotherapy of infections caused by Klebsiella spp. J. Biomater. Nanobiotechnol., 2015, 06(03), 225-235.
[http://dx.doi.org/10.4236/jbnb.2015.63021]
[49]
Panáček, A.; Smékalová, M.; Večeřová, R.; Bogdanová, K.; Röderová, M.; Kolář, M.; Kilianová, M.; Hradilová, Š.; Froning, J.P.; Havrdová, M.; Prucek, R.; Zbořil, R.; Kvítek, L. Silver nanoparticles strongly enhance and restore bactericidal activity of inactive antibiotics against multiresistant Enterobacteriaceae. Colloids Surf. B Biointerfaces, 2016, 142, 392-399.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.007] [PMID: 26970828]
[50]
Shaikh, S.; Rizvi, S.M.D.; Shakil, S.; Hussain, T.; Alshammari, T.M.; Ahmad, W.; Tabrez, S.; Al-Qahtani, M.H.; Abuzenadah, A.M. Synthesis and characterization of cefotaxime conjugated gold nanoparticles and their use to target drug-resistant CTX-M-producing bacterial pathogens. J. Cell. Biochem., 2017, 118(9), 2802-2808.
[http://dx.doi.org/10.1002/jcb.25929] [PMID: 28181300]
[51]
Freitas, R. M. Mechanism of action, pharmacological effects and adverse reactions of ceftriaxone: A literature review. Rev. eletrônica Farm, 2014, 11(3), 48-57.
[52]
Kumar, S.; Bhanjana, G.; Kumar, A.; Taneja, K.; Dilbaghi, N.; Kim, K-H. Synthesis and optimization of ceftriaxone-loaded solid lipid nanocarriers. Chem. Phys. Lipids, 2016, 200, 126-132.
[http://dx.doi.org/10.1016/j.chemphyslip.2016.09.002] [PMID: 27697513]
[53]
Ebrahimi, S.; Farhadian, N.; Karimi, M.; Ebrahimi, M. Enhanced bactericidal effect of ceftriaxone drug encapsulated in nanostructured lipid carrier against gram-negative Escherichia coli bacteria: Drug formulation, optimization, and cell culture study. Antimicrob. Resist. Infect. Control, 2020, 9(28), 1-12.
[http://dx.doi.org/10.1186/s13756-020-0690-4] [PMID: 32041660]
[54]
Mushtaq, S.; Khan, J.A.; Rabbani, F.; Latif, U.; Arfan, M.; Yameen, M.A. Biocompatible biodegradable polymeric antibacterial nanoparticles for enhancing the effects of a third-generation cephalosporin against resistant bacteria. J. Med. Microbiol., 2017, 66(3), 318-327.
[http://dx.doi.org/10.1099/jmm.0.000445] [PMID: 28150580]
[55]
Shanmuganathan, R.; MubarakAli, D.; Prabakar, D.; Muthukumar, H.; Thajuddin, N.; Kumar, S.S.; Pugazhendhi, A. An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: Green approach. Environ. Sci. Pollut. Res. Int., 2018, 25(11), 10362-10370.
[http://dx.doi.org/10.1007/s11356-017-9367-9] [PMID: 28600792]
[56]
Carmen Chifiriuc, M.; Mihaiescu, D.; Ilinca, E.; Marutescu, L.; Mihaescu, G.; Mihai Grumezescu, A. Influence of hybrid inorganic/organic mesoporous and nanostructured materials on the cephalosporins’ efficacy on different bacterial strains. IET Nanobiotechnol., 2012, 6(4), 156-161.
[http://dx.doi.org/10.1049/iet-nbt.2011.0066] [PMID: 23101869]
[57]
Heesterbeek, D.A.C.; Martin, N.I.; Velthuizen, A.; Duijst, M.; Ruyken, M.; Wubbolts, R.; Rooijakkers, S.H.M.; Bardoel, B.W. Complement-dependent outer membrane perturbation sensitizes Gram-negative bacteria to Gram-positive specifc antibiotics. Sci. Reports., 2019, 9, 1-10.
[http://dx.doi.org/10.1038/s41598-019-38577-9] [PMID: 30816122]
[58]
Ceftazidime. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/5481173 (Accessed on: May 24, 2021).
[59]
Al-Amiery, A.A.; Al-Bayati, R.I.H.; Saour, K.Y.; Radi, M.F. Cytotoxicity, antioxidant, and antimicrobial activities of novel 2-quinolone derivatives derived from coumarin. Res. Chem. Intermed., 2012, 38(2), 559-569.
[http://dx.doi.org/10.1007/s11164-011-0371-2]
[60]
Singh, A.K.; Shukla, S.K.; Quraishi, M.A. Corrosion behaviour of mild steel in sulphuric acid solution in presence of ceftazidime. Int. J. Electrochem. Sci., 2011, 6, 5802-5814.
[61]
Isaei, E.; Mansouri, S.; Mohammadi, F.; Taheritarigh, S.; Mohammadi, Z. Novel combinations of synthesized ZnO NPs and ceftazidime: Evaluation of their activity against standards and new clinically isolated Pseudomonas aeruginosa. Avicenna J. Med. Biotechnol., 2016, 8(4), 169-174.
[PMID: 27920884]
[62]
Philpott, C.D.; Droege, C.A.; Droege, M.E.; Healy, D.P.; Courter, J.D.; Ernst, N.E.; Harger, N.J.; Foertsch, M.J.; Winter, J.B.; Carter, K.E.; Van Fleet, S.L.; Athota, K.; Mueller, E.W. Pharmacokinetics and pharmacodynamics of extended-infusion cefepime in critically ill patients receiving continuous renal replacement therapy: A prospective, open-label study. Pharmacotherapy, 2019, 39(11), 1066-1076.
[http://dx.doi.org/10.1002/phar.2332] [PMID: 31549737]
[63]
Cefepime. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/5479537 (Accessed on: May 24, 2021).
[64]
Ahmed, F.Y.; Farghaly Aly, U.; Abd El-Baky, R.M.; Waly, N.G.F.M. Comparative study of antibacterial effects of titanium dioxide nanoparticles alone and in combination with antibiotics on MDR Pseudomonas aeruginosa strains. Int. J. Nanomedicine, 2020, 15, 3393-3404.
[http://dx.doi.org/10.2147/IJN.S246310] [PMID: 32523339]
[65]
Ficai, D.; Grumezescu, V.; Fufă, O.M.; Popescu, R.C.; Holban, A.M.; Ficai, A.; Grumezescu, A.M.; Mogoanta, L.; Mogosanu, G.D.; Andronescu, E. Antibiofilm coatings based on PLGA and nanostructured cefepime-functionalized magnetite. Nanomaterials, 2018, 8(9), 1-21.
[http://dx.doi.org/10.3390/nano8090633] [PMID: 30134515]
[66]
Medeiros, T.S.; Moreira, L.M.C.C.; Oliveira, T.M.T.; Melo, D.F.; Azevedo, E.P.; Gadelha, A.E.G.; Fook, M.V.L.; Oshiro-Júnior, J.A.; Damasceno, B.P.G.L. Bemotrizinol-loaded carnauba wax-based nanostructured lipid carriers for sunscreen: Optimization, characterization, and in vitro evaluation. AAPS PharmSciTech, 2020, 21(8), 1-13.
[http://dx.doi.org/10.1208/s12249-020-01821-x] [PMID: 33073311]
[67]
Ghafelehbashi, R.; Akbarzadeh, I.; Tavakkoli Yaraki, M.; Lajevardi, A.; Fatemizadeh, M.; Heidarpoor Saremi, L. Preparation, physicochemical properties, in vitro evaluation and release behavior of cephalexin-loaded niosomes. Int. J. Pharm., 2019, 569(118580), 1-8.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118580] [PMID: 31374239]
[68]
Asfour, H.Z. Cefotaxime combined ellagic acid in a liposomal form for more stable and antimicrobial effective formula. Am. J. Microbiol. Res., 2017, 5(5), 113-117.
[http://dx.doi.org/10.12691/ajmr-5-5-4]
[69]
Torres, I.M.S.; Bento, E.B.; Almeida, L. da C.; de Sá, L.Z.C.M.; Lima, E.M. Preparation, characterization and in vitro antimicrobial activity of liposomal ceftazidime and cefepime against Pseudomonas aeruginosa strains. Braz. J. Microbiol., 2012, 43(3), 984-992.
[http://dx.doi.org/10.1590/S1517-83822012000300020] [PMID: 24031917]
[70]
Selvadoss, P.P.; Nellore, J.; Ravindrran, M.B.; Sekar, U. Novel pyochelin-based PEGylated liposomes for enhanced delivery of antibiotics against resistant clinical isolates of Pseudomonas aeruginosa. Artif. Cells Nanomed. Biotechnol., 2018, 46(8), 2043-2053.
[http://dx.doi.org/10.1080/21691401.2017.1408119] [PMID: 29179607]
[71]
Selvadoss, P.P.; Nellore, J.; Ravindrran, M.B.; Sekar, U.; Tippabathani, J. Enhancement of antimicrobial activity by liposomal oleic acid-loaded antibiotics for the treatment of multidrug-resistant Pseudomonas aeruginosa. Artif. Cells Nanomed. Biotechnol., 2018, 46(2), 268-273.
[http://dx.doi.org/10.1080/21691401.2017.1307209] [PMID: 28362119]
[72]
Moyá, M.L.; López-López, M.; Lebrón, J.A.; Ostos, F.J.; Pérez, D.; Camacho, V.; Beck, I.; Merino-Bohórquez, V.; Camean, M.; Madinabeitia, N.; López-Cornejo, P. Preparation and characterization of new liposomes. Bactericidal activity of Cefepime encapsulated into cationic liposomes. Pharmaceutics, 2019, 11(2), 1-12.
[http://dx.doi.org/10.3390/pharmaceutics11020069] [PMID: 30736367]
[73]
Chiari-Andréo, B.G.; Abuçafy, M.P.; Manaia, E.B.; da Silva, B.L.; Rissi, N.C.; Oshiro-Júnior, J.A.; Chiavacci, L.A. Drug delivery using theranostics: An overview of its use, advantages and safety assessment. Curr. Nanosci., 2020, 16(1), 3-14.
[http://dx.doi.org/10.2174/1573413715666190618162321]
[74]
Gatadi, S.; Madhavi, Y.V.; Nanduri, S. Nanoparticle drug conjugates treating microbial and viral infections: A review. J. Mol. Struct., 2021, 1228(129750), 129750.
[http://dx.doi.org/10.1016/j.molstruc.2020.129750]
[75]
Amini, S.M. Preparation of antimicrobial metallic nanoparticles with bioactive compounds. Mater. Sci. Eng. C, 2019, 103(109809), 109809.
[http://dx.doi.org/10.1016/j.msec.2019.109809] [PMID: 31349497]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy