Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Chronic Kidney Disease-Mineral Bone Disease Biomarkers in Kidney Transplant Patients

Author(s): Ursula Gramiscelli Hasparyk, Flávia Maria Borges Vigil, Victória Soares Bartolomei, Vitor Moreira Nunes and Ana Cristina Simões e Silva*

Volume 29, Issue 31, 2022

Published on: 31 May, 2022

Page: [5230 - 5253] Pages: 24

DOI: 10.2174/0929867329666220318105856

Price: $65

Abstract

Background: Kidney transplant patients frequently suffer from Chronic Kidney Disease associated with Mineral Bone Disease (CKD-MBD), a complex condition that affects mainly kidney transplant patients. Post-transplantation bone disease is complex, especially in patients with pre-existing metabolic bone disorders that are further affected by immunosuppressive medications and changes in renal allograft function. Main biochemical abnormalities of mineral metabolism in kidney transplantation (KTx) include hypophosphatemia, hyperparathyroidism (HPTH), insufficiency or deficiency of vitamin D, and hypercalcemia.

Objective: This review aims to summarize the pathophysiology and main biomarkers of CKD-MBD in KTx.

Methods: A comprehensive and non-systematic search in PubMed was independently made, emphasizing biomarkers in mineral bone disease in KTx.

Results: CKD-MBD can be associated with numerous factors, including secondary HPTH, metabolic dysregulations before KTx, and glucocorticoid therapy in post-transplant subjects. Fibroblast growth factor 23 (FGF23) reaches normal levels after KTx with good allograft function, while calcium, vitamin D, and phosphorus, ultimately result in hypercalcemia, persistent vitamin D insufficiency, and hypophosphatemia, respectively. As for PTH levels, there is an initial tendency of a significant decrease, followed by a rise due to secondary or tertiary HPTH. In regard to sclerostin levels, there is no consensus in the literature.

Conclusion: KTx patients should be continuously evaluated for mineral homeostasis and bone status, both in cases with successful kidney transplantation and those with reduced functionality. Additional research on CKD-MBD pathophysiology, diagnosis, and management is essential to guarantee long-term graft function, better prognosis, good quality of life, and reduced mortality for KTx patients.

Keywords: Bone mineral disease, kidney transplant, chronic kidney disease, vitamin D, calcium, phosphate, hyperparathyroidism, fibroblast growth factor 23.

[1]
National Institutes of Health (NIH). US Renal Data System USRDS. Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in The United States; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 1996.
[2]
Vangala, C.; Pan, J.; Cotton, R.T.; Ramanathan, V. Mineral and bone disorders after kidney transplantation. Front. Med. (Lausanne), 2018, 5, 211.
[http://dx.doi.org/10.3389/fmed.2018.00211] [PMID: 30109232]
[3]
Bouquegneau, A.; Salam, S.; Delanaye, P.; Eastell, R.; Khwaja, A. Bone disease after kidney transplantation. Clin. J. Am. Soc. Nephrol., 2016, 11(7), 1282-1296.
[http://dx.doi.org/10.2215/CJN.11371015] [PMID: 26912549]
[4]
Kalantar-Zadeh, K.; Molnar, M.Z.; Kovesdy, C.P.; Mucsi, I.; Bunnapradist, S. Management of mineral and bone disorder after kidney transplantation. Curr. Opin. Nephrol. Hypertens., 2012, 21(4), 389-403.
[http://dx.doi.org/10.1097/MNH.0b013e3283546ee0] [PMID: 22614626]
[5]
Holick, M.F.; Vitamin, D. Vitamin D deficiency. N. Engl. J. Med., 2007, 357(3), 266-281.
[http://dx.doi.org/10.1056/NEJMra070553] [PMID: 17634462]
[6]
Savaj, S.; Ghods, F.J.; Vitamin, D. Vitamin D, parathyroid hormone, and bone mineral density status in kidney transplant recipients. Iran. J. Kidney Dis., 2012, 6(4), 295-299.
[PMID: 22797100]
[7]
Alshayeb, H.M.; Josephson, M.A.; Sprague, S.M. CKD-mineral and bone disorder management in kidney transplant recipients. Am. J. Kidney Dis., 2013, 61(2), 310-325.
[http://dx.doi.org/10.1053/j.ajkd.2012.07.022] [PMID: 23102732]
[8]
Coskun, Y.; Paydas, S.; Balal, M.; Soyupak, S.; Kara, E. Bone disease and serum fibroblast growth factor-23 levels in renal transplant recipients. Transplant. Proc., 2016, 48(6), 2040-2045.
[http://dx.doi.org/10.1016/j.transproceed.2016.05.012] [PMID: 27569941]
[9]
Cianciolo, G.; Galassi, A.; Capelli, I.; Angelini, M.L.; La Manna, G.; Cozzolino, M. Vitamin D in kidney transplant recipients: Mechanisms and therapy. Am. J. Nephrol., 2016, 43(6), 397-407.
[http://dx.doi.org/10.1159/000446863] [PMID: 27229347]
[10]
Schwarz, A.; Mengel, M.; Gwinner, W.; Radermacher, J.; Hiss, M.; Kreipe, H.; Haller, H. Risk factors for chronic allograft nephropathy after renal transplantation: A protocol biopsy study. Kidney Int., 2005, 67(1), 341-348.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00087.x] [PMID: 15610260]
[11]
Almaden, Y.; Hernandez, A.; Torregrosa, V.; Canalejo, A.; Sabate, L.; Fernandez Cruz, L.; Campistol, J.M.; Torres, A.; Rodriguez, M. High phosphate level directly stimulates parathyroid hormone secretion and synthesis by human parathyroid tissue in vitro. J. Am. Soc. Nephrol., 1998, 9(10), 1845-1852.
[http://dx.doi.org/10.1681/ASN.V9101845] [PMID: 9773785]
[12]
Baum, M.; Schiavi, S.; Dwarakanath, V.; Quigley, R. Effect of fibroblast growth factor-23 on phosphate transport in proximal tubules. Kidney Int., 2005, 68(3), 1148-1153.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00506.x] [PMID: 16105045]
[13]
Bacic, D.; Lehir, M.; Biber, J.; Kaissling, B.; Murer, H.; Wagner, C.A. The renal Na+/phosphate cotransporter NaPi-IIa is internalized via the receptor-mediated endocytic route in response to parathyroid hormone. Kidney Int., 2006, 69(3), 495-503.
[http://dx.doi.org/10.1038/sj.ki.5000148] [PMID: 16514432]
[14]
Hildmann, B.; Storelli, C.; Danisi, G.; Murer, H. Regulation of Na+-Pi cotransport by 1,25-dihydroxyvitamin D3 in rabbit duodenal brush-border membrane. Am. J. Physiol., 1982, 242(5), G533-G539.
[http://dx.doi.org/10.1152/ajpgi.1982.242.5.G533] [PMID: 6896268]
[15]
Shimada, T.; Kakitani, M.; Yamazaki, Y.; Hasegawa, H.; Takeuchi, Y.; Fujita, T.; Fukumoto, S.; Tomizuka, K.; Yamashita, T. Targeted ablation of FGF23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J. Clin. Invest., 2004, 113(4), 561-568.
[http://dx.doi.org/10.1172/JCI200419081] [PMID: 14966565]
[16]
Monier-Faugere, M.C.; Mawad, H.; Qi, Q.; Friedler, R.M.; Malluche, H.H. High prevalence of low bone turnover and occurrence of osteomalacia after kidney transplantation. J. Am. Soc. Nephrol., 2000, 11(6), 1093-1099.
[http://dx.doi.org/10.1681/ASN.V1161093] [PMID: 10820173]
[17]
Bienaimé, F.; Girard, D.; Anglicheau, D.; Canaud, G.; Souberbielle, J.C.; Kreis, H.; Noël, L.H.; Friedlander, G.; Elie, C.; Legendre, C.; Prié, D. Vitamin D status and outcomes after renal transplantation. J. Am. Soc. Nephrol., 2013, 24(5), 831-841.
[http://dx.doi.org/10.1681/ASN.2012060614] [PMID: 23539758]
[18]
Isakova, T.; Wahl, P.; Vargas, G.S.; Gutiérrez, O.M.; Scialla, J.; Xie, H.; Appleby, D.; Nessel, L.; Bellovich, K.; Chen, J.; Hamm, L.; Gadegbeku, C.; Horwitz, E.; Townsend, R.R.; Anderson, C.A.; Lash, J.P.; Hsu, C.Y.; Leonard, M.B.; Wolf, M. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int., 2011, 79(12), 1370-1378.
[http://dx.doi.org/10.1038/ki.2011.47] [PMID: 21389978]
[19]
Ferrari, S.L.; Bonjour, J-P.; Rizzoli, R. Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J. Clin. Endocrinol. Metab., 2005, 90(3), 1519-1524.
[http://dx.doi.org/10.1210/jc.2004-1039] [PMID: 15613425]
[20]
Nishi, H.; Nii-Kono, T.; Nakanishi, S.; Yamazaki, Y.; Yamashita, T.; Fukumoto, S.; Ikeda, K.; Fujimori, A.; Fukagawa, M. Intravenous calcitriol therapy increases serum concentrations of fibroblast growth factor-23 in dialysis patients with secondary hyperparathyroidism. Nephron Clin. Pract., 2005, 101(2), c94-c99.
[http://dx.doi.org/10.1159/000086347] [PMID: 15956805]
[21]
Filler, G.; Liu, D.; Huang, S-H.S.; Casier, S.; Chau, L.A.; Madrenas, J. Impaired GFR is the most important determinant for FGF-23 increase in chronic kidney disease. Clin. Biochem., 2011, 44(5-6), 435-437.
[http://dx.doi.org/10.1016/j.clinbiochem.2011.01.009] [PMID: 21291879]
[22]
Saito, H.; Maeda, A.; Ohtomo, S.; Hirata, M.; Kusano, K.; Kato, S.; Ogata, E.; Segawa, H.; Miyamoto, K.; Fukushima, N. Circulating FGF-23 is regulated by 1α,25-dihydroxyvitamin D3 and phosphorus in vivo. J. Biol. Chem., 2005, 280(4), 2543-2549.
[http://dx.doi.org/10.1074/jbc.M408903200] [PMID: 15531762]
[23]
Haffner, D.; Leifheit-Nestler, M. CKD-MBD post kidney transplantation. Pediatr. Nephrol., 2019, 36(1), 41-50.
[http://dx.doi.org/10.1007/s00467-019-04421-5] [PMID: 31858226]
[24]
Hu, M.C.; Shiizaki, K.; Kuro-o, M.; Moe, O.W. Fibroblast growth factor 23 and Klotho: Physiology and pathophysiology of an endocrine network of mineral metabolism. Annu. Rev. Physiol., 2013, 75(1), 503-533.
[http://dx.doi.org/10.1146/annurev-physiol-030212-183727] [PMID: 23398153]
[25]
Thongprayoon, C.; Neyra, J.A.; Hansrivijit, P.; Medaura, J.; Leeaphorn, N.; Davis, P.W.; Kaewput, W.; Bathini, T.; Salim, S.A.; Chewcharat, A.; Aeddula, N.R.; Vallabhajosyula, S.; Mao, M.A.; Cheungpasitporn, W. Serum klotho in living kidney donors and kidney transplant recipients: A meta-analysis. J. Clin. Med., 2020, 9(6), 1834.
[http://dx.doi.org/10.3390/jcm9061834] [PMID: 32545510]
[26]
Kalaitzidis, R.G.; Duni, A.; Siamopoulos, K.C. Klotho, the holy grail of the kidney: From salt sensitivity to chronic kidney disease. Int. Urol. Nephrol., 2016, 48(10), 1657-1666.
[http://dx.doi.org/10.1007/s11255-016-1325-9] [PMID: 27215557]
[27]
John, G.B.; Cheng, C-Y.; Kuro-o, M. Role of Klotho in aging, phosphate metabolism, and CKD. Am. J. Kidney Dis., 2011, 58(1), 127-134.
[http://dx.doi.org/10.1053/j.ajkd.2010.12.027] [PMID: 21496980]
[28]
Massry, S.G.; Coburn, J.W.; Lee, D.B.; Jowsey, J.; Kleeman, C.R. Skeletal resistance to parathyroid hormone in renal failure. Studies in 105 human subjects. Ann. Intern. Med., 1973, 78(3), 357-364.
[http://dx.doi.org/10.7326/0003-4819-78-3-357] [PMID: 4571863]
[29]
Hruska, K.A.; Seifert, M.; Sugatani, T. Pathophysiology of the chronic kidney disease-mineral bone disorder. Curr. Opin. Nephrol. Hypertens., 2015, 24(4), 303-309.
[http://dx.doi.org/10.1097/MNH.0000000000000132] [PMID: 26050115]
[30]
Nigwekar, S.U.; Bloch, D.B.; Nazarian, R.M.; Vermeer, C.; Booth, S.L.; Xu, D.; Thadhani, R.I.; Malhotra, R. Vitamin K-dependent carboxylation of matrix GLA Protein influences the risk of Calciphylaxis. J. Am. Soc. Nephrol., 2017, 28(6), 1717-1722.
[http://dx.doi.org/10.1681/ASN.2016060651] [PMID: 28049648]
[31]
Krüger, T.; Oelenberg, S.; Kaesler, N.; Schurgers, L.J.; van de Sandt, A.M.; Boor, P.; Schlieper, G.; Brandenburg, V.M.; Fekete, B.C.; Veulemans, V.; Ketteler, M.; Vermeer, C.; Jahnen-Dechent, W.; Floege, J.; Westenfeld, R. Warfarin induces cardiovascular damage in mice. Arterioscler. Thromb. Vasc. Biol., 2013, 33(11), 2618-2624.
[http://dx.doi.org/10.1161/ATVBAHA.113.302244] [PMID: 23990204]
[32]
Scicchitano, P.; Tucci, M.; Bellino, M.C.; Cortese, F.; Cecere, A.; De Palo, M.; Massari, F.; Caldarola, P.; Silvestris, F.; Ciccone, M.M. The impairment in kidney function in the oral anticoagulation era. A pathophysiological insight. Cardiovasc. Drugs Ther., 2021, 35(3), 505-519.
[http://dx.doi.org/10.1007/s10557-020-07004-x] [PMID: 32535717]
[33]
Economidou, D.; Dovas, S.; Papagianni, A.; Pateinakis, P.; Memmos, D. FGF-23 levels before and after renal transplantation. J. Transplant., 2009, 2009, 379082.
[http://dx.doi.org/10.1155/2009/379082] [PMID: 20107581]
[34]
van Londen, M.; Aarts, B.M.; Deetman, P.E.; van der Weijden, J.; Eisenga, M.F.; Navis, G.; Bakker, S.J.L.; de Borst, M.H. Post-transplant hypophosphatemia and the risk of death-censored graft failure and mortality after kidney transplantation. Clin. J. Am. Soc. Nephrol., 2017, 12(8), 1301-1310.
[http://dx.doi.org/10.2215/CJN.10270916] [PMID: 28546442]
[35]
Nakai, K.; Mitsuiki, K.; Kuroki, Y.; Nishiki, T.; Motoyama, K.; Nakano, T.; Kitazono, T. Relative hypophosphatemia early after transplantation is a predictor of good kidney graft function. Clin. Exp. Nephrol., 2019, 23(9), 1161-1168.
[http://dx.doi.org/10.1007/s10157-019-01756-z] [PMID: 31214874]
[36]
Julian, B.A.; Laskow, D.A.; Dubovsky, J.; Dubovsky, E.V.; Curtis, J.J.; Quarles, L.D. Rapid loss of vertebral mineral density after renal transplantation. N. Engl. J. Med., 1991, 325(8), 544-550.
[http://dx.doi.org/10.1056/NEJM199108223250804] [PMID: 1857390]
[37]
O’Brien, C.A.; Jia, D.; Plotkin, L.I.; Bellido, T.; Powers, C.C.; Stewart, S.A.; Manolagas, S.C.; Weinstein, R.S. Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology, 2004, 145(4), 1835-1841.
[http://dx.doi.org/10.1210/en.2003-0990] [PMID: 14691012]
[38]
Brandenburg, V.M.; Ketteler, M.; Heussen, N.; Politt, D.; Frank, R.D.; Westenfeld, R.; Ittel, T.H.; Floege, J. Lumbar bone mineral density in very long-term renal transplant recipients: Impact of circulating sex hormones. Osteoporos. Int., 2005, 16(12), 1611-1620.
[http://dx.doi.org/10.1007/s00198-005-1884-6] [PMID: 15999293]
[39]
Suzuki, Y.; Ichikawa, Y.; Saito, E.; Homma, M. Importance of increased urinary calcium excretion in the development of secondary hyperparathyroidism of patients under glucocorticoid therapy. Metabolism, 1983, 32(2), 151-156.
[http://dx.doi.org/10.1016/0026-0495(83)90221-4] [PMID: 6298567]
[40]
Klaus, G.; Jux, C.; Leiber, K.; Hügel, U.; Mehls, O. Interaction between insulin-like growth factor I, growth hormone, parathyroid hormone, 1 α,25-dihydroxyvitamin D3 and steroids on epiphyseal chondrocytes. Acta Paediatr. Suppl., 1996, 417(s417), 69-71.
[http://dx.doi.org/10.1111/j.1651-2227.1996.tb14302.x] [PMID: 9055916]
[41]
Kim, H-J.; Zhao, H.; Kitaura, H.; Bhattacharyya, S.; Brewer, J.A.; Muglia, L.J.; Ross, F.P.; Teitelbaum, S.L. Glucocorticoids suppress bone formation via the osteoclast. J. Clin. Invest., 2006, 116(8), 2152-2160.
[http://dx.doi.org/10.1172/JCI28084] [PMID: 16878176]
[42]
van Staa, T.P. The pathogenesis, epidemiology and management of glucocorticoid-induced osteoporosis. Calcif. Tissue Int., 2006, 79(3), 129-137.
[http://dx.doi.org/10.1007/s00223-006-0019-1] [PMID: 16969593]
[43]
Malluche, H.H.; Monier-Faugere, M-C.; Herberth, J. Bone disease after renal transplantation. Nat. Rev. Nephrol., 2010, 6(1), 32-40.
[http://dx.doi.org/10.1038/nrneph.2009.192] [PMID: 19918255]
[44]
Epstein, S. Post-transplantation bone disease: The role of immunosuppressive agents and the skeleton. J. Bone Miner. Res., 1996, 11(1), 1-7.
[http://dx.doi.org/10.1002/jbmr.5650110102] [PMID: 8770690]
[45]
Singha, U.K.; Jiang, Y.; Yu, S.; Luo, M.; Lu, Y.; Zhang, J.; Xiao, G. Rapamycin inhibits osteoblast proliferation and differentiation in MC3T3-E1 cells and primary mouse bone marrow stromal cells. J. Cell. Biochem., 2008, 103(2), 434-446.
[http://dx.doi.org/10.1002/jcb.21411] [PMID: 17516572]
[46]
Alvarez-Garcia, O.; Carbajo-Pérez, E.; Garcia, E.; Gil, H.; Molinos, I.; Rodriguez, J.; Ordoñez, F.A.; Santos, F. Rapamycin retards growth and causes marked alterations in the growth plate of young rats. Pediatr. Nephrol., 2007, 22(7), 954-961.
[http://dx.doi.org/10.1007/s00467-007-0456-8] [PMID: 17370095]
[47]
Weisinger, J.R.; Carlini, R.G.; Rojas, E.; Bellorin-Font, E. Bone disease after renal transplantation. Clin. J. Am. Soc. Nephrol., 2006, 1(6), 1300-1313.
[http://dx.doi.org/10.2215/CJN.01510506] [PMID: 17699362]
[48]
Rao, M.; Jain, P.; Ojo, T.; Surya, G.; Balakrishnan, V. Fibroblast growth factor and mineral metabolism parameters among prevalent kidney transplant patients. Int. J. Nephrol., 2012, 2012, 490623.
[http://dx.doi.org/10.1155/2012/490623] [PMID: 22811905]
[49]
Evenepoel, P.; Claes, K.; Kuypers, D.; Maes, B.; Bammens, B.; Vanrenterghem, Y. Natural history of parathyroid function and calcium metabolism after kidney transplantation: A single-centre study. Nephrol. Dial. Transplant., 2004, 19(5), 1281-1287.
[http://dx.doi.org/10.1093/ndt/gfh128] [PMID: 14993493]
[50]
Wolf, M.; Weir, M.R.; Kopyt, N.; Mannon, R.B.; Von Visger, J.; Deng, H.; Yue, S.; Vincenti, F. A prospective cohort study of mineral metabolism after kidney transplantation. Transplantation, 2016, 100(1), 184-193.
[http://dx.doi.org/10.1097/TP.0000000000000823] [PMID: 26177089]
[51]
Perrin, P.; Caillard, S.; Javier, R.M.; Braun, L.; Heibel, F.; Borni-Duval, C.; Muller, C.; Olagne, J.; Moulin, B. Persistent hyperparathyroidism is a major risk factor for fractures in the five years after kidney transplantation. Am. J. Transplant., 2013, 13(10), 2653-2663.
[http://dx.doi.org/10.1111/ajt.12425] [PMID: 24034142]
[52]
Giannini, S.; D’Angelo, A.; Nobile, M.; Carraro, G.; Rigotti, P.; Silva-Netto, F.; Pavan, S.; Marchini, F.; Zaninotto, M.; Dalle Carbonare, L.; Sartori, L.; Crepaldi, G. The effects of vitamin D receptor polymorphism on secondary hyperparathyroidism and bone density after renal transplantation. J. Bone Miner. Res., 2002, 17(10), 1768-1773.
[http://dx.doi.org/10.1359/jbmr.2002.17.10.1768] [PMID: 12369780]
[53]
Mazzaferro, S.; Pasquali, M.; Taggi, F.; Baldinelli, M.; Conte, C.; Muci, M.L.; Pirozzi, N.; Carbone, I.; Francone, M.; Pugliese, F. Progression of coronary artery calcification in renal transplantation and the role of secondary hyperparathyroidism and inflammation. Clin. J. Am. Soc. Nephrol., 2009, 4(3), 685-690.
[http://dx.doi.org/10.2215/CJN.03930808] [PMID: 19211668]
[54]
Nankivell, B.J.; Borrows, R.J.; Fung, C.L-S.; O’Connell, P.J.; Allen, R.D.M.; Chapman, J.R. The natural history of chronic allograft nephropathy. N. Engl. J. Med., 2003, 349(24), 2326-2333.
[http://dx.doi.org/10.1056/NEJMoa020009] [PMID: 14668458]
[55]
Mehrotra, S.; Sharma, R.K.; Patel, M.R. Vitamin D, 1,25-Dihydroxyvitamin D, FGF23, and graft function after renal transplantation. Indian J. Nephrol., 2019, 29(4), 242-247.
[http://dx.doi.org/10.4103/ijn.IJN_307_18] [PMID: 31423057]
[56]
Evenepoel, P.; Naesens, M.; Claes, K.; Kuypers, D.; Vanrenterghem, Y. Tertiary ‘hyperphosphatoninism’ accentuates hypophosphatemia and suppresses calcitriol levels in renal transplant recipients. Am. J. Transplant., 2007, 7(5), 1193-1200.
[http://dx.doi.org/10.1111/j.1600-6143.2007.01753.x] [PMID: 17359508]
[57]
Bleskestad, I.H.; Bergrem, H.; Leivestad, T.; Gøransson, L.G. Intact parathyroid hormone levels in renal transplant patients with normal transplant function. Clin. Transplant., 2011, 25(5), E566-E570.
[http://dx.doi.org/10.1111/j.1399-0012.2011.01515.x] [PMID: 21955131]
[58]
Moorhead, J.F.; Wills, M.R.; Ahmed, K.Y.; Baillod, R.A.; Varghese, Z.; Tatler, G.L.V.; Fairney, A. Hypophosphataemic osteomalacia after cadaveric renal transplantation. Lancet, 1974, 1(7860), 694-697.
[http://dx.doi.org/10.1016/S0140-6736(74)92902-X] [PMID: 4132420]
[59]
Wilkins, G.E.; Granleese, S.; Hegele, R.G.; Holden, J.; Anderson, D.W.; Bondy, G.P. Oncogenic osteomalacia: Evidence for a humoral phosphaturic factor. J. Clin. Endocrinol. Metab., 1995, 80(5), 1628-1634.
[http://dx.doi.org/10.1210/jcem.80.5.7745010] [PMID: 7745010]
[60]
Kovesdy, C.P.; Mucsi, I.; Czira, M.E.; Rudas, A.; Ujszaszi, A.; Rosivall, L.; Kim, S.J.; Wolf, M.; Molnar, M.Z. Association of serum phosphorus level with anemia in kidney transplant recipients. Transplantation, 2011, 91(8), 875-882.
[http://dx.doi.org/10.1097/TP.0b013e3182111edf] [PMID: 21358369]
[61]
Connolly, G.M.; Cunningham, R.; McNamee, P.T.; Young, I.S.; Maxwell, A.P. Elevated serum phosphate predicts mortality in renal transplant recipients. Transplantation, 2009, 87(7), 1040-1044.
[http://dx.doi.org/10.1097/TP.0b013e31819cd122] [PMID: 19352125]
[62]
Uslu Gökceoğlu, A.; Comak, E.; Dogan, C.S.; Koyun, M.; Akbas, H.; Akman, S. Magnesium excretion and hypomagnesemia in pediatric renal transplant recipients. Ren. Fail., 2014, 36(7), 1056-1059.
[http://dx.doi.org/10.3109/0886022X.2014.917561] [PMID: 24828469]
[63]
Mazzola, B.L.; Vannini, S.D.P.; Truttmann, A.C.; von Vigier, R.O.; Wermuth, B.; Ferrari, P.; Bianchetti, M.G. Long-term calcineurin inhibition and magnesium balance after renal transplantation. Transpl. Int., 2003, 16(2), 76-81.
[http://dx.doi.org/10.1111/j.1432-2277.2003.tb00267.x] [PMID: 12595968]
[64]
Castiglioni, S.; Cazzaniga, A.; Albisetti, W.; Maier, J.A. Magnesium and osteoporosis: Current state of knowledge and future research directions. Nutrients, 2013, 5(8), 3022-3033.
[http://dx.doi.org/10.3390/nu5083022] [PMID: 23912329]
[65]
Van de Cauter, J.; Sennesael, J.; Haentjens, P. Long-term evolution of the mineral metabolism after renal transplantation: A prospective, single-center cohort study. Transplant. Proc., 2011, 43(9), 3470-3475.
[http://dx.doi.org/10.1016/j.transproceed.2011.09.030] [PMID: 22099822]
[66]
Van Laecke, S.; Van Biesen, W.; Verbeke, F.; De Bacquer, D.; Peeters, P.; Vanholder, R. Posttransplantation hypomagnesemia and its relation with immunosuppression as predictors of new-onset diabetes after transplantation. Am. J. Transplant., 2009, 9(9), 2140-2149.
[http://dx.doi.org/10.1111/j.1600-6143.2009.02752.x] [PMID: 19624560]
[67]
Moe, S.M.; O’Neill, K.D.; Reslerova, M.; Fineberg, N.; Persohn, S.; Meyer, C.A. Natural history of vascular calcification in dialysis and transplant patients. Nephrol. Dial. Transplant., 2004, 19(9), 2387-2393.
[http://dx.doi.org/10.1093/ndt/gfh303] [PMID: 15252163]
[68]
Hristova, M.; van Beek, C.; Schurgers, L.J.; Lanske, B.; Danziger, J. Rapidly progressive severe vascular calcification sparing the kidney allograft following warfarin initiation. Am. J. Kidney Dis., 2010, 56(6), 1158-1162.
[http://dx.doi.org/10.1053/j.ajkd.2010.06.017] [PMID: 20817370]
[69]
Baia, L.C.; Heilberg, I.P.; Navis, G.; de Borst, M.H. Phosphate and FGF-23 homeostasis after kidney transplantation. Nat. Rev. Nephrol., 2015, 11(11), 656-666.
[http://dx.doi.org/10.1038/nrneph.2015.153] [PMID: 26416497]
[70]
Fyfe-Johnson, A.L.; Alonso, A.; Selvin, E.; Bower, J.K.; Pankow, J.S.; Agarwal, S.K.; Lutsey, P.L. Serum fibroblast growth factor-23 and incident hypertension: The Atherosclerosis Risk in Communities (ARIC) study. J. Hypertens., 2016, 34(7), 1266-1272.
[http://dx.doi.org/10.1097/HJH.0000000000000936] [PMID: 27100793]
[71]
de Borst, M.H.; Vervloet, M.G.; ter Wee, P.M.; Navis, G. Cross talk between the renin-angiotensin-aldosterone system and vitamin D-FGF-23-klotho in chronic kidney disease. J. Am. Soc. Nephrol., 2011, 22(9), 1603-1609.
[http://dx.doi.org/10.1681/ASN.2010121251] [PMID: 21852584]
[72]
Andrukhova, O.; Slavic, S.; Smorodchenko, A.; Zeitz, U.; Shalhoub, V.; Lanske, B.; Pohl, E.E.; Erben, R.G. FGF23 regulates renal sodium handling and blood pressure. EMBO Mol. Med., 2014, 6(6), 744-759.
[http://dx.doi.org/10.1002/emmm.201303716] [PMID: 24797667]
[73]
Dai, B.; David, V.; Martin, A.; Huang, J.; Li, H.; Jiao, Y.; Gu, W.; Quarles, L.D. A comparative transcriptome analysis identifying FGF23 regulated genes in the kidney of a mouse CKD model. PLoS One, 2012, 7(9), e44161.
[http://dx.doi.org/10.1371/journal.pone.0044161] [PMID: 22970174]
[74]
Evenepoel, P.; Meijers, B.K.I.; de Jonge, H.; Naesens, M.; Bammens, B.; Claes, K.; Kuypers, D.; Vanrenterghem, Y. Recovery of hyperphosphatoninism and renal phosphorus wasting one year after successful renal transplantation. Clin. J. Am. Soc. Nephrol., 2008, 3(6), 1829-1836.
[http://dx.doi.org/10.2215/CJN.01310308] [PMID: 18922992]
[75]
Mehta, R.; Cai, X.; Lee, J.; Scialla, J.J.; Bansal, N.; Sondheimer, J.H.; Chen, J.; Hamm, L.L.; Ricardo, A.C.; Navaneethan, S.D.; Deo, R.; Rahman, M.; Feldman, H.I.; Go, A.S.; Isakova, T.; Wolf, M. Association of fibroblast growth factor 23 with atrial fibrillation in chronic kidney disease, from the chronic renal insufficiency Cohort Study. JAMA Cardiol., 2016, 1(5), 548-556.
[http://dx.doi.org/10.1001/jamacardio.2016.1445] [PMID: 27434583]
[76]
Mathew, J.S.; Sachs, M.C.; Katz, R.; Patton, K.K.; Heckbert, S.R.; Hoofnagle, A.N.; Alonso, A.; Chonchol, M.; Deo, R.; Ix, J.H.; Siscovick, D.S.; Kestenbaum, B.; de Boer, I.H. Fibroblast growth factor-23 and incident atrial fibrillation: The Multi-Ethnic Study of Atherosclerosis (MESA) and the Cardiovascular Health Study (CHS). Circulation, 2014, 130(4), 298-307.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.005499] [PMID: 24920722]
[77]
Kestenbaum, B.; Sachs, M.C.; Hoofnagle, A.N.; Siscovick, D.S.; Ix, J.H.; Robinson-Cohen, C.; Lima, J.A.C.; Polak, J.F.; Blondon, M.; Ruzinski, J.; Rock, D.; de Boer, I.H. Fibroblast growth factor-23 and cardiovascular disease in the general population: The Multi-Ethnic Study of Atherosclerosis. Circ. Heart Fail., 2014, 7(3), 409-417.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.113.000952] [PMID: 24668259]
[78]
Nowak, A.; Friedrich, B.; Artunc, F.; Serra, A.L.; Breidthardt, T.; Twerenbold, R.; Peter, M.; Mueller, C. Prognostic value and link to atrial fibrillation of soluble Klotho and FGF23 in hemodialysis patients. PLoS One, 2014, 9(7), e100688.
[http://dx.doi.org/10.1371/journal.pone.0100688] [PMID: 24991914]
[79]
Tranæus Lindblad, Y.; Olauson, H.; Vavilis, G.; Hammar, U.; Herthelius, M.; Axelsson, J.; Bárány, P. The FGF23-Klotho axis and cardiac tissue Doppler imaging in pediatric chronic kidney disease-a prospective cohort study. Pediatr. Nephrol., 2018, 33(1), 147-157.
[http://dx.doi.org/10.1007/s00467-017-3766-5] [PMID: 28795324]
[80]
Tanaka, S.; Fujita, S.; Kizawa, S.; Morita, H.; Ishizaka, N. Association between FGF23, α-Klotho, and cardiac abnormalities among patients with various chronic kidney disease stages. PLoS One, 2016, 11(7), e0156860.
[http://dx.doi.org/10.1371/journal.pone.0156860] [PMID: 27400031]
[81]
Faul, C.; Amaral, A.P.; Oskouei, B.; Hu, M-C.; Sloan, A.; Isakova, T.; Gutiérrez, O.M.; Aguillon-Prada, R.; Lincoln, J.; Hare, J.M.; Mundel, P.; Morales, A.; Scialla, J.; Fischer, M.; Soliman, E.Z.; Chen, J.; Go, A.S.; Rosas, S.E.; Nessel, L.; Townsend, R.R.; Feldman, H.I.; St John Sutton, M.; Ojo, A.; Gadegbeku, C.; Di Marco, G.S.; Reuter, S.; Kentrup, D.; Tiemann, K.; Brand, M.; Hill, J.A.; Moe, O.W.; Kuro-O, M.; Kusek, J.W.; Keane, M.G.; Wolf, M. FGF23 induces left ventricular hypertrophy. J. Clin. Invest., 2011, 121(11), 4393-4408.
[http://dx.doi.org/10.1172/JCI46122] [PMID: 21985788]
[82]
Gutiérrez, O.M.; Januzzi, J.L.; Isakova, T.; Laliberte, K.; Smith, K.; Collerone, G.; Sarwar, A.; Hoffmann, U.; Coglianese, E.; Christenson, R.; Wang, T.J.; deFilippi, C.; Wolf, M. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation, 2009, 119(19), 2545-2552.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.844506] [PMID: 19414634]
[83]
Saab, G.; Whooley, M.A.; Schiller, N.B.; Ix, J.H. Association of serum phosphorus with left ventricular mass in men and women with stable cardiovascular disease: Data from the heart and soul study. Am. J. Kidney Dis., 2010, 56(3), 496-505.
[http://dx.doi.org/10.1053/j.ajkd.2010.03.030] [PMID: 20580478]
[84]
Seeherunvong, W.; Abitbol, C.L.; Chandar, J.; Rusconi, P.; Zilleruelo, G.E.; Freundlich, M. Fibroblast growth factor 23 and left ventricular hypertrophy in children on dialysis. Pediatr. Nephrol., 2012, 27(11), 2129-2136.
[http://dx.doi.org/10.1007/s00467-012-2224-7] [PMID: 22710695]
[85]
Singh, S.; Grabner, A.; Yanucil, C.; Schramm, K.; Czaya, B.; Krick, S.; Czaja, M.J.; Bartz, R.; Abraham, R.; Di Marco, G.S.; Brand, M.; Wolf, M.; Faul, C. Fibroblast growth factor 23 directly targets hepatocytes to promote inflammation in chronic kidney disease. Kidney Int., 2016, 90(5), 985-996.
[http://dx.doi.org/10.1016/j.kint.2016.05.019] [PMID: 27457912]
[86]
Zaheer, S.; de Boer, I.H.; Allison, M.; Brown, J.M.; Psaty, B.M.; Robinson-Cohen, C.; Michos, E.D.; Ix, J.H.; Kestenbaum, B.; Siscovick, D.; Vaidya, A. Fibroblast growth factor 23, mineral metabolism, and adiposity in normal kidney function. J. Clin. Endocrinol. Metab., 2017, 102(4), 1387-1395.
[http://dx.doi.org/10.1210/jc.2016-3563] [PMID: 28323987]
[87]
Zhang, B.; Umbach, A.T.; Chen, H.; Yan, J.; Fakhri, H.; Fajol, A.; Salker, M.S.; Spichtig, D.; Daryadel, A.; Wagner, C.A.; Föller, M.; Lang, F. Up-regulation of FGF23 release by aldosterone. Biochem. Biophys. Res. Commun., 2016, 470(2), 384-390.
[http://dx.doi.org/10.1016/j.bbrc.2016.01.034] [PMID: 26773502]
[88]
Wolf, M.; Koch, T.A.; Bregman, D.B. Effects of iron deficiency anemia and its treatment on fibroblast growth factor 23 and phosphate homeostasis in women. J. Bone Miner. Res., 2013, 28(8), 1793-1803.
[http://dx.doi.org/10.1002/jbmr.1923] [PMID: 23505057]
[89]
Andrukhova, O.; Slavic, S.; Odörfer, K.I.; Erben, R.G. Experimental myocardial infarction upregulates circulating fibroblast growth factor-23. J. Bone Miner. Res., 2015, 30(10), 1831-1839.
[http://dx.doi.org/10.1002/jbmr.2527] [PMID: 25858796]
[90]
Slavic, S.; Ford, K.; Modert, M.; Becirovic, A.; Handschuh, S.; Baierl, A.; Katica, N.; Zeitz, U.; Erben, R.G.; Andrukhova, O. Genetic Ablation of FGF23 or Klotho Does not modulate experimental heart hypertrophy induced by pressure overload. Sci. Rep., 2017, 7(1), 11298.
[http://dx.doi.org/10.1038/s41598-017-10140-4] [PMID: 28900153]
[91]
Christov, M.; Waikar, S.S.; Pereira, R.C.; Havasi, A.; Leaf, D.E.; Goltzman, D.; Pajevic, P.D.; Wolf, M.; Jüppner, H. Plasma FGF23 levels increase rapidly after acute kidney injury. Kidney Int., 2013, 84(4), 776-785.
[http://dx.doi.org/10.1038/ki.2013.150] [PMID: 23657144]
[92]
Leifheit-Nestler, M.; Große Siemer, R.; Flasbart, K.; Richter, B.; Kirchhoff, F.; Ziegler, W.H.; Klintschar, M.; Becker, J.U.; Erbersdobler, A.; Aufricht, C.; Seeman, T.; Fischer, D.C.; Faul, C.; Haffner, D. Induction of cardiac FGF23/FGFR4 expression is associated with left ventricular hypertrophy in patients with chronic kidney disease. Nephrol. Dial. Transplant., 2016, 31(7), 1088-1099.
[http://dx.doi.org/10.1093/ndt/gfv421] [PMID: 26681731]
[93]
Aiello, S.; Noris, M. Klotho in acute kidney injury: Biomarker, therapy, or a bit of both? Kidney Int., 2010, 78(12), 1208-1210.
[http://dx.doi.org/10.1038/ki.2010.367] [PMID: 21116272]
[94]
Hu, M-C.; Moe, O.W. Klotho as a potential biomarker and therapy for acute kidney injury. Nat. Rev. Nephrol., 2012, 8(7), 423-429.
[http://dx.doi.org/10.1038/nrneph.2012.92] [PMID: 22664739]
[95]
Ben-Dov, I.Z.; Galitzer, H.; Lavi-Moshayoff, V.; Goetz, R.; Kuro, M.; Mohammadi, M.; Sirkis, R.; Naveh-Many, T.; Silver, J. The parathyroid is a target organ for FGF23 in rats. J. Clin. Invest., 2007, 117(12), 4003-4008.
[http://dx.doi.org/10.1172/JCI32409] [PMID: 17992255]
[96]
Kuro-o, M.; Matsumura, Y.; Aizawa, H.; Kawaguchi, H.; Suga, T.; Utsugi, T.; Ohyama, Y.; Kurabayashi, M.; Kaname, T.; Kume, E.; Iwasaki, H.; Iida, A.; Shiraki-Iida, T.; Nishikawa, S.; Nagai, R.; Nabeshima, Y.I. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature, 1997, 390(6655), 45-51.
[http://dx.doi.org/10.1038/36285] [PMID: 9363890]
[97]
Canalejo, R.; Canalejo, A.; Martinez-Moreno, J.M.; Rodriguez-Ortiz, M.E.; Estepa, J.C.; Mendoza, F.J.; Munoz- Castaneda, J.R.; Shalhoub, V.; Almaden, Y.; Rodriguez, M. FGF23 fails to inhibit uremic parathyroid glands. J. Am. Soc. Nephrol., 2010, 21(7), 1125-1135.
[http://dx.doi.org/10.1681/ASN.2009040427] [PMID: 20431039]
[98]
Tan, S-J.; Crosthwaite, A.; Langsford, D.; Obeysekere, V.; Ierino, F.L.; Roberts, M.A.; Hughes, P.D.; Hewitson, T.D.; Dwyer, K.M.; Toussaint, N.D. Mineral adaptations following kidney transplantation. Transpl. Int., 2017, 30(5), 463-473.
[http://dx.doi.org/10.1111/tri.12925] [PMID: 28120476]
[99]
Mizusaki, K.; Hasuike, Y.; Kimura, T.; Nagasawa, Y.; Kuragano, T.; Yamada, Y.; Nojima, M.; Yamamoto, S.; Nakanishi, T.; Ishihara, M. Inhibition of the mammalian target of Rapamycin may augment the increase in soluble Klotho levels in renal transplantation recipients. Blood Purif., 2019, 47(Suppl. 2), 12-18.
[http://dx.doi.org/10.1159/000496630] [PMID: 30943481]
[100]
Tartaglione, L.; Pasquali, M.; Rotondi, S.; Muci, M.L.; Leonangeli, C.; Farcomeni, A.; Fassino, V.; Mazzaferro, S. Interactions of sclerostin with FGF23, soluble klotho and vitamin D in renal transplantation. PLoS One, 2017, 12(5), e0178637.
[http://dx.doi.org/10.1371/journal.pone.0178637] [PMID: 28558021]
[101]
Bleskestad, I.H.; Thorsen, I.S.; Jonsson, G.; Skadberg, Ø.; Bergrem, H.; Gøransson, L.G. Soluble Klotho and intact fibroblast growth factor 23 in long-term kidney transplant patients. Eur. J. Endocrinol., 2015, 172(4), 343-350.
[http://dx.doi.org/10.1530/EJE-14-0457] [PMID: 25572388]
[102]
Deng, G.; Yang, A.; Wu, J.; Zhou, J.; Meng, S.; Zhu, C.; Wang, J.; Shen, S.; Ma, J.; Liu, D. The value of older Donors’ Klotho level in predicting recipients’ short-term renal function. Med. Sci. Monit., 2018, 24, 7936-7943.
[http://dx.doi.org/10.12659/MSM.913274] [PMID: 30396199]
[103]
Kim, S.M.; Han, A.; Ahn, S.; Min, S-I.; Min, S-K.; Ha, J. Klotho as a potential predictor of deceased donor kidney transplantation outcomes. Ann. Surg. Treat. Res., 2020, 98(6), 332-339.
[http://dx.doi.org/10.4174/astr.2020.98.6.332] [PMID: 32528913]
[104]
Ormsby, R.T.; Findlay, D.M.; Kogawa, M.; Anderson, P.H.; Morris, H.A.; Atkins, G.J. Analysis of vitamin D metabolism gene expression in human bone Evidence for autocrine control of bone remodelling. J. Steroid Biochem. Mol. Biol., 2014, 144(Pt A), 110-113.
[http://dx.doi.org/10.1016/j.jsbmb.2013.09.016] [PMID: 24120913]
[105]
Zhang, Z.; Sun, L.; Wang, Y.; Ning, G.; Minto, A.W.; Kong, J.; Quigg, R.J.; Li, Y.C. Renoprotective role of the vitamin D receptor in diabetic nephropathy. Kidney Int., 2008, 73(2), 163-171.
[http://dx.doi.org/10.1038/sj.ki.5002572] [PMID: 17928826]
[106]
Li, Y.C.; Qiao, G.; Uskokovic, M.; Xiang, W.; Zheng, W.; Kong, J.; Vitamin, D. Vitamin D: A negative endocrine regulator of the renin-angiotensin system and blood pressure. J. Steroid Biochem. Mol. Biol., 2004, 89-90(1-5), 387-392.
[http://dx.doi.org/10.1016/j.jsbmb.2004.03.004] [PMID: 15225806]
[107]
Bosworth, C.; de Boer, I.H. Impaired vitamin D metabolism in CKD. Semin. Nephrol., 2013, 33(2), 158-168.
[http://dx.doi.org/10.1016/j.semnephrol.2012.12.016] [PMID: 23465502]
[108]
Sánchez Fructuoso, A.I.; Maestro, M.L.; Calvo, N.; De La Orden, V.; Pérez Flores, I.; Vidaurreta, M.; Valero, R.; Fernández-Pérez, C.; Barrientos, A. Role of fibroblast growth factor 23 (FGF23) in the metabolism of phosphorus and calcium immediately after kidney transplantation. Transplant. Proc., 2012, 44(9), 2551-2554.
[http://dx.doi.org/10.1016/j.transproceed.2012.09.070] [PMID: 23146451]
[109]
Pascussi, J.M.; Robert, A.; Nguyen, M.; Walrant-Debray, O.; Garabedian, M.; Martin, P.; Pineau, T.; Saric, J.; Navarro, F.; Maurel, P.; Vilarem, M.J. Possible involvement of pregnane X receptor-enhanced CYP24 expression in drug-induced osteomalacia. J. Clin. Invest., 2005, 115(1), 177-186.
[http://dx.doi.org/10.1172/JCI21867] [PMID: 15630458]
[110]
Westenfeld, R.; Schlieper, G.; Wöltje, M.; Gawlik, A.; Brandenburg, V.; Rutkowski, P.; Floege, J.; Jahnen-Dechent, W.; Ketteler, M. Impact of sirolimus, tacrolimus and mycophenolate mofetil on osteoclastogenesis-implications for post-transplantation bone disease. Nephrol. Dial. Transplant., 2011, 26(12), 4115-4123.
[http://dx.doi.org/10.1093/ndt/gfr214] [PMID: 21622987]
[111]
Fukunaga, J.; Yamaai, T.; Yamachika, E.; Ishiwari, Y.; Tsujigiwa, H.; Sawaki, K.; Lee, Y.J.; Ueno, T.; Kirino, S.; Mizukawa, N.; Takagi, S.; Nagai, N.; Sugahara, T. Expression of osteoclast differentiation factor and osteoclastogenesis inhibitory factor in rat osteoporosis induced by immunosuppressant FK506. Bone, 2004, 34(3), 425-431.
[http://dx.doi.org/10.1016/j.bone.2003.05.003] [PMID: 15003790]
[112]
Hirotani, H.; Tuohy, N.A.; Woo, J-T.; Stern, P.H.; Clipstone, N.A. The calcineurin/nuclear factor of activated T cells signaling pathway regulates osteoclastogenesis in RAW264.7 cells. J. Biol. Chem., 2004, 279(14), 13984-13992.
[http://dx.doi.org/10.1074/jbc.M213067200] [PMID: 14722106]
[113]
Lee, C-T.; Ng, H-Y.; Lien, Y-H.; Lai, L-W.; Wu, M-S.; Lin, C-R.; Chen, H-C. Effects of cyclosporine, tacrolimus and rapamycin on renal calcium transport and vitamin D metabolism. Am. J. Nephrol., 2011, 34(1), 87-94.
[http://dx.doi.org/10.1159/000328874] [PMID: 21691056]
[114]
McGregor, R.; Li, G.; Penny, H.; Lombardi, G.; Afzali, B.; Goldsmith, D.J. Vitamin D in renal transplantation - from biological mechanisms to clinical benefits. Am. J. Transplant., 2014, 14(6), 1259-1270.
[http://dx.doi.org/10.1111/ajt.12738] [PMID: 24840071]
[115]
Balcázar-Hernández, L.; Vargas-Ortega, G.; González-Virla, B.; Cruz-López, M.; Rodríguez-Gómez, R.; Espinoza-Pérez, R.; Cuevas-García, C.; Mendoza-Zubieta, V. Biochemical characteristics of bone mineral metabolism before and throughout the first year after kidney transplantation, persistent hyperparathyroidism, and risk factors in a latin population. Int. J. Endocrinol., 2020, 2020, 6913506.
[http://dx.doi.org/10.1155/2020/6913506] [PMID: 32256576]
[116]
Lee, J.R.; Dadhania, D.; August, P.; Lee, J.B.; Suthanthiran, M.; Muthukumar, T. Circulating levels of 25-hydroxyvitamin D and acute cellular rejection in kidney allograft recipients. Transplantation, 2014, 98(3), 292-299.
[http://dx.doi.org/10.1097/TP.0000000000000055] [PMID: 24699398]
[117]
Falkiewicz, K.; Boratynska, M.; Speichert-Bidzińska, B.; Magott-Procelewska, M.; Biecek, P.; Patrzalek, D.; Klinger, M. 1,25-dihydroxyvitamin D deficiency predicts poorer outcome after renal transplantation. Transplant. Proc., 2009, 41(8), 3002-3005.
[http://dx.doi.org/10.1016/j.transproceed.2009.07.087] [PMID: 19857661]
[118]
Levi, R.; Silver, J.; Vitamin, D. Vitamin D supplementation after renal transplantation: How much vitamin D should we prescribe? Kidney Int., 2009, 75(6), 576-578.
[http://dx.doi.org/10.1038/ki.2008.492] [PMID: 19247380]
[119]
Courbebaisse, M.; Souberbielle, J-C.; Thervet, E. Potential nonclassical effects of vitamin D in transplant recipients. Transplantation, 2010, 89(2), 131-137.
[http://dx.doi.org/10.1097/TP.0b013e3181c6910f] [PMID: 20098273]
[120]
Steiner, R.W.; Ziegler, M.; Halasz, N.A.; Catherwood, B.D.; Manolagas, S.; Deftos, L.J. Effect of daily oral vitamin D and calcium therapy, hypophosphatemia, and endogenous 1-25 dihydroxycholecalciferol on parathyroid hormone and phosphate wasting in renal transplant recipients. Transplantation, 1993, 56(4), 843-846.
[http://dx.doi.org/10.1097/00007890-199310000-00013] [PMID: 8212205]
[121]
Cueto-Manzano, A.M.; Konel, S.; Freemont, A.J.; Adams, J.E.; Mawer, B.; Gokal, R.; Hutchison, A.J. Effect of 1,25-dihydroxyvitamin D3 and calcium carbonate on bone loss associated with long-term renal transplantation. Am. J. Kidney Dis., 2000, 35(2), 227-236.
[http://dx.doi.org/10.1016/S0272-6386(00)70331-3] [PMID: 10676721]
[122]
Torres, A.; García, S.; Gómez, A.; González, A.; Barrios, Y.; Concepción, M.T.; Hernández, D.; García, J.J.; Checa, M.D.; Lorenzo, V.; Salido, E. Treatment with intermittent calcitriol and calcium reduces bone loss after renal transplantation. Kidney Int., 2004, 65(2), 705-712.
[http://dx.doi.org/10.1111/j.1523-1755.2004.00432.x] [PMID: 14717945]
[123]
Wissing, K.M.; Broeders, N.; Moreno-Reyes, R.; Gervy, C.; Stallenberg, B.; Abramowicz, D. A controlled study of vitamin D3 to prevent bone loss in renal-transplant patients receiving low doses of steroids. Transplantation, 2005, 79(1), 108-115.
[http://dx.doi.org/10.1097/01.TP.0000149322.70295.A5] [PMID: 15714177]
[124]
Obi, Y.; Ichimaru, N.; Hamano, T.; Tomida, K.; Matsui, I.; Fujii, N.; Okumi, M.; Kaimori, J.; Yazawa, K.; Kokado, Y. Orally active vitamin D for potential chemoprevention of posttransplant malignancy. Cancer Prev. Res. (Phila. Pa.), 2012, 5(10), 1229-1235.
[http://dx.doi.org/10.1158/1940-6207.CAPR-12-0218]
[125]
Koda, R.; Kazama, J.J.; Matsuo, K.; Kawamura, K.; Yamamoto, S.; Wakasugi, M.; Takeda, T.; Narita, I. Intact parathyroid hormone and whole parathyroid hormone assay results disagree in hemodialysis patients under cinacalcet hydrochloride therapy. Clin. Exp. Nephrol., 2015, 19(4), 710-717.
[http://dx.doi.org/10.1007/s10157-014-1045-3] [PMID: 25384431]
[126]
Pérez, R.E.; Santiago, J.C.; López, M.C.; Rosales Morales, K.B.; Zavalza Camberos, P.A.; Olayo, R.B.; Gómez, R.R.; Cancino López, J.D.; Morinelli Astorquizaga, M.A.; Díaz, E.R.; Menjivar, C.M.; Hernández Rivera, J.C.H.; Sierra, R.P. Behavior of Calcium, Phosphorus, and Parathormone before transplantation and in months 1, 3, 6, 9, and 12 after transplantation. Transplant. Proc., 2020, 52(4), 1152- 1156.
[http://dx.doi.org/10.1016/j.transproceed.2020.01.065] [PMID: 32173591]
[127]
Roodnat, J.I.; van Gurp, E.A.F.J.; Mulder, P.G.H.; van Gelder, T.; de Rijke, Y.B.; de Herder, W.W.; Kal-van Gestel, J.A.; Pols, H.A.P.; Ijzermans, J.N.M.; Weimar, W. High pretransplant parathyroid hormone levels increase the risk for graft failure after renal transplantation. Transplantation, 2006, 82(3), 362-367.
[http://dx.doi.org/10.1097/01.tp.0000228923.75739.88] [PMID: 16906034]
[128]
Araujo, M.J.C.L.N.; Ramalho, J.A.M.; Elias, R.M.; Jorgetti, V.; Nahas, W.; Custodio, M.; Moysés, R.M.A.; David-Neto, E. Persistent hyperparathyroidism as a risk factor for long-term graft failure: The need to discuss indication for parathyroidectomy. Surgery, 2018, 163(5), 1144-1150.
[http://dx.doi.org/10.1016/j.surg.2017.12.010] [PMID: 29331397]
[129]
Molnar, M.Z.; Kovesdy, C.P.; Mucsi, I.; Salusky, I.B.; Kalantar-Zadeh, K. Association of pre-kidney transplant markers of mineral and bone disorder with post-transplant outcomes. Clin. J. Am. Soc. Nephrol., 2012, 7(11), 1859-1871.
[http://dx.doi.org/10.2215/CJN.01910212] [PMID: 22956265]
[130]
Fernández-Fresnedo, G.; Rodrigo, E.; Ruiz, J.C.; Martín de Francisco, A.L.; Arias, M. Bone metabolism according to chronic kidney disease stages in patients undergoing kidney transplantation: A 5-year database analysis. Transplant. Proc., 2009, 41(6), 2403-2405.
[http://dx.doi.org/10.1016/j.transproceed.2009.06.071] [PMID: 19715933]
[131]
Tsujita, M.; Goto, N.; Futamura, K.; Okada, M.; Hiramitsu, T.; Narumi, S.; Uchida, K.; Morozumi, K.; Watarai, Y. Two-year retrospective study of the effect of preemptive kidney transplantation and pretransplant mineral bone factors on calcium in post-kidney transplant recipients. Clin. Exp. Nephrol., 2020, 24(9), 836-841.
[http://dx.doi.org/10.1007/s10157-020-01895-8] [PMID: 32342291]
[132]
Delos Santos, R.; Rossi, A.; Coyne, D.; Maw, T.T. Management of post-transplant hyperparathyroidism and bone disease. Drugs, 2019, 79(5), 501-513.
[http://dx.doi.org/10.1007/s40265-019-01074-4] [PMID: 30811012]
[133]
Thongprayoon, C.; Cheungpasitporn, W. Persistent hyperparathyroidism after kidney transplantation; updates on the risk factors and its complications. J. Parathyr. Dis., 2017, 6(1), 26-28.
[http://dx.doi.org/10.15171/jpd.2018.09]
[134]
Levi, M.; Ellis, M.A.; Berl, T. Control of renal hemodynamics and glomerular filtration rate in chronic hypercalcemia. Role of prostaglandins, renin-angiotensin system, and calcium. J. Clin. Invest., 1983, 71(6), 1624-1632.
[http://dx.doi.org/10.1172/JCI110918] [PMID: 6345587]
[135]
Torregrosa, J-V.; Barros, X. Management of hypercalcemia after renal transplantation. Nefrol. Publicacion Soc. Espanola Nefrol., 2013, 33(6), 751-757.
[http://dx.doi.org/10.3265/Nefrologia.pre2013.Aug.11888] [PMID: 24241361]
[136]
Takeda, E.; Taketani, Y.; Sawada, N.; Sato, T.; Yamamoto, H. The regulation and function of phosphate in the human body. Biofactors, 2004, 21(1-4), 345-355.
[http://dx.doi.org/10.1002/biof.552210167] [PMID: 15630224]
[137]
Tenenhouse, H.S. Phosphate transport: Molecular basis, regulation and pathophysiology. J. Steroid Biochem. Mol. Biol., 2007, 103(3-5), 572-577.
[http://dx.doi.org/10.1016/j.jsbmb.2006.12.090] [PMID: 17270430]
[138]
Berndt, T.J.; Schiavi, S.; Kumar, R. “Phosphatonins” and the regulation of phosphorus homeostasis. Am. J. Physiol. Renal Physiol., 2005, 289(6), F1170-F1182.
[http://dx.doi.org/10.1152/ajprenal.00072.2005] [PMID: 16275744]
[139]
Yan, X.; Yokote, H.; Jing, X.; Yao, L.; Sawada, T.; Zhang, Y.; Liang, S.; Sakaguchi, K. Fibroblast growth factor 23 reduces expression of type IIa Na+/Pi co-transporter by signaling through a receptor functionally distinct from the known FGFRs in opossum kidney cells. Genes Cells, 2005, 10(5), 489-502.
[http://dx.doi.org/10.1111/j.1365-2443.2005.00853.x] [PMID: 15836777]
[140]
Graf, H.; Kovarik, J.; Stummvoll, H.K.; Wolf, A.; Pinggera, W.F. Handling of phosphate by the transplanted kidney. Proc. Eur. Dial. Transplant Assoc., 1979, 16, 624-629.
[PMID: 398523]
[141]
Loffing, J.; Lötscher, M.; Kaissling, B.; Biber, J.; Murer, H.; Seikaly, M.; Alpern, R.J.; Levi, M.; Baum, M.; Moe, O.W. Renal Na/H exchanger NHE-3 and Na-PO4 cotransporter NaPi-2 protein expression in glucocorticoid excess and deficient states. J. Am. Soc. Nephrol., 1998, 9(9), 1560-1567.
[http://dx.doi.org/10.1681/ASN.V991560] [PMID: 9727362]
[142]
Falkiewicz, K.; Nahaczewska, W.; Boratynska, M.; Owczarek, H.; Klinger, M.; Kaminska, D.; Wozniak, M.; Szepietowski, T.; Patrzalek, D. Tacrolimus decreases tubular phosphate wasting in renal allograft recipients. Transplant. Proc., 2003, 35(6), 2213-2215.
[http://dx.doi.org/10.1016/S0041-1345(03)00765-6] [PMID: 14529892]
[143]
Hill Gallant, K.M.; Spiegel, D.M. Calcium balance in chronic kidney disease. Curr. Osteoporos. Rep., 2017, 15(3), 214-221.
[http://dx.doi.org/10.1007/s11914-017-0368-x] [PMID: 28474258]
[144]
Perwad, F.; Zhang, M.Y.H.; Tenenhouse, H.S.; Portale, A.A. Fibroblast growth factor 23 impairs phosphorus and vitamin D metabolism in vivo and suppresses 25-hydroxyvitamin D-1α-hydroxylase expression in vitro. Am. J. Physiol. Renal Physiol., 2007, 293(5), F1577-F1583.
[http://dx.doi.org/10.1152/ajprenal.00463.2006] [PMID: 17699549]
[145]
Sheikh, M.S.; Ramirez, A.; Emmett, M.; Santa Ana, C.; Schiller, L.R.; Fordtran, J.S. Role of vitamin D-dependent and vitamin D-independent mechanisms in absorption of food calcium. J. Clin. Invest., 1988, 81(1), 126-132.
[http://dx.doi.org/10.1172/JCI113283] [PMID: 3335630]
[146]
Deluca, H.F.; Cantorna, M.T.; Vitamin, D. Vitamin D: Its role and uses in immunology. FASEB J., 2001, 15(14), 2579-2585.
[http://dx.doi.org/10.1096/fj.01-0433rev] [PMID: 11726533]
[147]
Reinhardt, W.; Bartelworth, H.; Jockenhövel, F.; Schmidt- Gayk, H.; Witzke, O.; Wagner, K.; Heemann, U.W.; Reinwein, D.; Philipp, T.; Mann, K. Sequential changes of biochemical bone parameters after kidney transplantation. Nephrol. Dial. Transplant., 1998, 13(2), 436-442.
[http://dx.doi.org/10.1093/oxfordjournals.ndt.a027843] [PMID: 9509459]
[148]
Withold, W.; Degenhardt, S.; Castelli, D.; Heins, M.; Grabensee, B. Monitoring of osteoblast activity with an immunoradiometric assay for determination of bone alkaline phosphatase mass concentration in patients receiving renal transplants. Clin. Chim. Acta, 1994, 225(2), 137-146.
[http://dx.doi.org/10.1016/0009-8981(94)90041-8] [PMID: 8088003]
[149]
Gümüş, A.; Öztürk, S.; Düz, M.E.; Sari, S.; Koldaş, M.; Akaydin, M. Pre-transplantation and post-transplantation serum bone alkaline phosphatase levels in renal transplant patients. J. Exp. Clin. Med., 2014, 31(2), 91-93.
[http://dx.doi.org/10.5835/jecm.omu.31.02.006]
[150]
Kidney Disease: Improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl., 2013, 3(1), 1.
[http://dx.doi.org/10.1038/kisup.2012.73]
[151]
Sharma, A.K.; Toussaint, N.D.; Elder, G.J.; Rajapakse, C.S.; Holt, S.G.; Baldock, P.; Robertson, P.L.; Ebeling, P.R.; Sorci, O.R.; Masterson, R. Changes in bone microarchitecture following kidney transplantation-Beyond bone mineral density. Clin. Transplant., 2018, 32(9), e13347.
[http://dx.doi.org/10.1111/ctr.13347] [PMID: 29984421]
[152]
Bryer, H.P.; Isserow, J.A.; Armstrong, E.C.; Mann, G.N.; Rucinski, B.; Buchinsky, F.J.; Romero, D.F.; Epstein, S. Azathioprine alone is bone sparing and does not alter cyclosporin A-induced osteopenia in the rat. J. Bone Miner. Res., 1995, 10(1), 132-138.
[http://dx.doi.org/10.1002/jbmr.5650100119] [PMID: 7747620]
[153]
Bonani, M.; Rodriguez, D.; Fehr, T.; Mohebbi, N.; Brockmann, J.; Blum, M.; Graf, N.; Frey, D.; Wüthrich, R.P. Sclerostin blood levels before and after kidney transplantation. Kidney Blood Press. Res., 2014, 39(4), 230-239.
[http://dx.doi.org/10.1159/000355781] [PMID: 25118597]
[154]
Ryan, Z.C.; Ketha, H.; McNulty, M.S.; McGee-Lawrence, M.; Craig, T.A.; Grande, J.P.; Westendorf, J.J.; Singh, R.J.; Kumar, R. Sclerostin alters serum vitamin D metabolite and fibroblast growth factor 23 concentrations and the urinary excretion of calcium. Proc. Natl. Acad. Sci. USA, 2013, 110(15), 6199-6204.
[http://dx.doi.org/10.1073/pnas.1221255110] [PMID: 23530237]
[155]
Bowe, A.E.; Finnegan, R.; Jan de Beur, S.M.; Cho, J.; Levine, M.A.; Kumar, R.; Schiavi, S.C. FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem. Biophys. Res. Commun., 2001, 284(4), 977-981.
[http://dx.doi.org/10.1006/bbrc.2001.5084] [PMID: 11409890]
[156]
Graciolli, F.G.; Neves, K.R.; Barreto, F.; Barreto, D.V.; Dos Reis, L.M.; Canziani, M.E.; Sabbagh, Y.; Carvalho, A.B.; Jorgetti, V.; Elias, R.M.; Schiavi, S.; Moysés, R.M.A. The complexity of chronic kidney disease-mineral and bone disorder across stages of chronic kidney disease. Kidney Int., 2017, 91(6), 1436-1446.
[http://dx.doi.org/10.1016/j.kint.2016.12.029] [PMID: 28318623]
[157]
Pereira, R.C.; Jűppner, H.; Azucena-Serrano, C.E.; Yadin, O.; Salusky, I.B.; Wesseling-Perry, K. Patterns of FGF-23, DMP1, and MEPE expression in patients with chronic kidney disease. Bone, 2009, 45(6), 1161-1168.
[http://dx.doi.org/10.1016/j.bone.2009.08.008] [PMID: 19679205]
[158]
Behets, G.J.; Viaene, L.; Meijers, B.; Blocki, F.; Brandenburg, V.M.; Verhulst, A.; D’Haese, P.C.; Evenepoel, P. Circulating levels of sclerostin but not DKK1 associate with laboratory parameters of CKD-MBD. PLoS One, 2017, 12(5), e0176411.
[http://dx.doi.org/10.1371/journal.pone.0176411] [PMID: 28493902]
[159]
Kanbay, M.; Siriopol, D.; Saglam, M.; Kurt, Y.G.; Gok, M.; Cetinkaya, H.; Karaman, M.; Unal, H.U.; Oguz, Y.; Sari, S.; Eyileten, T.; Goldsmith, D.; Vural, A.; Veisa, G.; Covic, A.; Yilmaz, M.I. Serum sclerostin and adverse outcomes in nondialyzed chronic kidney disease patients. J. Clin. Endocrinol. Metab., 2014, 99(10), E1854-E1861.
[http://dx.doi.org/10.1210/jc.2014-2042] [PMID: 25057883]
[160]
Cejka, D.; Herberth, J.; Branscum, A.J.; Fardo, D.W.; Monier-Faugere, M-C.; Diarra, D.; Haas, M.; Malluche, H.H. Sclerostin and Dickkopf-1 in renal osteodystrophy. Clin. J. Am. Soc. Nephrol., 2011, 6(4), 877-882.
[http://dx.doi.org/10.2215/CJN.06550810] [PMID: 21164019]
[161]
Drechsler, C.; Evenepoel, P.; Vervloet, M.G.; Wanner, C.; Ketteler, M.; Marx, N.; Floege, J.; Dekker, F.W.; Brandenburg, V.M. High levels of circulating sclerostin are associated with better cardiovascular survival in incident dialysis patients: Results from the NECOSAD study. Nephrol. Dial. Transplant., 2015, 30(2), 288-293.
[http://dx.doi.org/10.1093/ndt/gfu301] [PMID: 25248363]
[162]
Ishimura, E.; Okuno, S.; Ichii, M.; Norimine, K.; Yamakawa, T.; Shoji, S.; Nishizawa, Y.; Inaba, M. Relationship between serum sclerostin, bone metabolism markers, and bone mineral density in maintenance hemodialysis patients. J. Clin. Endocrinol. Metab., 2014, 99(11), 4315-4320.
[http://dx.doi.org/10.1210/jc.2014-2372] [PMID: 25093620]
[163]
Desjardins, L.; Liabeuf, S.; Oliveira, R.B.; Louvet, L.; Kamel, S.; Lemke, H-D.; Vanholder, R.; Choukroun, G.; Massy, Z.A. Uremic toxicity and sclerostin in chronic kidney disease patients. Nephrol. Ther., 2014, 10(6), 463-470.
[http://dx.doi.org/10.1016/j.nephro.2014.04.002] [PMID: 25070604]
[164]
Cejka, D.; Jäger-Lansky, A.; Kieweg, H.; Weber, M.; Bieglmayer, C.; Haider, D.G.; Diarra, D.; Patsch, J.M.; Kainberger, F.; Bohle, B.; Haas, M. Sclerostin serum levels correlate positively with bone mineral density and microarchitecture in haemodialysis patients. Nephrol. Dial. Transplant., 2012, 27(1), 226-230.
[http://dx.doi.org/10.1093/ndt/gfr270] [PMID: 21613383]
[165]
Araújo, M.J.C.L.N.; Bacelar Marques, I.D.; Graciolli, F.G.; Fukuhara, L.; Machado Dos Reis, L.; Custódio, M.; Jorgetti, V.; Elias, R.M.; David-Neto, E.; Moysés, R.M.A. Comparison of serum levels with bone content and gene expression indicate a contradictory effect of kidney transplantation on sclerostin. Kidney Int., 2019, 96(5), 1100-1104.
[http://dx.doi.org/10.1016/j.kint.2019.06.007] [PMID: 31526513]
[166]
Laster, M.; Pereira, R.C.; Salusky, I.B. Unraveling the osteocyte in CKD-MBD post-renal transplantation. Kidney Int., 2019, 96(5), 1059-1061.
[http://dx.doi.org/10.1016/j.kint.2019.07.021] [PMID: 31648693]
[167]
Beier, E.E.; Sheu, T-J.; Resseguie, E.A.; Takahata, M.; Awad, H.A.; Cory-Slechta, D.A.; Puzas, J.E. Sclerostin activity plays a key role in the negative effect of glucocorticoid signaling on osteoblast function in mice. Bone Res., 2017, 5(1), 17013.
[http://dx.doi.org/10.1038/boneres.2017.13] [PMID: 28529816]
[168]
Brabnikova Maresova, K.; Pavelka, K.; Stepan, J.J. Acute effects of glucocorticoids on serum markers of osteoclasts, osteoblasts, and osteocytes. Calcif. Tissue Int., 2013, 92(4), 354-361.
[http://dx.doi.org/10.1007/s00223-012-9684-4] [PMID: 23247536]
[169]
Evenepoel, P.; Goffin, E.; Meijers, B.; Kanaan, N.; Bammens, B.; Coche, E.; Claes, K.; Jadoul, M. Sclerostin serum levels and vascular calcification progression in prevalent renal transplant recipients. J. Clin. Endocrinol. Metab., 2015, 100(12), 4669-4676.
[http://dx.doi.org/10.1210/jc.2015-3056] [PMID: 26505822]
[170]
Brandenburg, V.M.; Kramann, R.; Koos, R.; Krüger, T.; Schurgers, L.; Mühlenbruch, G.; Hübner, S.; Gladziwa, U.; Drechsler, C.; Ketteler, M. Relationship between sclerostin and cardiovascular calcification in hemodialysis patients: A cross-sectional study. BMC Nephrol., 2013, 14, 219.
[http://dx.doi.org/10.1186/1471-2369-14-219] [PMID: 24112318]
[171]
Van Oers, M.H.; Van der Heyden, A.A.; Aarden, L.A. Interleukin 6 (IL-6) in serum and urine of renal transplant recipients. Clin. Exp. Immunol., 1988, 71(2), 314-319.
[PMID: 3280187]
[172]
Waiser, J.; Budde, K.; Katalinic, A.; Kuerzdörfer, M.; Riess, R.; Neumayer, H.H. Interleukin-6 expression after renal transplantation. Nephrol. Dial. Transplant., 1997, 12(4), 753-759.
[http://dx.doi.org/10.1093/ndt/12.4.753] [PMID: 9141007]
[173]
Raasveld, M.H.M.; Weening, J.J.; Kerst, J.M.; Surachno, S.; ten Berge, R.J.M. Local production of interleukin-6 during acute rejection in human renal allografts. Nephrol. Dial. Transplant., 1993, 8(1), 75-78.
[http://dx.doi.org/10.1093/oxfordjournals.ndt.a092278] [PMID: 8381942]
[174]
Newstead, C.G.; Lamb, W.R.; Brenchley, P.E.C.; Short, C.D. Serum and urine IL-6 and TNF-α in renal transplant recipients with graft dysfunction. Transplantation, 1993, 56(4), 831-835.
[http://dx.doi.org/10.1097/00007890-199310000-00010] [PMID: 8212202]
[175]
Di Paolo, S.; Gesualdo, L.; Stallone, G.; Ranieri, E.; Schena, F.P. Renal expression and urinary concentration of EGF and IL-6 in acutely dysfunctioning kidney transplanted patients. Nephrol. Dial. Transplant., 1997, 12(12), 2687-2693.
[http://dx.doi.org/10.1093/ndt/12.12.2687] [PMID: 9430873]
[176]
Cho, W.H.; Kim, H.T.; Sohn, C.Y.; Park, C.H.; Park, S.B.; Kim, H.C. Significance of IL-2, IL-2R, IL-6, and TNF-alpha as a diagnostic test of acute rejection after renal transplantation. Transplant. Proc., 1998, 30(7), 2967-2969.
[http://dx.doi.org/10.1016/S0041-1345(98)00892-6] [PMID: 9838310]
[177]
Øyen, O.; Wergeland, R.; Bentdal, O.; Hartmann, A.; Brekke, I.B.; Stokke, O. Serial ultrasensitive CRP measurements may be useful in rejection diagnosis after kidney transplantation. Transplant. Proc., 2001, 33(4), 2481-2483.
[http://dx.doi.org/10.1016/S0041-1345(01)02070-X] [PMID: 11406220]
[178]
Casiraghi, F.; Ruggenenti, P.; Noris, M.; Locatelli, G.; Perico, N.; Perna, A.; Remuzzi, G. Sequential monitoring of urine-soluble interleukin 2 receptor and interleukin 6 predicts acute rejection of human renal allografts before clinical or laboratory signs of renal dysfunction. Transplantation, 1997, 63(10), 1508-1514.
[http://dx.doi.org/10.1097/00007890-199705270-00023] [PMID: 9175818]
[179]
Perez, R.V.; Brown, D.J.; Katznelson, S.A.; Dubin, J.A.; Müller, H.G.; Chang, T.; Rudich, S.M.; McVicar, J.P.; Kaysen, G.A. Pretransplant systemic inflammation and acute rejection after renal transplantation. Transplantation, 2000, 69(5), 869-874.
[http://dx.doi.org/10.1097/00007890-200003150-00034] [PMID: 10755542]
[180]
Filiopoulos, V.; Vlassopoulos, D. Inflammatory syndrome in chronic kidney disease: Pathogenesis and influence on outcomes. Inflamm. Allergy Drug Targets, 2009, 8(5), 369-382.
[http://dx.doi.org/10.2174/1871528110908050369] [PMID: 20025585]
[181]
Gabay, C. Interleukin-6 and chronic inflammation. Arthritis Res. Ther., 2006, 8(Suppl. 2), S3.
[http://dx.doi.org/10.1186/ar1917] [PMID: 16899107]
[182]
Avci Çiçek, E.; Rota, S.; Dursun, B.; Kavalci, E. Evaluation of serum NGAL and hepcidin levels in chronic kidney disease patients. Ren. Fail., 2016, 38(1), 35-39.
[http://dx.doi.org/10.3109/0886022X.2015.1107823] [PMID: 26627016]
[183]
Baker, A.R.; Silva, N.F.; Quinn, D.W.; Harte, A.L.; Pagano, D.; Bonser, R.S.; Kumar, S.; McTernan, P.G. Human epicardial adipose tissue expresses a pathogenic profile of adipocytokines in patients with cardiovascular disease. Cardiovasc. Diabetol., 2006, 5(1), 1.
[http://dx.doi.org/10.1186/1475-2840-5-1] [PMID: 16412224]
[184]
Gursu, M.; Celik, K.; Ozturk, S.; Turkmen, A.; Gorcin, S.; Kocak, B.; Sari, S.; Koldas, M.; Feyizoglu, H.; Kazancioglu, R. Pentraxin 3 and C-reactive protein as inflammatory markers after a kidney transplant. Exp. Clin. Transplant. Off. J. Middle East Soc. Organ Transplant., 2014, 12(4), 295-299.
[http://dx.doi.org/10.6002/ect.2013.0122] [PMID: 24568622]
[185]
Mota, A.P.L.; Martins, S.R.; Alves, L.V.; Cardoso, C.N.; Alpoim, P.N.; Silva, I. Thrombomodulin and Interleukin 6 as potential biomarkers of endothelial dysfunction and inflammation after renal transplant. J. Bras. Patol. Med. Lab., 2018, 54(6), 379-386.
[http://dx.doi.org/10.5935/1676-2444.20180059]
[186]
Cueto-Manzano, A.M.; Morales-Buenrostro, L.E.; González-Espinoza, L.; González-Tableros, N.; Martín-del-Campo, F.; Correa-Rotter, R.; Valera, I.; Alberú, J. Markers of inflammation before and after renal transplantation. Transplantation, 2005, 80(1), 47-51.
[http://dx.doi.org/10.1097/01.TP.0000164348.16689.03] [PMID: 16003232]
[187]
Budde, K.; Waiser, J.; Neumayer, H-H. The diagnostic value of GM-CSF and IL-6 determinations in patients after renal transplantation. Transpl. Int., 1994, 7(Suppl. 1), S97-S101.
[http://dx.doi.org/10.1111/j.1432-2277.1994.tb01320.x] [PMID: 11271346]
[188]
Malan Borel, I.; Racca, A.; Garcia, M.I.; Bailat, A.; Quiroga, F.; Soutullo, A.; Gaite, L.; Γδ, T. Gammadelta T cells and interleukin-6 levels could provide information regarding the progression of human renal allograft. Scand. J. Immunol., 2003, 58(1), 99-105.
[http://dx.doi.org/10.1046/j.1365-3083.2003.01275.x] [PMID: 12828564]
[189]
Shaqman, M.; Ioannidou, E.; Burleson, J.; Hull, D.; Dongari-Bagtzoglou, A. Periodontitis and inflammatory markers in transplant recipients. J. Periodontol., 2010, 81(5), 666-672.
[http://dx.doi.org/10.1902/jop.2010.090570] [PMID: 20429646]
[190]
Thompson, M.E.; Shapiro, A.P.; Johnsen, A-M.; Itzkoff, J.M.; Hardesty, R.L.; Griffith, B.P.; Bahnson, H.T.; McDonald, R.H., Jr; Hastillo, A.; Hess, M. The contrasting effects of cyclosporin-A and azathioprine on arterial blood pressure and renal function following cardiac transplantation. Int. J. Cardiol., 1986, 11(2), 219-229.
[http://dx.doi.org/10.1016/0167-5273(86)90181-6] [PMID: 3519476]
[191]
Liel, Y.; Ulmer, E.; Shary, J.; Hollis, B.W.; Bell, N.H. Low circulating vitamin D in obesity. Calcif. Tissue Int., 1988, 43(4), 199-201.
[http://dx.doi.org/10.1007/BF02555135] [PMID: 3145124]
[192]
Kawai, M.; Devlin, M.J.; Rosen, C.J. Fat targets for skeletal health. Nat. Rev. Rheumatol., 2009, 5(7), 365-372.
[http://dx.doi.org/10.1038/nrrheum.2009.102] [PMID: 19468288]
[193]
Kovesdy, C.P.; Molnar, M.Z.; Czira, M.E.; Rudas, A.; Ujszaszi, A.; Rosivall, L.; Szathmari, M.; Covic, A.; Keszei, A.; Beko, G.; Lakatos, P.; Kosa, J.; Mucsi, I. Associations between serum leptin level and bone turnover in kidney transplant recipients. Clin. J. Am. Soc. Nephrol., 2010, 5(12), 2297-2304.
[http://dx.doi.org/10.2215/CJN.03520410] [PMID: 20688883]
[194]
De Lucena, D.D.; Rangel, É.B. Glucocorticoids use in kidney transplant setting. Expert Opin. Drug Metab. Toxicol., 2018, 14(10), 1023-1041.
[http://dx.doi.org/10.1080/17425255.2018.1530214] [PMID: 30265586]
[195]
Yilmaz, M.I.; Sonmez, A.; Saglam, M.; Cayci, T.; Kilic, S.; Unal, H.U.; Karaman, M.; Cetinkaya, H.; Eyileten, T.; Gok, M.; Oguz, Y.; Vural, A.; Mallamaci, F.; Zoccali, C. A longitudinal study of inflammation, CKD-mineral bone disorder, and carotid atherosclerosis after renal transplantation. Clin. J. Am. Soc. Nephrol., 2015, 10(3), 471-479.
[http://dx.doi.org/10.2215/CJN.07860814] [PMID: 25542907]
[196]
Tomei, P.; Zaza, G.; Granata, S.; Gatti, D.; Fraccarollo, C.; Gesualdo, L.; Boschiero, L.; Lupo, A. Sclerostin and Dickkopf-1 in post-menopausal renal allograft recipients. Transplant. Proc., 2014, 46(7), 2241-2246.
[http://dx.doi.org/10.1016/j.transproceed.2014.07.024] [PMID: 25242761]
[197]
Malyszko, J.; Malyszko, J.S.; Pawlak, K.; Mysliwiec, M. Resistin, a new adipokine, is related to inflammation and renal function in kidney allograft recipients. Transplant. Proc., 2006, 38(10), 3434-3436.
[http://dx.doi.org/10.1016/j.transproceed.2006.10.140] [PMID: 17175295]
[198]
Malyszko, J.; Koc-Zorawska, E.; Malyszko, J.S.; Glowinska, I.; Mysliwiec, M.; Macdougall, I.C. GDF15 is related to anemia and hepcidin in kidney allograft recipients. Nephron Clin. Pract., 2013, 123(1-2), 112-117.
[http://dx.doi.org/10.1159/000351810] [PMID: 23797049]
[199]
Sonkar, G.K.; Singh, S.; Sonkar, S.K.; Singh, U.; Singh, R.G. Evaluation of serum interleukin 6 and tumour necrosis factor alpha levels, and their association with various non-immunological parameters in renal transplant recipients. Singapore Med. J., 2013, 54(9), 511-515.
[http://dx.doi.org/10.11622/smedj.2013174] [PMID: 24068060]
[200]
Xue, D.; He, X.; Zhou, C. Serum hepcidin level correlates with hyperlipidemia status in patients following allograft renal transplantation. Transplant. Proc., 2014, 46(1), 156-159.
[http://dx.doi.org/10.1016/j.transproceed.2013.06.020] [PMID: 24507043]
[201]
Rathi, M.; Kumar, D.; Bhadada, S.K.; Khandelwal, N.; Kohli, H.S.; Jha, V.; Sakhuja, V. Sequential changes in bone biochemical parameters and bone mineral density after renal transplant. Saudi J. Kidney Dis. Transpl., 2015, 26(4), 671-677.
[http://dx.doi.org/10.4103/1319-2442.160127] [PMID: 26178536]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy