Perspective

SARS-CoV-2感染中出现游离ISG15和蛋白质ISGylation现象

卷 23, 期 7, 2022

发表于: 14 April, 2022

页: [686 - 691] 页: 6

弟呕挨: 10.2174/1389450123666220316094720

摘要

干扰素模拟基因15 (ISG15)属于泛素样蛋白家族。ISG15作为细胞因子,通过ISGylation作用修饰蛋白质。这种翻译后修饰与抗病毒和免疫应答途径有关。此外,据了解,严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的基因组编码对病毒复制至关重要的蛋白酶。因此,这些蛋白酶在2019年冠状病毒病(COVID-19)的进展中也起着关键作用。有趣的是,蛋白酶SARS-CoV-2-PLpro从ISGylated蛋白(如IRF3和MDA5)中去除ISG15,影响宿主的免疫和抗病毒防御。本文就ISG15、ISGylation和生成SARS-CoV-2- plpro抑制剂在SARS-CoV-2感染中的意义进行了讨论。

关键词: COVID-19, SARS-CoV-2, SCoV-PLpro, ISG15, ISGylation,蛋白酶。

[1]
Pinto BGG, Oliveira AER, Singh Y, et al. ACE2 expression is increased in the lungs of patients with comorbidities associated with severe COVID-19. J Infect Dis 2020; 222(4): 556-63.
[http://dx.doi.org/10.1093/infdis/jiaa332] [PMID: 32526012]
[2]
Franchini M, Bongiovanni G, Cruciani M. Mortality from COVID-19. Ann Ig 2021; 33(5): 521-3.
[http://dx.doi.org/10.7416/ai.2021.2451] [PMID: 34223866]
[3]
Gupta I, Rizeq B, Elkord E, Vranic S, Al Moustafa AE. SAR-CoV-2 infection and lung cancer: Potential therapeutic modalities. Cancers (Basel) 2020; 12(8): 1-21.
[http://dx.doi.org/10.3390/cancers12082186] [PMID: 32764454]
[4]
Bahranifard B, Mehdizadeh S, Hamidi A, et al. A review of neuroradiological abnormalities in patients with coronavirus disease 2019 (COVID-19). Neuroradiol J 2021; 19714009211029119714009211029177
[http://dx.doi.org/10.1177/19714009211029177] [PMID: 34224248]
[5]
Danics K, Forrest SL, Kapas I, et al. Neurodegenerative proteinopathies associated with neuroinfections. J Neural Transm (Vienna) 2021; 128(10): 1551-66.
[http://dx.doi.org/10.1007/s00702-021-02371-7] [PMID: 34223998]
[6]
Wang Y, Fan Y, Huang Y, et al. TRIM28 regulates SARS-CoV-2 cell entry by targeting ACE2. Cell Signal 2021; 85110064
[http://dx.doi.org/10.1016/j.cellsig.2021.110064] [PMID: 34146659]
[7]
Coperchini F, Ricci G, Croce L, et al. Modulation of ACE-2 mRNA by inflammatory cytokines in human thyroid cells: a pilot study. Endocrine 2021; 74(3): 638-45.
[http://dx.doi.org/10.1007/s12020-021-02807-w] [PMID: 34224085]
[8]
Scagnolari C, Bitossi C, Viscido A, et al. ACE2 expression is related to the interferon response in airway epithelial cells but is that functional for SARS-CoV-2 entry? Cytokine 2021; 140155430
[http://dx.doi.org/10.1016/j.cyto.2021.155430] [PMID: 33508651]
[9]
Ziegler CGK, Allon SJ, Nyquist SK, et al. HCA Lung Biological Network. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 2020; 181(5): 1016-1035.e19.
[http://dx.doi.org/10.1016/j.cell.2020.04.035] [PMID: 32413319]
[10]
Lee MC, Chen YK, Tsai-Wu JJ, Hsu YJ, Lin BR. Zinc supplementation augments the suppressive effects of repurposed NF-B inhibitors on ACE2 expression in human lung cell lines. Life Sci 2021; 280119752
[http://dx.doi.org/10.1016/j.lfs.2021.119752] [PMID: 34171382]
[11]
Onabajo OO, Banday AR, Stanifer ML, et al. Interferons and viruses induce a novel truncated ACE2 isoform and not the full-length SARS-CoV-2 receptor. Nat Genet 2020; 52(12): 1283-93.
[http://dx.doi.org/10.1038/s41588-020-00731-9] [PMID: 33077916]
[12]
Samad A, Jafar T, Rafi JH. Identification of angiotensin-converting enzyme 2 (ACE2) protein as the potential biomarker in SARS-CoV-2 infection-related lung cancer using computational analyses. Genomics 2020; 112(6): 4912-23.
[http://dx.doi.org/10.1016/j.ygeno.2020.09.002] [PMID: 32916258]
[13]
Jorgovanovic D, Song M, Wang L, Zhang Y. Roles of IFN-; in tumor progression and regression: a review. Biomark Res 2020; 8: 49.
[http://dx.doi.org/10.1186/s40364-020-00228-x] [PMID: 33005420]
[14]
Castro F, Cardoso AP, Gonçalves RM, Serre K, Oliveira MJ. Interferon-gamma at the crossroads of tumor immune surveillance or evasion. Front Immunol 2018; 9: 847.
[http://dx.doi.org/10.3389/fimmu.2018.00847] [PMID: 29780381]
[15]
Mostafa AA, Codner D, Hirasawa K, et al. Activation of ER signaling differentially modulates IFN- induced HLA-class II expression in breast cancer cells. PLoS One 2014; 9(1)e87377
[http://dx.doi.org/10.1371/journal.pone.0087377] [PMID: 24475282]
[16]
Browne SK, Roesser JR, Zhu SZ, Ginder GD. Differential IFN- stimulation of HLA-A gene expression through CRM-1-dependent nuclear RNA export. J Immunol 2006; 177(12): 8612-9.
[http://dx.doi.org/10.4049/jimmunol.177.12.8612] [PMID: 17142760]
[17]
Cui XF, Imaizumi T, Yoshida H, Borden EC, Satoh K. Retinoic acid-inducible gene-I is induced by interferon- and regulates the expression of interferon- stimulated gene 15 in MCF-7 cells. Biochem Cell Biol 2004; 82(3): 401-5.
[http://dx.doi.org/10.1139/o04-041] [PMID: 15181474]
[18]
Imaizumi T, Yagihashi N, Hatakeyama M, et al. Expression of retinoic acid-inducible gene-I in vascular smooth muscle cells stimulated with interferon-&#947. Life Sci 2004; 75(10): 1171-80.
[http://dx.doi.org/10.1016/j.lfs.2004.01.030] [PMID: 15219805]
[19]
Imaizumi T, Hatakeyama M, Yamashita K, et al. Interferon- induces retinoic acid-inducible gene-I in endothelial cells. Endothelium 2004; 11(3-4): 169-73.
[http://dx.doi.org/10.1080/10623320490512156] [PMID: 15370293]
[20]
Tecalco-Cruz AC. Molecular pathways of interferon-stimulated gene 15: Implications in cancer. Curr Protein Pept Sci 2021; 22(1): 19-28.
[http://dx.doi.org/10.2174/1389203721999201208200747] [PMID: 33292152]
[21]
Fan JB, Zhang DE. ISG15 regulates IFN- immunity in human mycobacterial disease. Cell Res 2013; 23(2): 173-5.
[http://dx.doi.org/10.1038/cr.2012.133] [PMID: 22964713]
[22]
Swaim CD, Scott AF, Canadeo LA, Huibregtse JM. Extracellular ISG15 signals cytokine secretion through the LFA-1 integrin receptor. Mol Cell 2017; 68(3): 581-590.e5.
[http://dx.doi.org/10.1016/j.molcel.2017.10.003] [PMID: 29100055]
[23]
Swaim CD, Canadeo LA, Monte KJ, Khanna S, Lenschow DJ, Huibregtse JM. Modulation of extracellular ISG15 signaling by pathogens and viral effector proteins. Cell Rep 2020; 31(11)107772
[http://dx.doi.org/10.1016/j.celrep.2020.107772] [PMID: 32553163]
[24]
Padovan E, Terracciano L, Certa U, et al. Interferon stimulated gene 15 constitutively produced by melanoma cells induces e-cadherin expression on human dendritic cells. Cancer Res 2002; 62(12): 3453-8.
[PMID: 12067988]
[25]
Feng Q, Sekula D, Guo Y, et al. UBE1L causes lung cancer growth suppression by targeting cyclin D1. Mol Cancer Ther 2008; 7(12): 3780-8.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0753] [PMID: 19074853]
[26]
Sainz B Jr, Martín B, Tatari M, Heeschen C, Guerra S. ISG15 is a critical microenvironmental factor for pancreatic cancer stem cells. Cancer Res 2014; 74(24): 7309-20.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-1354] [PMID: 25368022]
[27]
Chen RH, Du Y, Han P, et al. ISG15 predicts poor prognosis and promotes cancer stem cell phenotype in nasopharyngeal carcinoma. Oncotarget 2016; 7(13): 16910-22.
[http://dx.doi.org/10.18632/oncotarget.7626] [PMID: 26919245]
[28]
Desai SD, Haas AL, Wood LM, et al. Elevated expression of ISG15 in tumor cells interferes with the ubiquitin/26S proteasome pathway. Cancer Res 2006; 66(2): 921-8.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1123] [PMID: 16424026]
[29]
Wan XX, Chen HC, Khan MA, et al. ISG15 inhibits IFN--resistant liver cancer cell growth. BioMed Res Int 2013; 2013570909
[http://dx.doi.org/10.1155/2013/570909] [PMID: 24024201]
[30]
Lee JH, Bae JA, Lee JH, et al. Glycoprotein 90K, downregulated in advanced colorectal cancer tissues, interacts with CD9/CD82 and suppresses the Wnt/-catenin signal via ISGylation of -catenin. Gut 2010; 59(7): 907-17.
[http://dx.doi.org/10.1136/gut.2009.194068] [PMID: 20581239]
[31]
Villarroya-Beltri C, Baixauli F, Mittelbrunn M, et al. ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat Commun 2016; 7: 13588.
[http://dx.doi.org/10.1038/ncomms13588] [PMID: 27882925]
[32]
Burks J, Reed RE, Desai SD. ISGylation governs the oncogenic function of Ki-Ras in breast cancer. Oncogene 2014; 33(6): 794-803.
[http://dx.doi.org/10.1038/onc.2012.633] [PMID: 23318454]
[33]
Jeon YJ, Choi JS, Lee JY, et al. ISG15 modification of filamin B negatively regulates the type I interferon-induced JNK signalling pathway. EMBO Rep 2009; 10(4): 374-80.
[http://dx.doi.org/10.1038/embor.2009.23] [PMID: 19270716]
[34]
Yuan H, Zhou W, Yang Y, Xue L, Liu L, Song Y. ISG15 promotes esophageal squamous cell carcinoma tumorigenesis via c-MET/Fyn/-catenin signaling pathway. Exp Cell Res 2018; 367(1): 47-55.
[http://dx.doi.org/10.1016/j.yexcr.2018.03.017] [PMID: 29555370]
[35]
Burks J, Reed RE, Desai SD. Free ISG15 triggers an antitumor immune response against breast cancer: a new perspective. Oncotarget 2015; 6(9): 7221-31.
[http://dx.doi.org/10.18632/oncotarget.3372] [PMID: 25749047]
[36]
Malakhov MP, Kim KI, Malakhova OA, Jacobs BS, Borden EC, Zhang DE. High-throughput immunoblotting. Ubiquitiin-like protein ISG15 modifies key regulators of signal transduction. J Biol Chem 2003; 278(19): 16608-13.
[http://dx.doi.org/10.1074/jbc.M208435200] [PMID: 12582176]
[37]
Basters A, Geurink PP, El Oualid F, et al. Molecular characterization of ubiquitin-specific protease 18 reveals substrate specificity for interferon-stimulated gene 15. FEBS J 2014; 281(7): 1918-28.
[http://dx.doi.org/10.1111/febs.12754] [PMID: 24533902]
[38]
González-Sanz R, Mata M, Bermejo-Martín J, et al. ISG15 is upregulated in respiratory syncytial virus infection and reduces virus growth through protein is gylation. J Virol 2016; 90(7): 3428-38.
[http://dx.doi.org/10.1128/JVI.02695-15] [PMID: 26763998]
[39]
Lenschow DJ, Lai C, Frias-Staheli N, et al. IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses. Proc Natl Acad Sci USA 2007; 104(4): 1371-6.
[http://dx.doi.org/10.1073/pnas.0607038104] [PMID: 17227866]
[40]
Speer SD, Li Z, Buta S, et al. ISG15 deficiency and increased viral resistance in humans but not mice. Nat Commun 2016; 7: 11496.
[http://dx.doi.org/10.1038/ncomms11496] [PMID: 27193971]
[41]
Bogunovic D, Byun M, Durfee LA, et al. Mycobacterial disease and impaired IFN- immunity in humans with inherited ISG15 deficiency. Science 2012; 337: 1684-8.
[http://dx.doi.org/10.1126/science.1224026]
[42]
Freitas BT, Durie IA, Murray J, et al. Characterization and noncovalent inhibition of the deubiquitinase and deisgylase activity of SARS-CoV-2 papain-like protease. ACS Infect Dis 2020; 6(8): 2099-109.
[http://dx.doi.org/10.1021/acsinfecdis.0c00168] [PMID: 32428392]
[43]
Zhang X, Bogunovic D, Payelle-Brogard B, et al. Human intracellular ISG15 prevents interferon-/ over-amplification and auto-inflammation. Nature 2015; 517(7532): 89-93.
[http://dx.doi.org/10.1038/nature13801] [PMID: 25307056]
[44]
Vuillier F, Li Z, Commere PH, Dynesen LT, Pellegrini S. USP18 and ISG15 coordinately impact on SKP2 and cell cycle progression. Sci Rep 2019; 9(1): 4066.
[http://dx.doi.org/10.1038/s41598-019-39343-7] [PMID: 30858391]
[45]
Sulea T, Lindner HA, Purisima EO, Ménard R. Deubiquitination, a new function of the severe acute respiratory syndrome coronavirus papain-like protease? J Virol 2005; 79(7): 4550-1.
[http://dx.doi.org/10.1128/JVI.79.7.4550-4551.2005] [PMID: 15767458]
[46]
Lindner HA, Fotouhi-Ardakani N, Lytvyn V, Lachance P, Sulea T, Ménard R. The papain-like protease from the severe acute respiratory syndrome coronavirus is a deubiquitinating enzyme. J Virol 2005; 79(24): 15199-208.
[http://dx.doi.org/10.1128/JVI.79.24.15199-15208.2005] [PMID: 16306591]
[47]
Dang W, Xu L, Yin Y, et al. IRF-1, RIG-I and MDA5 display potent antiviral activities against norovirus coordinately induced by different types of interferons. Antiviral Res 2018; 155: 48-59.
[http://dx.doi.org/10.1016/j.antiviral.2018.05.004] [PMID: 29753657]
[48]
Onomoto K, Onoguchi K, Yoneyama M. Regulation of RIG-I-like receptor-mediated signaling: interaction between host and viral factors. Cell Mol Immunol 2021; 18(3): 539-55.
[http://dx.doi.org/10.1038/s41423-020-00602-7] [PMID: 33462384]
[49]
Jin Z, Du X, Xu Y, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020; 582(7811): 289-93.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[50]
Kanhed AM, Patel DV, Teli DM, Patel NR, Chhabria MT, Yadav MR. Identification of potential Mpro inhibitors for the treatment of COVID-19 by using systematic virtual screening approach. Mol Divers 2021; 25(1): 383-401.
[http://dx.doi.org/10.1007/s11030-020-10130-1] [PMID: 32737681]
[51]
Barretto N, Jukneliene D, Ratia K, Chen Z, Mesecar AD, Baker SC. The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity. J Virol 2005; 79(24): 15189-98.
[http://dx.doi.org/10.1128/JVI.79.24.15189-15198.2005] [PMID: 16306590]
[52]
Liu G, Lee JH, Parker ZM, et al. ISG15-dependent activation of the sensor MDA5 is antagonized by the SARS-CoV-2 papain-like protease to evade host innate immunity. Nat Microbiol 2021; 6(4): 467-78.
[http://dx.doi.org/10.1038/s41564-021-00884-1] [PMID: 33727702]
[53]
Chiang C, Liu G, Gack MU. Viral evasion of rig-i-like receptor-mediated immunity through dysregulation of ubiquitination and isgylation. Viruses 2021; 13(2): 182.
[http://dx.doi.org/10.3390/v13020182] [PMID: 33530371]
[54]
Stasiulewicz A, Maksymiuk AW, Nguyen ML. Beza B, Sulkowska JI. SARS-CoV-2 papain-like protease potential inhibitors in silico quantitative assessment. Int J Mol Sci 2021; 22(8): 3957.
[http://dx.doi.org/10.3390/ijms22083957] [PMID: 33921228]
[55]
Leite WC, Weiss KL, Phillips G, et al. Conformational dynamics in the interaction of SARS-CoV-2 papain-like protease with human interferon-stimulated gene 15 protein. J Phys Chem Lett 2021; 12(23): 5608-15.
[http://dx.doi.org/10.1021/acs.jpclett.1c00831] [PMID: 34110168]
[56]
Liu G, Lee J-H, Parker ZM, et al. ISG15-dependent activation of the RNA sensor MDA5 and its antagonism by the SARS-CoV-2 papain-like protease. BioRxiv 2020.
[http://dx.doi.org/10.1101/2020.10.26.356048]
[57]
Shin D, Mukherjee R, Grewe D, et al. Inhibition of papain-like protease PLpro blocks SARS-CoV-2 spread and promotes anti-viral immunity. Res Square 2020.
[http://dx.doi.org/10.21203/rs.3.rs-27134/v1]
[58]
Fung SY, Siu KL, Lin H, Yeung ML, Jin DY. SARS-CoV-2 main protease suppresses type I interferon production by preventing nuclear translocation of phosphorylated IRF3. Int J Biol Sci 2021; 17(6): 1547-54.
[http://dx.doi.org/10.7150/ijbs.59943] [PMID: 33907518]
[59]
Munnur D, Teo Q, Eggermont D, et al. Altered ISGylation drives aberrant macrophage-dependent immune responses during SARS-CoV-2 infection. Nat Immunol 2021; 22(11): 1416-27.
[http://dx.doi.org/10.1038/s41590-021-01035-8] [PMID: 34663977]
[60]
Ratia K, Pegan S, Takayama J, et al. A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication. Proc Natl Acad Sci USA 2008; 105(42): 16119-24.
[http://dx.doi.org/10.1073/pnas.0805240105] [PMID: 18852458]
[61]
Báez-Santos YM, Barraza SJ, Wilson MW, et al. X-ray structural and biological evaluation of a series of potent and highly selective inhibitors of human coronavirus papain-like proteases. J Med Chem 2014; 57(6): 2393-412.
[http://dx.doi.org/10.1021/jm401712t] [PMID: 24568342]
[62]
Báez-Santos YM, Mielech AM, Deng X, Baker S, Mesecar AD. Catalytic function and substrate specificity of the papain-like protease domain of nsp3 from the Middle East respiratory syndrome coronavirus. J Virol 2014; 88(21): 12511-27.
[http://dx.doi.org/10.1128/JVI.01294-14] [PMID: 25142582]
[63]
Shin D, Mukherjee R, Grewe D, et al. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature 2020; 587(7835): 657-62.
[http://dx.doi.org/10.1038/s41586-020-2601-5] [PMID: 32726803]
[64]
Anirudhan V, Lee H, Cheng H, Cooper L, Rong L. Targeting SARS-CoV-2 viral proteases as a therapeutic strategy to treat COVID-19. J Med Virol 2021; 93(5): 2722-34.
[http://dx.doi.org/10.1002/jmv.26814] [PMID: 33475167]
[65]
Rajpoot S, Alagumuthu M, Baig MS. Dual targeting of 3CLpro and PLpro of SARS-CoV-2: A novel structure-based design approach to treat COVID-19. Curr Res Struct Biol 2021; 3: 9-18.
[http://dx.doi.org/10.1016/j.crstbi.2020.12.001] [PMID: 33319212]
[66]
Pitsillou E, Liang J, Hung A, Karagiannis TC. Inhibition of interferon-stimulated gene 15 and lysine 48-linked ubiquitin binding to the SARS-CoV-2 papain-like protease by small molecules: In silico studies. Chem Phys Lett 2021; 771138468
[http://dx.doi.org/10.1016/j.cplett.2021.138468] [PMID: 33716308]
[67]
Clemente V, D’Arcy P, Bazzaro M. Deubiquitinating enzymes in coronaviruses and possible therapeutic opportunities for COVID-19. Int J Mol Sci 2020; 21(10)E3492
[http://dx.doi.org/10.3390/ijms21103492] [PMID: 32429099]
[68]
Klemm T, Ebert G, Calleja DJ, et al. Mechanism and inhibition of the papain-like protease, PLpro, of SARS-CoV-2. EMBO J 2020; 39(18)e106275
[http://dx.doi.org/10.15252/embj.2020106275] [PMID: 32845033]
[69]
Iglesias-Guimarais V, Ahrends T, de Vries E, Knobeloch K-P, Volkov A, Borst J. IFN-stimulated gene 15 is an alarmin that boosts the CTL Response via an innate, NK cell-dependent route. J Immunol 2020; 204(8): 2110-21.
[http://dx.doi.org/10.4049/jimmunol.1901410] [PMID: 32169846]
[70]
Villarreal DO, Wise MC, Siefert RJ, Yan J, Wood LM, Weiner DB. Ubiquitin-like molecule ISG15 acts as an immune adjuvant to enhance antigen-specific CD8 T-cell tumor immunity Mol Ther 2015; 23(10): 1653-62.
[http://dx.doi.org/10.1038/mt.2015.120] [PMID: 26122932]

© 2025 Bentham Science Publishers | Privacy Policy