Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Green Synthesis of MnO2 NPs Using Blumea lacera Leaf Extract and its Antimicrobial Study

Author(s): Smita T. Morbale* and Satish D. Patil

Volume 12, Issue 2, 2022

Published on: 27 April, 2022

Article ID: e140322202120 Pages: 10

DOI: 10.2174/2210681212666220314101520

Price: $65

Abstract

Background: Green synthesis of nanoparticles has emerged as an interesting and expanding research area due to environmental friendliness, non-toxicity, cleanliness, and cost-effectiveness. Moreover, it can be performed at room pressure and temperature. Blumea lacera is described as a valuable medicinal plant in many vital systems of medicines. The study explored the eco-friendly green synthesis of MnO2 NPs using Blumea lacera leaf extract.

Methods: Reduction of potassium permanganate (KMnO4) using Blumea lacera leaf extract was carried out at room temperature. The crude extract of Blumea lacera was added to metal ion reagents of specific volume and specific concentration at ambient temperature and stirred continuously using a magnetic stirrer. The aqueous leaf extract reduced and stabilized the KMnO4 into MnO2 NPs. The MnO2 NPs obtained from the solution were purified and separated by repeated centrifugation using Remi cooling centrifuge model C-24.

Results: The biosynthesized MnO2 NPs characterized by UV-Vis spectroscopy showed an absorption peak at 400 nm. The XRD studies revealed the spherical shape of MnO2 NPs with an average particle diameter of 20 nm. FT-IR analysis confirmed the presence of functional groups -OH, C=O, C=C, and CH triggering the synthesis of MnO2 NPs. Vibrational mode at around 606.62 and 438.81 cm−1 supports the occurrence of the O-Mn-O bond.

Conclusion: The synthesized MnO2 NPs were found to be good antibacterial and antifungal agents against bacterial strains Staphylococcus aureus, B. subtilis, Pseudomonas aeruginosa, E. coli, and fungal strains C. albicans, Aspergillus niger, and Sclerotium rolfsii.

Keywords: Blumea lacera, plant extract, MnO2 NPs, green synthesis, UV-Vis spectroscopy, antimicrobial study.

Graphical Abstract

[1]
Kharissova, O.V.; Kharisov, B.I.; Oliva González, C.M.; Méndez, Y.P.; López, I. Greener synthesis of chemical compounds and materials. R. Soc. Open Sci., 2019, 6(11), 191378.
[http://dx.doi.org/10.1098/rsos.191378] [PMID: 31827868]
[2]
Khan, S.A.; Lee, C.S. Green biological synthesis of nanoparticles and their biomedical applications. In: applications of nanotechnology for green synthesis; Inamuddin, A.A., Ed.; Springer Science and Business Media: Berlin, Germany, 2020; pp. 247-280.
[http://dx.doi.org/10.1007/978-3-030-44176-0_10]
[3]
Ciorîţă, A.; Suciu, M.; Macavei, S.; Kacso, I.; Lung, I.; Soran, M.L.; Pârvu, M. Green synthesis of Ag-MnO2 nanoparticles using Cheli-donium majus and Vinca minor extracts and their in vitro cytotoxicity. Molecules, 2020, 25(4), 819.
[http://dx.doi.org/10.3390/molecules25040819] [PMID: 32070017]
[4]
Lu, H.; Zhang, X.; Khan, S.A.; Li, W.; Wan, L. Biogenic synthesis of MnO2 nanoparticles with leaf extract of Viola betonicifolia for en-hanced antioxidant, antimicrobial, cytotoxic, and biocompatible applications. Front. Microbiol., 2021, 12, 761084.
[http://dx.doi.org/10.3389/fmicb.2021.761084] [PMID: 34790185]
[5]
Das, R.K.; Pachapur, V.L.; Lonappan, L.; Naghdi, M.; Pulicharla, R.; Maiti, S.; Cledon, M.; Dalila, L.M.A.; Sarma, S.J.; Brar, S. Biological synthesis of metallic nanoparticles: Plants, animals and microbial aspects. Nanotechnol. Environ Eng., 2017, 2(18), 1424.
[http://dx.doi.org/10.1007/s41204-017-0029-4]
[6]
Gurunathan, S.; Han, J.W.; Kwon, D.N.; Kim, J.H. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Res. Lett., 2014, 9(1), 373.
[http://dx.doi.org/10.1186/1556-276X-9-373] [PMID: 25136281]
[7]
Khan, M.; Al-Marri, A.H.; Khan, M.; Shaik, M.R.; Mohri, N.; Adil, S.F.; Kuniyil, M.; Alkhathlan, H.Z.; Al-Warthan, A.; Tremel, W.; Tahir, M.N.; Siddiqui, M.R. Green approach for the effective reduction of graphene oxide using Salvadora persica L. root (Miswak) extract. Nanoscale Res. Lett., 2015, 10(1), 987.
[http://dx.doi.org/10.1186/s11671-015-0987-z] [PMID: 26138452]
[8]
Seabra, A.B.; Haddad, P.; Duran, N. Biogenic synthesis of nanostructured iron compounds: Applications and perspectives. IET Nanobiotechnol., 2013, 7(3), 90-99.
[http://dx.doi.org/10.1049/iet-nbt.2012.0047] [PMID: 24028807]
[9]
Samat, N.A.; Nor, R.M. Sol-gel synthesis of zinc oxide nanoparticles using Citrus aurantifolia extracts. Ceram. Int., 2013, 39, 545-548.
[http://dx.doi.org/10.1016/j.ceramint.2012.10.132]
[10]
Yamini, G.; Shakeri, A.; Zohuriaan-Mehr, M.J.; Kabiri, K. Biobased thermoset alloys from epoxy acrylate, sesame oil- and castor oil-derived resins: Renewable alternatives to vinyl ester and unsaturated polyester resins. J. CO2 Utiliz., 2018, 24, 50-58.
[11]
Prasad, A.S. Green synthesis of nanocrystalline manganese (II, III) oxide. Mater. Sci. Semicond. Process., 2017, 71, 342-347.
[http://dx.doi.org/10.1016/j.mssp.2017.08.020]
[12]
Veeramani, H.; Aruguete, D.; Monsegue, N.; Murayama, M.; Dippon, U.; Kappler, A.; Hochella, M.F. Low-temperature green synthesis of multivalent manganese oxide nanowires. ACS Sustain. Chem.& Eng., 2013, 1(9), 1070-1074.
[http://dx.doi.org/10.1021/sc400129n]
[13]
Sinha, A.; Singh, V.N.; Mehta, B.R.; Khare, S.K. Synthesis and characterization of monodispersed orthorhombic manganese oxide nano-particles produced by Bacillus sp. cells simultaneous to its bioremediation. J. Hazard. Mater., 2011, 192(2), 620-627.
[http://dx.doi.org/10.1016/j.jhazmat.2011.05.103] [PMID: 21715090]
[14]
Zhang, H.; Wu, A.; Fu, H.; Zhang, L.; Liu, H.; Zheng, S.; Wan, H.; Xu, Z. Efficient removal of Pb (II) ions using manganese oxides: The role of crystal structure. RSC Advances, 2017, 7(65), 41228-41240.
[http://dx.doi.org/10.1039/C7RA05955H]
[15]
Wang, W.; Han, P.; Peng, P.; Zhang, T.; Liu, Q.; Yuan, S.N.; Huang, L.Y.; Yu, H.L.; Qiao, K.; Wang, K.S. Friction stir processing of magnesium alloys: A review. Acta Metall. Sin., 2019, 33(1), 43-57.
[http://dx.doi.org/10.1007/s40195-019-00971-7]
[16]
Souri, M.; Hoseinpour, V.; Shakeri, A.; Ghaemi, N. Optimisation of green synthesis of MnO nanoparticles via utilising response surface methodology. IET Nanobiotechnol., 2018, 12(6), 822-827.
[http://dx.doi.org/10.1049/iet-nbt.2017.0145] [PMID: 30104457]
[17]
Hoseinpour, V.; Ghaemi, N. Green synthesis of manganese nanoparticles: Applications and future perspective-A review. J. Photochem. Photobiol. B, 2018, 189, 234-243.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.10.022] [PMID: 30412855]
[18]
Chen, S.; Zhu, J.; Wu, X.; Han, Q.; Wang, X. Graphene oxide--MnO2 nanocomposites for supercapacitors. ACS Nano, 2010, 4(5), 2822-2830.
[http://dx.doi.org/10.1021/nn901311t] [PMID: 20384318]
[19]
Jayandran, M.; Haneefa, M.; Balasubramanian, V. Green synthesis and characterization of Manganese nanoparticles using natural plant extracts and its evaluation of antimicrobial activity. J. Appl. Pharm. Sci., 2015, 1, 105-110.
[http://dx.doi.org/10.7324/JAPS.2015.501218]
[20]
Moon, S.A.; Salunke, B.K.; Alkotaini, B.; Sathiyamoorthi, E.; Kim, B.S. Biological synthesis of manganese dioxide nanoparticles by Kalo-panax pictus plant extract. IET Nanobiotechnol., 2015, 9(4), 220-225.
[http://dx.doi.org/10.1049/iet-nbt.2014.0051] [PMID: 26224352]
[21]
Kumar, V.; Singh, K.; Panwar, S.; Mehta, S.K. Green synthesis of manganese oxide nanoparticles for the electrochemical sensing of p-nitrophenol. Int. Nano Lett., 2017, 7(2), 123-131.
[http://dx.doi.org/10.1007/s40089-017-0205-3]
[22]
Prasad, K.S.; Patra, A. Green synthesis of MnO2 nanorods using Phyllanthus amarus plant extract and their fluorescence studies. Green Process. Synth., 2017, 6(6), 549-554.
[http://dx.doi.org/10.1515/gps-2016-0166]
[23]
Hoseinpour, V.; Souri, M.; Ghaemi, N. Green synthesis, characterization, and photocatalytic activity of manganese dioxide nanoparticles. Micro Nano, 2018, 13(11), 1560-1563.
[http://dx.doi.org/10.1049/mnl.2018.5008]
[24]
Ahmed, M.U.; Dahiru, J.N.; Sudi, I.Y.; Gabriel, S.; John, I.K. Green synthesis of manganese oxide nanoparticles from Cassia tora leaves and its toxicological evaluation. Asian J. Appl. Sci., 2020, 13(2), 60-67.
[http://dx.doi.org/10.3923/ajaps.2020.60.67]
[25]
Khan, S.A.; Shahid, S.; Shahid, B.; Fatima, U.; Abbasi, S.A. Green synthesis of Mno nanoparticles using Abutilon indicum leaf extract for biological, photocatalytic, and adsorption activities. Biomolecules, 2020, 10(5), 785.
[http://dx.doi.org/10.3390/biom10050785] [PMID: 32438654]
[26]
Manjulaa, R.; Thenmozhia, M.; Thilagavathia, S.; Srinivasanb, R.; Kathirvela, A. Green synthesis and characterization of manganese oxide nanoparticles from Gardenia resinifera leaves. Mater. Today Proc., 2020, 26(4), 3559-3563.
[http://dx.doi.org/10.1016/j.matpr.2019.07.396]
[27]
Morbale, S.T.; Jadhav, S.D.; Deshmukh, M.B.; Patil, S.S. Bronsted acid-type biosurfactant for heterocyclization: A green protocol for ben-zopyran synthesis. RSC Advances, 2015, 5(103), 84610-84620.
[http://dx.doi.org/10.1039/C5RA13652K]
[28]
Shinde, S.; Damate, S.; Morbale, S.; Patil, M.; Patil, S.S. Aegle marmelos in heterocyclization: A greener, highly efficient, one-pot three-component protocol for the synthesis of highly functionalized 4H-benzochromenes and 4H-chromenes. RSC Advances, 2017, 7(12), 7315-7328.
[http://dx.doi.org/10.1039/C6RA28779D]
[29]
Morbale, S.T.; Shinde, S.K.; Damate, S.A.; Deshmukh, M.B.; Patil, S.S. Natural Bio-surfactant for pseudomulticomponent synthesis of 2-Aryl-1-aryl Methyl-1H-benzimidazole. Lett. Org. Chem., 2017, 15(1), 57-63.
[http://dx.doi.org/10.2174/1570178614666170710115331]
[30]
Akter, R.; Uddin, S.J.; Tiralongo, J.; Grice, I.D.; Tiralongo, E. A new cytotoxic steroidal glycoalkaloid from the methanol extract of Blumea lacera leaves. J. Pharm. Pharm. Sci., 2015, 18(4), 616-633.
[http://dx.doi.org/10.18433/J3161Q] [PMID: 26626252]
[31]
Tomar, A. Folk medicinal use of Blumea lacera (BURM. F.) DC. to cure thread worms. J. Med. Plants Stud., 2017, 5(2), 336-337.
[32]
Yadav, V.K.; Irchhiaya, R.; Ghosh, A.K. Phytochemical and pharmacognostical studies of Blumea lacera. Int. J. Green Pharm., 2018, 12, 140-148.
[33]
Jahan, K.; Kundu, S.K.; Bake, M.A. Evaluation of antimicrobial and cytotoxic activities of the mehanolic and petroleum ether extract of Blumea lacera. J. Pharmacogn. Phytochem., 2014, 2(6), 104-108.
[34]
Rahman, A.; Bhuiyan, M.A.; Shahriar, M. preliminary in vitro biological, phytochemical screening and in vitro antioxidant activities of Blumea lacera (burm.f.). Inter. Arch. Appl. Sci. Technol., 2013, 4(2), 1-7.
[35]
Verma, L.K.; Singh, A.K.; Pachade, V.R.; Koley, K.M.; Vadlamudi, V.P. Anti pyretic activity of Blumea lacera leaves in Albino rats. Anim. Med. Res., 2012, 2, 56-59.
[36]
Kagne, R.M.; Jamdhade, V.C.; Surwase, B.S. Antifungal activity of various extracts of Blumea lacera (Burm. f.) DC. with different Asper-gillus species. Int. Interdiscip. Res. J., 2012, 2, 227.
[37]
Gnana Sundara Raj, B.; Asiri, A.M.; Qusti, A.H.; Wu, J.J.; Anandan, S. Sonochemically synthesized MnO2 nanoparticles as electrode mate-rial for supercapacitors. Ultrason. Sonochem., 2014, 21(6), 1933-1938.
[http://dx.doi.org/10.1016/j.ultsonch.2013.11.018] [PMID: 24360990]
[38]
Atique Ullah, A.K.M. Haque, Md M.; Akter, M.; Hossain, A.; Tamanna, A.N.; Hosen, Md M.; Fazle, Kibria, A.K.M.; Khan, M.N.I.; Khan, M.K.A. Green synthesis of Bryophyllum pinnatum aqueous leaf extract mediated bio-molecule capped dilute ferromagnetic α-MnO2 na-noparticles. Mater. Res. Express, 2020, 7, 0150888.
[39]
Stegarescu, A.; Lung, I.; Leoștean, C.; Kacso, I.; Opriș, O.; Lazăr, M.D.; Copolovici, L.; Guțoiu, S.; Stan, M.; Popa, A.; Pană, O.; Porav, A.S.; Soran, M.L. Green synthesis, characterization and test of MnO2 nanoparticles as catalyst in biofuel production from grape residue and seeds oil. Waste Biomass Valoriz., 2020, 11(9), 5003-5013.
[http://dx.doi.org/10.1007/s12649-019-00805-8]
[40]
Husen, A.; Siddiqi, K.S. Carbon and fullerene nanomaterials in plant system. J. Nanobiotechnology, 2014, 12(1), 16.
[http://dx.doi.org/10.1186/1477-3155-12-16] [PMID: 24766786]
[41]
Sánchez-López, E.; Gomes, D.; Esteruelas, G.; Bonilla, L.; Lopez-Machado, A.L.; Galindo, R.; Cano, A.; Espina, M.; Ettcheto, M.; Camins, A.; Silva, A.M.; Durazzo, A.; Santini, A.; Garcia, M.L.; Souto, E.B. Metal-based nanoparticles as antimicrobial agents: An over-view. Nanomaterials (Basel), 2020, 10(2), 292.
[http://dx.doi.org/10.3390/nano10020292] [PMID: 32050443]
[42]
Dawadi, S.; Gupta, A.; Khatri, M.; Budhathoki, B.; Lamichhane, G.; Parajuli, N. Manganese dioxide nanoparticles: Synthesis, application and challenges. Bull. Mater. Sci., 2020, 43(1), 277.
[http://dx.doi.org/10.1007/s12034-020-02247-8]
[43]
Li, W.; Cui, X.; Zeng, R.; Du, G.; Sun, Z.; Zheng, R.; Ringer, S.P.; Dou, S.X. Performance modulation of α-MnO2 nanowires by crystal facet engineering. Sci. Rep., 2015, 5(1), 8987.
[http://dx.doi.org/10.1038/srep08987] [PMID: 25758232]
[44]
Wu, M.; Hou, P.; Dong, L.; Cai, L.; Chen, Z.; Zhao, M.; Li, J. Manganese dioxide nanosheets: From preparation to biomedical applica-tions. Int. J. Nanomedicine, 2019, 14, 4781-4800.
[http://dx.doi.org/10.2147/IJN.S207666] [PMID: 31308658]
[45]
Zaman, M.M.; Karal, M.A.; Khan, M.N.I.; Tareq, A.R.M.; Ahammed, S.; Akter, M.; Hossain, A.; Ullah, A.K.M.A. Eco-friendly synthesis of Fe3O4 nanoparticles based on natural stabilizers and their antibacterial applications. ChemistrySelect, 2019, 4(27), 7824-7831.
[http://dx.doi.org/10.1002/slct.201901594]
[46]
Zhang, H.; Lv, X.; Li, Y.; Wang, Y.; Li, J. P25-graphene composite as a high performance photocatalyst. ACS Nano, 2010, 4(1), 380-386.
[http://dx.doi.org/10.1021/nn901221k] [PMID: 20041631]
[47]
Jaganyi, D.; Altaf, M.; Wekesa, I. Synthesis and characterization of whisker-shaped MnO2 nanostructure at room temperature. Appl. Nanosci., 2013, 3(4), 329-333.
[http://dx.doi.org/10.1007/s13204-012-0135-3]
[48]
Chen, H.; Dong, X.; Shi, J.; Zhao, J.; Hua, Z.; Gao, J.; Ruan, M.; Yan, D. Templated synthesis of hierarchically porous manganese oxide with a crystalline nanorod framework and its high electrochemical performance. J. Mater. Chem., 2007, 17(9), 855-860.
[http://dx.doi.org/10.1039/b615972a]
[49]
Estelrich, J.; Sánchez-Martín, M.J.; Busquets, M.A. Nanoparticles in magnetic resonance imaging: From simple to dual contrast agents. Int. J. Nanomedicine, 2015, 10, 1727-1741.
[PMID: 25834422]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy