Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Mini-Review Article

间充质上皮细胞转化 (MET):化疗耐药的关键参与者和增强癌症免疫治疗的新兴靶点

卷 22, 期 4, 2022

发表于: 01 April, 2022

页: [269 - 285] 页: 17

弟呕挨: 10.2174/1568009622666220307105107

价格: $65

摘要

MET蛋白是一种细胞表面受体酪氨酸激酶,主要在上皮细胞中表达。在结合其唯一已知的配体肝细胞生长因子 (HGF) 后,MET 同源二聚化、磷酸化并刺激细胞内信号传导以驱动细胞增殖。在各种癌症类型中经常观察到 MET 的扩增或过度活化,它与对常规和靶向化疗的不良反应有关。最近,新出现的证据还表明,MET/HGF 信号传导可能发挥免疫抑制作用,并可能赋予对癌症免疫治疗的抗性。在这篇综述中,我们总结了 MET 在常规化疗、靶向治疗和免疫治疗耐药中的作用的临床前和临床证据。以前在未选择或 MET 过度表达的癌症中研究 MET 靶向治疗的临床试验大多产生了不利的结果。最近关注 MET 外显子 14 改变和 MET 扩增的临床研究对 MET 抑制剂治疗产生了令人鼓舞的治疗反应。讨论了 MET 抑制剂治疗克服癌症患者耐药性的转化相关性。

关键词: 癌症免疫治疗、耐药性、肝细胞生长因子、MET扩增、MET抑制剂、酪氨酸激酶。

Next »
图形摘要

[1]
Fu, J.; Su, X.; Li, Z.; Deng, L.; Liu, X.; Feng, X.; Peng, J. HGF/c-MET pathway in cancer: From molecular characterization to clinical evidence. Oncogene, 2021, 40(28), 4625-4651.
[http://dx.doi.org/10.1038/s41388-021-01863-w] [PMID: 34145400]
[2]
Gentile, A.; Trusolino, L.; Comoglio, P.M. The Met tyrosine kinase receptor in development and cancer. Cancer Metastasis Rev., 2008, 27(1), 85-94.
[http://dx.doi.org/10.1007/s10555-007-9107-6] [PMID: 18175071]
[3]
Chen, T.; You, Y.; Jiang, H.; Wang, Z.Z. Epithelial-mesenchymal transition (EMT): A biological process in the development, stem cell differentiation, and tumorigenesis. J. Cell. Physiol., 2017, 232(12), 3261-3272.
[http://dx.doi.org/10.1002/jcp.25797] [PMID: 28079253]
[4]
Matsumoto, K.; Funakoshi, H.; Takahashi, H.; Sakai, K. HGF-Met pathway in regeneration and drug discovery. Biomedicines, 2014, 2(4), 275-300.
[http://dx.doi.org/10.3390/biomedicines2040275] [PMID: 28548072]
[5]
Park, M.; Dean, M.; Cooper, C.S.; Schmidt, M.; O’Brien, S.J.; Blair, D.G.; Vande Woude, G.F. Mechanism of met oncogene activation. Cell, 1986, 45(6), 895-904.
[http://dx.doi.org/10.1016/0092-8674(86)90564-7] [PMID: 2423252]
[6]
Zhang, Y.; Xia, M.; Jin, K.; Wang, S.; Wei, H.; Fan, C.; Wu, Y.; Li, X.; Li, X.; Li, G.; Zeng, Z.; Xiong, W. Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol. Cancer, 2018, 17(1), 45.
[http://dx.doi.org/10.1186/s12943-018-0796-y] [PMID: 29455668]
[7]
Huang, K.L.; Mashl, R.J.; Wu, Y.; Ritter, D.I.; Wang, J.; Oh, C.; Paczkowska, M.; Reynolds, S.; Wyczalkowski, M.A.; Oak, N.; Scott, A.D.; Krassowski, M.; Cherniack, A.D.; Houlahan, K.E.; Jayasinghe, R.; Wang, L.B.; Zhou, D.C.; Liu, D.; Cao, S.; Kim, Y.W.; Koire, A.; McMichael, J.F.; Hucthagowder, V.; Kim, T.B.; Hahn, A.; Wang, C.; McLellan, M.D.; Al-Mulla, F.; Johnson, K.J.; Lichtarge, O.; Boutros, P.C.; Raphael, B.; Lazar, A.J.; Zhang, W.; Wendl, M.C.; Govindan, R.; Jain, S.; Wheeler, D.; Kulkarni, S.; Dipersio, J.F.; Reimand, J.; Meric-Bernstam, F.; Chen, K.; Shmulevich, I.; Plon, S.E.; Chen, F.; Ding, L.; Caesar-Johnson, S.J.; Demchok, J.A.; Felau, I.; Kasapi, M.; Ferguson, M.L.; Hutter, C.M.; Sofia, H.J.; Tarnuzzer, R.; Wang, Z.; Yang, L.; Zenklusen, J.C.; Zhang, J.J.; Chudamani, S.; Liu, J.; Lolla, L.; Naresh, R.; Pihl, T.; Sun, Q.; Wan, Y.; Wu, Y.; Cho, J.; DeFreitas, T.; Frazer, S.; Gehlenborg, N.; Getz, G.; Heiman, D.I.; Kim, J.; Lawrence, M.S.; Lin, P.; Meier, S.; Noble, M.S.; Saksena, G.; Voet, D.; Zhang, H.; Bernard, B.; Chambwe, N.; Dhankani, V.; Knijnenburg, T.; Kramer, R.; Leinonen, K.; Liu, Y.; Miller, M.; Reynolds, S.; Shmulevich, I.; Thorsson, V.; Zhang, W.; Akbani, R.; Broom, B.M.; Hegde, A.M.; Ju, Z.; Kanchi, R.S.; Korkut, A.; Li, J.; Liang, H.; Ling, S.; Liu, W.; Lu, Y.; Mills, G.B.; Ng, K-S.; Rao, A.; Ryan, M.; Wang, J.; Weinstein, J.N.; Zhang, J.; Abeshouse, A.; Armenia, J.; Chakravarty, D.; Chatila, W.K.; de Bruijn, I.; Gao, J.; Gross, B.E.; Heins, Z.J.; Kundra, R.; La, K.; Ladanyi, M.; Luna, A.; Nissan, M.G.; Ochoa, A.; Phillips, S.M.; Reznik, E.; Sanchez-Vega, F.; Sander, C.; Schultz, N.; Sheridan, R.; Sumer, S.O.; Sun, Y.; Taylor, B.S.; Wang, J.; Zhang, H.; Anur, P.; Peto, M.; Spellman, P.; Benz, C.; Stuart, J.M.; Wong, C.K.; Yau, C.; Hayes, D.N.; Parker, J.S.; Wilkerson, M.D.; Ally, A.; Balasundaram, M.; Bowlby, R.; Brooks, D.; Carlsen, R.; Chuah, E.; Dhalla, N.; Holt, R.; Jones, S.J.M.; Kasaian, K.; Lee, D.; Ma, Y.; Marra, M.A.; Mayo, M.; Moore, R.A.; Mungall, A.J.; Mungall, K.; Robertson, A.G.; Sadeghi, S.; Schein, J.E.; Sipahimalani, P.; Tam, A.; Thiessen, N.; Tse, K.; Wong, T.; Berger, A.C.; Beroukhim, R.; Cherniack, A.D.; Cibulskis, C.; Gabriel, S.B.; Gao, G.F.; Ha, G.; Meyerson, M.; Schumacher, S.E.; Shih, J.; Kucherlapati, M.H.; Kucherlapati, R.S.; Baylin, S.; Cope, L.; Danilova, L.; Bootwalla, M.S.; Lai, P.H.; Maglinte, D.T.; Van Den Berg, D.J.; Weisenberger, D.J.; Auman, J.T.; Balu, S.; Bodenheimer, T.; Fan, C.; Hoadley, K.A.; Hoyle, A.P.; Jefferys, S.R.; Jones, C.D.; Meng, S.; Mieczkowski, P.A.; Mose, L.E.; Perou, A.H.; Perou, C.M.; Roach, J.; Shi, Y.; Simons, J.V.; Skelly, T.; Soloway, M.G.; Tan, D.; Veluvolu, U.; Fan, H.; Hinoue, T.; Laird, P.W.; Shen, H.; Zhou, W.; Bellair, M.; Chang, K.; Covington, K.; Creighton, C.J.; Dinh, H.; Doddapaneni, H.V.; Donehower, L.A.; Drummond, J.; Gibbs, R.A.; Glenn, R.; Hale, W.; Han, Y.; Hu, J.; Korchina, V.; Lee, S.; Lewis, L.; Li, W.; Liu, X.; Morgan, M.; Morton, D.; Muzny, D.; Santibanez, J.; Sheth, M.; Shinbrot, E.; Wang, L.; Wang, M.; Wheeler, D.A.; Xi, L.; Zhao, F.; Hess, J.; Appelbaum, E.L.; Bailey, M.; Cordes, M.G.; Ding, L.; Fronick, C.C.; Fulton, L.A.; Fulton, R.S.; Kandoth, C.; Mardis, E.R.; McLellan, M.D.; Miller, C.A.; Schmidt, H.K.; Wilson, R.K.; Crain, D.; Curley, E.; Gardner, J.; Lau, K.; Mallery, D.; Morris, S.; Paulauskis, J.; Penny, R.; Shelton, C.; Shelton, T.; Sherman, M.; Thompson, E.; Yena, P.; Bowen, J.; Gastier-Foster, J.M.; Gerken, M.; Leraas, K.M.; Lichtenberg, T.M.; Ramirez, N.C.; Wise, L.; Zmuda, E.; Corcoran, N.; Costello, T.; Hovens, C.; Carvalho, A.L.; de Carvalho, A.C.; Fregnani, J.H.; Longatto-Filho, A.; Reis, R.M.; Scapulatempo-Neto, C.; Silveira, H.C.S.; Vidal, D.O.; Burnette, A.; Eschbacher, J.; Hermes, B.; Noss, A.; Singh, R.; Anderson, M.L.; Castro, P.D.; Ittmann, M.; Huntsman, D.; Kohl, B.; Le, X.; Thorp, R.; Andry, C.; Duffy, E.R.; Lyadov, V.; Paklina, O.; Setdikova, G.; Shabunin, A.; Tavobilov, M.; McPherson, C.; Warnick, R.; Berkowitz, R.; Cramer, D.; Feltmate, C.; Horowitz, N.; Kibel, A.; Muto, M.; Raut, C.P.; Malykh, A.; Barnholtz-Sloan, J.S.; Barrett, W.; Devine, K.; Fulop, J.; Ostrom, Q.T.; Shimmel, K.; Wolinsky, Y.; Sloan, A.E.; De Rose, A.; Giuliante, F.; Goodman, M.; Karlan, B.Y.; Hagedorn, C.H.; Eckman, J.; Harr, J.; Myers, J.; Tucker, K.; Zach, L.A.; Deyarmin, B.; Hu, H.; Kvecher, L.; Larson, C.; Mural, R.J.; Somiari, S.; Vicha, A.; Zelinka, T.; Bennett, J.; Iacocca, M.; Rabeno, B.; Swanson, P.; Latour, M.; Lacombe, L.; Têtu, B.; Bergeron, A.; McGraw, M.; Staugaitis, S.M.; Chabot, J.; Hibshoosh, H.; Sepulveda, A.; Su, T.; Wang, T.; Potapova, O.; Voronina, O.; Desjardins, L.; Mariani, O.; Roman-Roman, S.; Sastre, X.; Stern, M-H.; Cheng, F.; Signoretti, S.; Berchuck, A.; Bigner, D.; Lipp, E.; Marks, J.; McCall, S.; McLendon, R.; Secord, A.; Sharp, A.; Behera, M.; Brat, D.J.; Chen, A.; Delman, K.; Force, S.; Khuri, F.; Magliocca, K.; Maithel, S.; Olson, J.J.; Owonikoko, T.; Pickens, A.; Ramalingam, S.; Shin, D.M.; Sica, G.; Van Meir, E.G.; Zhang, H.; Eijckenboom, W.; Gillis, A.; Korpershoek, E.; Looijenga, L.; Oosterhuis, W.; Stoop, H.; van Kessel, K.E.; Zwarthoff, E.C.; Calatozzolo, C.; Cuppini, L.; Cuzzubbo, S.; DiMeco, F.; Finocchiaro, G.; Mattei, L.; Perin, A.; Pollo, B.; Chen, C.; Houck, J.; Lohavanichbutr, P.; Hartmann, A.; Stoehr, C.; Stoehr, R.; Taubert, H.; Wach, S.; Wullich, B.; Kycler, W.; Murawa, D.; Wiznerowicz, M.; Chung, K.; Edenfield, W.J.; Martin, J.; Baudin, E.; Bubley, G.; Bueno, R.; De Rienzo, A.; Richards, W.G.; Kalkanis, S.; Mikkelsen, T.; Noushmehr, H.; Scarpace, L.; Girard, N.; Aymerich, M.; Campo, E.; Giné, E.; Guillermo, A.L.; Van Bang, N.; Hanh, P.T.; Phu, B.D.; Tang, Y.; Colman, H.; Evason, K.; Dottino, P.R.; Martignetti, J.A.; Gabra, H.; Juhl, H.; Akeredolu, T.; Stepa, S.; Hoon, D.; Ahn, K.; Kang, K.J.; Beuschlein, F.; Breggia, A.; Birrer, M.; Bell, D.; Borad, M.; Bryce, A.H.; Castle, E.; Chandan, V.; Cheville, J.; Copland, J.A.; Farnell, M.; Flotte, T.; Giama, N.; Ho, T.; Kendrick, M.; Kocher, J-P.; Kopp, K.; Moser, C.; Nagorney, D.; O’Brien, D.; O’Neill, B.P.; Patel, T.; Petersen, G.; Que, F.; Rivera, M.; Roberts, L.; Smallridge, R.; Smyrk, T.; Stanton, M.; Thompson, R.H.; Torbenson, M.; Yang, J.D.; Zhang, L.; Brimo, F.; Ajani, J.A.; Gonzalez, A.M.A.; Behrens, C.; Bondaruk, J.; Broaddus, R.; Czerniak, B.; Esmaeli, B.; Fujimoto, J.; Gershenwald, J.; Guo, C.; Lazar, A.J.; Logothetis, C.; Meric-Bernstam, F.; Moran, C.; Ramondetta, L.; Rice, D.; Sood, A.; Tamboli, P.; Thompson, T.; Troncoso, P.; Tsao, A.; Wistuba, I.; Carter, C.; Haydu, L.; Hersey, P.; Jakrot, V.; Kakavand, H.; Kefford, R.; Lee, K.; Long, G.; Mann, G.; Quinn, M.; Saw, R.; Scolyer, R.; Shannon, K.; Spillane, A.; Stretch, J.; Synott, M.; Thompson, J.; Wilmott, J.; Al-Ahmadie, H.; Chan, T.A.; Ghossein, R.; Gopalan, A.; Levine, D.A.; Reuter, V.; Singer, S.; Singh, B.; Tien, N.V.; Broudy, T.; Mirsaidi, C.; Nair, P.; Drwiega, P.; Miller, J.; Smith, J.; Zaren, H.; Park, J-W.; Hung, N.P.; Kebebew, E.; Linehan, W.M.; Metwalli, A.R.; Pacak, K.; Pinto, P.A.; Schiffman, M.; Schmidt, L.S.; Vocke, C.D.; Wentzensen, N.; Worrell, R.; Yang, H.; Moncrieff, M.; Goparaju, C.; Melamed, J.; Pass, H.; Botnariuc, N.; Caraman, I.; Cernat, M.; Chemencedji, I.; Clipca, A.; Doruc, S.; Gorincioi, G.; Mura, S.; Pirtac, M.; Stancul, I.; Tcaciuc, D.; Albert, M.; Alexopoulou, I.; Arnaout, A.; Bartlett, J.; Engel, J.; Gilbert, S.; Parfitt, J.; Sekhon, H.; Thomas, G.; Rassl, D.M.; Rintoul, R.C.; Bifulco, C.; Tamakawa, R.; Urba, W.; Hayward, N.; Timmers, H.; Antenucci, A.; Facciolo, F.; Grazi, G.; Marino, M.; Merola, R.; de Krijger, R.; Gimenez-Roqueplo, A-P.; Piché, A.; Chevalier, S.; McKercher, G.; Birsoy, K.; Barnett, G.; Brewer, C.; Farver, C.; Naska, T.; Pennell, N.A.; Raymond, D.; Schilero, C.; Smolenski, K.; Williams, F.; Morrison, C.; Borgia, J.A.; Liptay, M.J.; Pool, M.; Seder, C.W.; Junker, K.; Omberg, L.; Dinkin, M.; Manikhas, G.; Alvaro, D.; Bragazzi, M.C.; Cardinale, V.; Carpino, G.; Gaudio, E.; Chesla, D.; Cottingham, S.; Dubina, M.; Moiseenko, F.; Dhanasekaran, R.; Becker, K-F.; Janssen, K-P.; Slotta-Huspenina, J.; Abdel-Rahman, M.H.; Aziz, D.; Bell, S.; Cebulla, C.M.; Davis, A.; Duell, R.; Elder, J.B.; Hilty, J.; Kumar, B.; Lang, J.; Lehman, N.L.; Mandt, R.; Nguyen, P.; Pilarski, R.; Rai, K.; Schoenfield, L.; Senecal, K.; Wakely, P.; Hansen, P.; Lechan, R.; Powers, J.; Tischler, A.; Grizzle, W.E.; Sexton, K.C.; Kastl, A.; Henderson, J.; Porten, S.; Waldmann, J.; Fassnacht, M.; Asa, S.L.; Schadendorf, D.; Couce, M.; Graefen, M.; Huland, H.; Sauter, G.; Schlomm, T.; Simon, R.; Tennstedt, P.; Olabode, O.; Nelson, M.; Bathe, O.; Carroll, P.R.; Chan, J.M.; Disaia, P.; Glenn, P.; Kelley, R.K.; Landen, C.N.; Phillips, J.; Prados, M.; Simko, J.; Smith-McCune, K.; VandenBerg, S.; Roggin, K.; Fehrenbach, A.; Kendler, A.; Sifri, S.; Steele, R.; Jimeno, A.; Carey, F.; Forgie, I.; Mannelli, M.; Carney, M.; Hernandez, B.; Campos, B.; Herold-Mende, C.; Jungk, C.; Unterberg, A.; von Deimling, A.; Bossler, A.; Galbraith, J.; Jacobus, L.; Knudson, M.; Knutson, T.; Ma, D.; Milhem, M.; Sigmund, R.; Godwin, A.K.; Madan, R.; Rosenthal, H.G.; Adebamowo, C.; Adebamowo, S.N.; Boussioutas, A.; Beer, D.; Giordano, T.; Mes-Masson, A-M.; Saad, F.; Bocklage, T.; Landrum, L.; Mannel, R.; Moore, K.; Moxley, K.; Postier, R.; Walker, J.; Zuna, R.; Feldman, M.; Valdivieso, F.; Dhir, R.; Luketich, J.; Pinero, E.M.M.; Quintero-Aguilo, M.; Carlotti, C.G., Jr; Dos Santos, J.S.; Kemp, R.; Sankarankuty, A.; Tirapelli, D.; Catto, J.; Agnew, K.; Swisher, E.; Creaney, J.; Robinson, B.; Shelley, C.S.; Godwin, E.M.; Kendall, S.; Shipman, C.; Bradford, C.; Carey, T.; Haddad, A.; Moyer, J.; Peterson, L.; Prince, M.; Rozek, L.; Wolf, G.; Bowman, R.; Fong, K.M.; Yang, I.; Korst, R.; Rathmell, W.K.; Fantacone-Campbell, J.L.; Hooke, J.A.; Kovatich, A.J.; Shriver, C.D.; DiPersio, J.; Drake, B.; Govindan, R.; Heath, S.; Ley, T.; Van Tine, B.; Westervelt, P.; Rubin, M.A.; Lee, J.I.; Aredes, N.D.; Mariamidze, A. Pathogenic germline variants in 10,389 adult cancers. Cell, 2018, 173(2), 355-370.e14.
[http://dx.doi.org/10.1016/j.cell.2018.03.039] [PMID: 29625052]
[8]
Tode, N.; Kikuchi, T.; Sakakibara, T.; Hirano, T.; Inoue, A.; Ohkouchi, S.; Tamada, T.; Okazaki, T.; Koarai, A.; Sugiura, H.; Niihori, T.; Aoki, Y.; Nakayama, K.; Matsumoto, K.; Matsubara, Y.; Yamamoto, M.; Watanabe, A.; Nukiwa, T.; Ichinose, M. Exome sequencing deciphers a germline MET mutation in familial epidermal growth factor receptor-mutant lung cancer. Cancer Sci., 2017, 108(6), 1263-1270.
[http://dx.doi.org/10.1111/cas.13233] [PMID: 28294470]
[9]
Lutterbach, B.; Zeng, Q.; Davis, L.J.; Hatch, H.; Hang, G.; Kohl, N.E.; Gibbs, J.B.; Pan, B.S. Lung cancer cell lines harboring MET gene amplification are dependent on Met for growth and survival. Cancer Res., 2007, 67(5), 2081-2088.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3495] [PMID: 17332337]
[10]
Ozasa, H.; Oguri, T.; Maeno, K.; Takakuwa, O.; Kunii, E.; Yagi, Y.; Uemura, T.; Kasai, D.; Miyazaki, M.; Niimi, A. Significance of c-MET overexpression in cytotoxic anticancer drug-resistant small-cell lung cancer cells. Cancer Sci., 2014, 105(8), 1032-1039.
[http://dx.doi.org/10.1111/cas.12447] [PMID: 24827412]
[11]
Wood, G.E.; Hockings, H.; Hilton, D.M.; Kermorgant, S. The role of MET in chemotherapy resistance. Oncogene, 2021, 40(11), 1927-1941.
[http://dx.doi.org/10.1038/s41388-020-01577-5] [PMID: 33526881]
[12]
Dong, N.; Shi, X.; Wang, S.; Gao, Y.; Kuang, Z.; Xie, Q.; Li, Y.; Deng, H.; Wu, Y.; Li, M.; Li, J.L. M2 macrophages mediate sorafenib resistance by secreting HGF in a feed-forward manner in hepatocellular carcinoma. Br. J. Cancer, 2019, 121(1), 22-33.
[http://dx.doi.org/10.1038/s41416-019-0482-x] [PMID: 31130723]
[13]
Lasagna, N.; Fantappiè, O.; Solazzo, M.; Morbidelli, L.; Marchetti, S.; Cipriani, G.; Ziche, M.; Mazzanti, R. Hepatocyte growth factor and inducible nitric oxide synthase are involved in multidrug resistance-induced angiogenesis in hepatocellular carcinoma cell lines. Cancer Res., 2006, 66(5), 2673-2682.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2290] [PMID: 16510587]
[14]
Awad, M.M. Impaired c-Met receptor degradation mediated by MET exon 14 mutations in non-small-cell lung cancer. J. Clin. Oncol., 2016, 34(8), 879-881.
[http://dx.doi.org/10.1200/JCO.2015.64.2777] [PMID: 26786927]
[15]
Kreso, A.; Dick, J.E. Evolution of the cancer stem cell model. Cell Stem Cell, 2014, 14(3), 275-291.
[http://dx.doi.org/10.1016/j.stem.2014.02.006] [PMID: 24607403]
[16]
Miekus, K. The Met tyrosine kinase receptor as a therapeutic target and a potential cancer stem cell factor responsible for therapy resistance. Oncol. (Review) Rep., 2017, 37(2), 647-656.
[http://dx.doi.org/10.3892/or.2016.5297] [PMID: 27959446]
[17]
Avan, A.; Quint, K.; Nicolini, F.; Funel, N.; Frampton, A.E.; Maftouh, M.; Pelliccioni, S.; Schuurhuis, G.J.; Peters, G.J.; Giovannetti, E. Enhancement of the antiproliferative activity of gemcitabine by modulation of c-Met pathway in pancreatic cancer. Curr. Pharm. Des., 2013, 19(5), 940-950.
[http://dx.doi.org/10.2174/138161213804547312] [PMID: 22973962]
[18]
Li, C.; Wu, J.J.; Hynes, M.; Dosch, J.; Sarkar, B.; Welling, T.H.; Pasca di Magliano, M.; Simeone, D.M. c-Met is a marker of pancreatic cancer stem cells and therapeutic target. Gastroenterology, 2011, 141(6), 2218-2227.e5.
[http://dx.doi.org/10.1053/j.gastro.2011.08.009] [PMID: 21864475]
[19]
Yashiro, M.; Nishii, T.; Hasegawa, T.; Matsuzaki, T.; Morisaki, T.; Fukuoka, T.; Hirakawa, K. A c-Met inhibitor increases the chemosensitivity of cancer stem cells to the irinotecan in gastric carcinoma. Br. J. Cancer, 2013, 109(10), 2619-2628.
[http://dx.doi.org/10.1038/bjc.2013.638] [PMID: 24129235]
[20]
Lu, W.; Kang, Y. Epithelial-mesenchymal plasticity in cancer progression and metastasis. Dev. Cell, 2019, 49(3), 361-374.
[http://dx.doi.org/10.1016/j.devcel.2019.04.010] [PMID: 31063755]
[21]
Wang, J.; Wei, Q.; Wang, X.; Tang, S.; Liu, H.; Zhang, F.; Mohammed, M.K.; Huang, J.; Guo, D.; Lu, M.; Liu, F.; Liu, J.; Ma, C.; Hu, X.; Haydon, R.C.; He, T.C.; Luu, H.H. Transition to resistance: An unexpected role of the EMT in cancer chemoresistance. Genes Dis., 2016, 3(1), 3-6.
[http://dx.doi.org/10.1016/j.gendis.2016.01.002] [PMID: 28491932]
[22]
Yang, J.; Antin, P.; Berx, G.; Blanpain, C.; Brabletz, T.; Bronner, M.; Campbell, K.; Cano, A.; Casanova, J.; Christofori, G.; Dedhar, S.; Derynck, R.; Ford, H.L.; Fuxe, J.; García de Herreros, A.; Goodall, G.J.; Hadjantonakis, A.K.; Huang, R.Y.J.; Kalcheim, C.; Kalluri, R.; Kang, Y.; Khew-Goodall, Y.; Levine, H.; Liu, J.; Longmore, G.D.; Mani, S.A.; Massagué, J.; Mayor, R.; McClay, D.; Mostov, K.E.; Newgreen, D.F.; Nieto, M.A.; Puisieux, A.; Runyan, R.; Savagner, P.; Stanger, B.; Stemmler, M.P.; Takahashi, Y.; Takeichi, M.; Theveneau, E.; Thiery, J.P.; Thompson, E.W.; Weinberg, R.A.; Williams, E.D.; Xing, J.; Zhou, B.P.; Sheng, G. Guidelines and definitions for research on epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol., 2020, 21(6), 341-352.
[http://dx.doi.org/10.1038/s41580-020-0237-9] [PMID: 32300252]
[23]
Rajadurai, C.V.; Havrylov, S.; Zaoui, K.; Vaillancourt, R.; Stuible, M.; Naujokas, M.; Zuo, D.; Tremblay, M.L.; Park, M. Met receptor tyrosine kinase signals through a cortactin-Gab1 scaffold complex, to mediate invadopodia. J. Cell Sci., 2012, 125(Pt 12), 2940-2953.
[http://dx.doi.org/10.1242/jcs.100834] [PMID: 22366451]
[24]
Jeon, H.M.; Lee, J. MET: Roles in epithelial-mesenchymal transition and cancer stemness. Ann. Transl. Med., 2017, 5(1), 5.
[http://dx.doi.org/10.21037/atm.2016.12.67] [PMID: 28164090]
[25]
Chen, Q.Y.; Jiao, D.M.; Wang, J.; Hu, H.; Tang, X.; Chen, J.; Mou, H.; Lu, W. miR-206 regulates cisplatin resistance and EMT in human lung adenocarcinoma cells partly by targeting MET. Oncotarget, 2016, 7(17), 24510-24526.
[http://dx.doi.org/10.18632/oncotarget.8229] [PMID: 27014910]
[26]
Cañadas, I.; Rojo, F.; Taus, Á.; Arpí, O.; Arumí-Uría, M.; Pijuan, L.; Menéndez, S.; Zazo, S.; Dómine, M.; Salido, M.; Mojal, S.; García de Herreros, A.; Rovira, A.; Albanell, J.; Arriola, E. Targeting epithelial-to-mesenchymal transition with Met inhibitors reverts chemoresistance in small cell lung cancer. Clin. Cancer Res., 2014, 20(4), 938-950.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1330] [PMID: 24284055]
[27]
Robey, R.W.; Pluchino, K.M.; Hall, M.D.; Fojo, A.T.; Bates, S.E.; Gottesman, M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer, 2018, 18(7), 452-464.
[http://dx.doi.org/10.1038/s41568-018-0005-8] [PMID: 29643473]
[28]
Hung, T.H.; Li, Y.H.; Tseng, C.P.; Lan, Y.W.; Hsu, S.C.; Chen, Y.H.; Huang, T.T.; Lai, H.C.; Chen, C.M.; Choo, K.B.; Chong, K.Y. Knockdown of c-MET induced apoptosis in ABCB1-overexpressed multidrug-resistance cancer cell lines. Cancer Gene Ther., 2015, 22(5), 262-270.
[http://dx.doi.org/10.1038/cgt.2015.15] [PMID: 25908454]
[29]
Jung, K.A.; Choi, B.H.; Kwak, M.K. The c-MET/PI3K signaling is associated with cancer resistance to doxorubicin and photodynamic therapy by elevating BCRP/ABCG2 expression. Mol. Pharmacol., 2015, 87(3), 465-476.
[http://dx.doi.org/10.1124/mol.114.096065] [PMID: 25534417]
[30]
Fan, S.; Ma, Y.X.; Wang, J.A.; Yuan, R.Q.; Meng, Q.; Cao, Y.; Laterra, J.J.; Goldberg, I.D.; Rosen, E.M. The cytokine hepatocyte growth factor/scatter factor inhibits apoptosis and enhances DNA repair by a common mechanism involving signaling through phosphatidyl inositol 3& kinase. Oncogene, 2000, 19(18), 2212-2223.
[http://dx.doi.org/10.1038/sj.onc.1203566] [PMID: 10822371]
[31]
Wang, J.; Cheng, J.X. c-Met inhibition enhances chemosensitivity of human ovarian cancer cells. Clin. Exp. Pharmacol. Physiol., 2017, 44(1), 79-87.
[http://dx.doi.org/10.1111/1440-1681.12672] [PMID: 27658187]
[32]
Medová, M.; Aebersold, D.M.; Blank-Liss, W.; Streit, B.; Medo, M.; Aebi, S.; Zimmer, Y. MET inhibition results in DNA breaks and synergistically sensitizes tumor cells to DN-damaging agents potentially by breaching a damage-induced checkpoint arrest. Genes Cancer, 2010, 1(10), 1053-1062.
[http://dx.doi.org/10.1177/1947601910388030] [PMID: 21779429]
[33]
Infantino, V.; Santarsiero, A.; Convertini, P.; Todisco, S.; Iacobazzi, V. Cancer cell metabolism in hypoxia: Role of HIF-1 as key regulator and therapeutic target. Int. J. Mol. Sci., 2021, 22(11), 5703.
[http://dx.doi.org/10.3390/ijms22115703] [PMID: 34071836]
[34]
Zhang, Q.; Zheng, P.; Zhu, W. Research progress of small molecule VEGFR/c-Met inhibitors as anticancer agents (2016- present). Molecules, 2020, 25(11), 2666.
[http://dx.doi.org/10.3390/molecules25112666] [PMID: 32521825]
[35]
Huang, M.; Liu, T.; Ma, P.; Mitteer, R.A., Jr; Zhang, Z.; Kim, H.J.; Yeo, E.; Zhang, D.; Cai, P.; Li, C.; Zhang, L.; Zhao, B.; Roccograndi, L.; O’Rourke, D.M.; Dahmane, N.; Gong, Y.; Koumenis, C.; Fan, Y. c-Met-mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma. J. Clin. Invest., 2016, 126(5), 1801-1814.
[http://dx.doi.org/10.1172/JCI84876] [PMID: 27043280]
[36]
Deying, W.; Feng, G.; Shumei, L.; Hui, Z.; Ming, L.; Hongqing, W. CAF-derived HGF promotes cell proliferation and drug resistance by up-regulating the c-Met/PI3K/Akt and GRP78 signalling in ovarian cancer cells. Biosci. Rep., 2017, 37(2)BSR20160470
[http://dx.doi.org/10.1042/BSR20160470] [PMID: 28258248]
[37]
Moschetta, M.; Basile, A.; Ferrucci, A.; Frassanito, M.A.; Rao, L.; Ria, R.; Solimando, A.G.; Giuliani, N.; Boccarelli, A.; Fumarola, F.; Coluccia, M.; Rossini, B.; Ruggieri, S.; Nico, B.; Maiorano, E.; Ribatti, D.; Roccaro, A.M.; Vacca, A. Novel targeting of phospho-cMET overcomes drug resistance and induces antitumor activity in multiple myeloma. Clin. Cancer Res., 2013, 19(16), 4371-4382.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0039] [PMID: 23804425]
[38]
Blyth, B.J.; Cole, A.J.; MacManus, M.P.; Martin, O.A. Radiation therapy-induced metastasis: Radiobiology and clinical implications. Clin. Exp. Metastasis, 2018, 35(4), 223-236.
[http://dx.doi.org/10.1007/s10585-017-9867-5] [PMID: 29159430]
[39]
De Bacco, F.; Luraghi, P.; Medico, E.; Reato, G.; Girolami, F.; Perera, T.; Gabriele, P.; Comoglio, P.M.; Boccaccio, C. Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer. J. Natl. Cancer Inst., 2011, 103(8), 645-661.
[http://dx.doi.org/10.1093/jnci/djr093] [PMID: 21464397]
[40]
De Bacco, F.; D’Ambrosio, A.; Casanova, E.; Orzan, F.; Neggia, R.; Albano, R.; Verginelli, F.; Cominelli, M.; Poliani, P.L.; Luraghi, P.; Reato, G.; Pellegatta, S.; Finocchiaro, G.; Perera, T.; Garibaldi, E.; Gabriele, P.; Comoglio, P.M.; Boccaccio, C. MET inhibition overcomes radiation resistance of glioblastoma stem-like cells. EMBO Mol. Med., 2016, 8(5), 550-568.
[http://dx.doi.org/10.15252/emmm.201505890] [PMID: 27138567]
[41]
Qian, L.W.; Mizumoto, K.; Inadome, N.; Nagai, E.; Sato, N.; Matsumoto, K.; Nakamura, T.; Tanaka, M. Radiation stimulates HGF receptor/c-Met expression that leads to amplifying cellular response to HGF stimulation via upregulated receptor tyrosine phosphorylation and MAP kinase activity in pancreatic cancer cells. Int. J. Cancer, 2003, 104(5), 542-549.
[http://dx.doi.org/10.1002/ijc.10997] [PMID: 12594808]
[42]
Schweigerer, L.; Rave-Fränk, M.; Schmidberger, H.; Hecht, M. Sublethal irradiation promotes invasiveness of neuroblastoma cells. Biochem. Biophys. Res. Commun., 2005, 330(3), 982-988.
[http://dx.doi.org/10.1016/j.bbrc.2005.03.068] [PMID: 15809092]
[43]
Fernandes, M.; Jamme, P.; Cortot, A.B.; Kherrouche, Z.; Tulasne, D. When the MET receptor kicks in to resist targeted therapies. Oncogene, 2021, 40(24), 4061-4078.
[http://dx.doi.org/10.1038/s41388-021-01835-0] [PMID: 34031544]
[44]
Ko, B.; He, T.; Gadgeel, S.; Halmos, B. MET/HGF pathway activation as a paradigm of resistance to targeted therapies. Ann. Transl. Med., 2017, 5(1), 4.
[http://dx.doi.org/10.21037/atm.2016.12.09] [PMID: 28164089]
[45]
Gusenbauer, S.; Vlaicu, P.; Ullrich, A. HGF induces novel EGFR functions involved in resistance formation to tyrosine kinase inhibitors. Oncogene, 2013, 32(33), 3846-3856.
[http://dx.doi.org/10.1038/onc.2012.396] [PMID: 23045285]
[46]
Bean, J.; Brennan, C.; Shih, J.Y.; Riely, G. viale, A.; Wang, L.; Chitale, D.; Motoi, N.; Szoke, J.; Broderick, S.; Balak, M.; Chang, W.C.; Yu, C.J.; Gazdar, A.; Pass, H.; Rusch, V.; Gerald, W.; Huang, S.F.; Yang, P.C.; Miller, V.; Ladanyi, M.; Yang, C.H.; Pao, W. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc. Natl. Acad. Sci. USA, 2007, 104(52), 20932-20937.
[http://dx.doi.org/10.1073/pnas.0710370104] [PMID: 18093943]
[47]
Engelman, J.A.; Zejnullahu, K.; Mitsudomi, T.; Song, Y.; Hyland, C.; Park, J.O.; Lindeman, N.; Gale, C.M.; Zhao, X.; Christensen, J.; Kosaka, T.; Holmes, A.J.; Rogers, A.M.; Cappuzzo, F.; Mok, T.; Lee, C.; Johnson, B.E.; Cantley, L.C.; Jänne, P.A. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science, 2007, 316(5827), 1039-1043.
[http://dx.doi.org/10.1126/science.1141478] [PMID: 17463250]
[48]
Suzawa, K.; Offin, M.; Schoenfeld, A.J.; Plodkowski, A.J.; Odintsov, I.; Lu, D. Acquired MET exon 14 alteration drives secondary resistance to epidermal growth factor tyrosine kinase inhibitor in EGFR-mutated lung cancer. JCO Precis. Oncol., 2019, 3, PO.19.00011.
[49]
Oxnard, G.R.; Hu, Y.; Mileham, K.F.; Husain, H.; Costa, D.B.; Tracy, P.; Feeney, N.; Sholl, L.M.; Dahlberg, S.E.; Redig, A.J.; Kwiatkowski, D.J.; Rabin, M.S.; Paweletz, C.P.; Thress, K.S.; Jänne, P.A. Assessment of resistance mechanisms and clinical implications in patients with EGFR T790M-positive lung cancer and acquired resistance to osimertinib. JAMA Oncol., 2018, 4(11), 1527-1534.
[http://dx.doi.org/10.1001/jamaoncol.2018.2969] [PMID: 30073261]
[50]
Leonetti, A.; Sharma, S.; Minari, R.; Perego, P.; Giovannetti, E.; Tiseo, M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br. J. Cancer, 2019, 121(9), 725-737.
[http://dx.doi.org/10.1038/s41416-019-0573-8] [PMID: 31564718]
[51]
Ortiz-Cuaran, S.; Scheffler, M.; Plenker, D.; Dahmen, L.; Scheel, A.H.; Fernandez-Cuesta, L.; Meder, L.; Lovly, C.M.; Persigehl, T.; Merkelbach-Bruse, S.; Bos, M.; Michels, S.; Fischer, R.; Albus, K.; König, K.; Schildhaus, H.U.; Fassunke, J.; Ihle, M.A.; Pasternack, H.; Heydt, C.; Becker, C.; Altmüller, J.; Ji, H.; Müller, C.; Florin, A.; Heuckmann, J.M.; Nuernberg, P.; Ansén, S.; Heukamp, L.C.; Berg, J.; Pao, W.; Peifer, M.; Buettner, R.; Wolf, J.; Thomas, R.K.; Sos, M.L. Heterogeneous mechanisms of primary and acquired resistance to third-generation EGFR inhibitors. Clin. Cancer Res., 2016, 22(19), 4837-4847.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1915] [PMID: 27252416]
[52]
Xu, C.; Wang, W.; Zhu, Y.; Yu, Z.; Zhang, H.; Wang, H.; Zhang, J.; Zhuang, W.; Lv, T.; Song, Y. 1140 Potential resistance mechanisms using next generation sequencing from Chinese EGFR T790M+ non-small cell lung cancer patients with primary resistance to osimertinib: A multicentre study. Ann. Oncol., 2019, 30(Suppl. 2), ii38-ii68.
[http://dx.doi.org/10.1093/annonc/mdz063.012]
[53]
Dagogo-Jack, I.; Yoda, S.; Lennerz, J.K.; Langenbucher, A.; Lin, J.J.; Rooney, M.M.; Prutisto-Chang, K.; Oh, A.; Adams, N.A.; Yeap, B.Y.; Chin, E.; Do, A.; Marble, H.D.; Stevens, S.E.; Digumarthy, S.R.; Saxena, A.; Nagy, R.J.; Benes, C.H.; Azzoli, C.G.; Lawrence, M.S.; Gainor, J.F.; Shaw, A.T.; Hata, A.N. MET alterations are a recurring and actionable resistance mechanism in ALK-positive lung cancer. Clin. Cancer Res., 2020, 26(11), 2535-2545.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-3906] [PMID: 32086345]
[54]
Casanovas, O.; Hicklin, D.J.; Bergers, G.; Hanahan, D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell, 2005, 8(4), 299-309.
[http://dx.doi.org/10.1016/j.ccr.2005.09.005] [PMID: 16226705]
[55]
Jahangiri, A.; De Lay, M.; Miller, L.M.; Carbonell, W.S.; Hu, Y.L.; Lu, K.; Tom, M.W.; Paquette, J.; Tokuyasu, T.A.; Tsao, S.; Marshall, R.; Perry, A.; Bjorgan, K.M.; Chaumeil, M.M.; Ronen, S.M.; Bergers, G.; Aghi, M.K. Gene expression profile identifies tyrosine kinase c-Met as a targetable mediator of antiangiogenic therapy resistance. Clin. Cancer Res., 2013, 19(7), 1773-1783.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1281] [PMID: 23307858]
[56]
Cascone, T.; Xu, L.; Lin, H.Y.; Liu, W.; Tran, H.T.; Liu, Y.; Howells, K.; Haddad, V.; Hanrahan, E.; Nilsson, M.B.; Cortez, M.A.; Giri, U.; Kadara, H.; Saigal, B.; Park, Y.Y.; Peng, W.; Lee, J.S.; Ryan, A.J.; Jüergensmeier, J.M.; Herbst, R.S.; Wang, J.; Langley, R.R.; Wistuba, I.I.; Lee, J.J.; Heymach, J.V. The HGF/c-MET pathway is a driver and biomarker of VEGFR-inhibitor resistance and vascular remodeling in non-small cell lung cancer. Clin. Cancer Res., 2017, 23(18), 5489-5501.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-3216] [PMID: 28559461]
[57]
Luebker, S.A.; Koepsell, S.A. Diverse mechanisms of BRAF inhibitor resistance in melanoma identified in clinical and preclinical studies. Front. Oncol., 2019, 9, 268.
[http://dx.doi.org/10.3389/fonc.2019.00268] [PMID: 31058079]
[58]
Knauf, J.A.; Luckett, K.A.; Chen, K.Y.; Voza, F.; Socci, N.D.; Ghossein, R.; Fagin, J.A. Hgf/Met activation mediates resistance to BRAF inhibition in murine anaplastic thyroid cancers. J. Clin. Invest., 2018, 128(9), 4086-4097.
[http://dx.doi.org/10.1172/JCI120966] [PMID: 29990309]
[59]
Minuti, G.; Cappuzzo, F.; Duchnowska, R.; Jassem, J.; Fabi, A.; O’Brien, T.; Mendoza, A.D.; Landi, L.; Biernat, W. Czartoryska-Arłukowicz, B.; Jankowski, T.; Zuziak, D.; Zok, J.; Szostakiewicz, B.; Foszczyńska-Kłoda, M.; Tempi&ska-Sza&ach, A.; Rossi, E.; Varella-Garcia, M. Increased MET and HGF gene copy numbers are associated with trastuzumab failure in HER2-positive metastatic breast cancer. Br. J. Cancer, 2012, 107(5), 793-799.
[http://dx.doi.org/10.1038/bjc.2012.335] [PMID: 22850551]
[60]
Chen, C.T.; Kim, H.; Liska, D.; Gao, S.; Christensen, J.G.; Weiser, M.R. MET activation mediates resistance to lapatinib inhibition of HER2-amplified gastric cancer cells. Mol. Cancer Ther., 2012, 11(3), 660-669.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0754] [PMID: 22238368]
[61]
Vander Velde, R.; Yoon, N.; Marusyk, V.; Durmaz, A.; Dhawan, A.; Miroshnychenko, D.; Lozano-Peral, D.; Desai, B.; Balynska, O.; Poleszhuk, J.; Kenian, L.; Teng, M.; Abazeed, M.; Mian, O.; Tan, A.C.; Haura, E.; Scott, J.; Marusyk, A. Resistance to targeted therapies as a multifactorial, gradual adaptation to inhibitor specific selective pressures. Nat. Commun., 2020, 11(1), 2393.
[http://dx.doi.org/10.1038/s41467-020-16212-w] [PMID: 32409712]
[62]
Jänne, P.A.; Shaw, A.T.; Camidge, D.R.; Giaccone, G.; Shreeve, S.M.; Tang, Y.; Goldberg, Z.; Martini, J.F.; Xu, H.; James, L.P.; Solomon, B.J. Combined pan-HER and ALK/ROS1/MET inhibition with dacomitinib and crizotinib in advanced non-small cell lung cancer: Results of a Phase I study. J. Thorac. Oncol., 2016, 11(5), 737-747.
[http://dx.doi.org/10.1016/j.jtho.2016.01.022] [PMID: 26899759]
[63]
Yap, T.A.; Omlin, A.; de Bono, J.S. Development of therapeutic combinations targeting major cancer signaling pathways. J. Clin. Oncol., 2013, 31(12), 1592-1605.
[http://dx.doi.org/10.1200/JCO.2011.37.6418] [PMID: 23509311]
[64]
Owonikoko, T.K.; Ragin, C.C.; Belani, C.P.; Oton, A.B.; Gooding, W.E.; Taioli, E.; Ramalingam, S.S. Lung cancer in elderly patients: An analysis of the surveillance, epidemiology, and end results database. J. Clin. Oncol., 2007, 25(35), 5570-5577.
[http://dx.doi.org/10.1200/JCO.2007.12.5435] [PMID: 18065729]
[65]
Roviello, G.; Zanotti, L.; Cappelletti, M.R.; Gobbi, A.; Dester, M.; Paganini, G.; Pacifico, C.; Generali, D.; Roudi, R. Are EGFR tyrosine kinase inhibitors effective in elderly patients with EGFR-mutated non-small cell lung cancer? Clin. Exp. Med., 2018, 18(1), 15-20.
[http://dx.doi.org/10.1007/s10238-017-0460-7] [PMID: 28391544]
[66]
Liu, J.; Chen, Z.; Li, Y.; Zhao, W.; Wu, J.; Zhang, Z. PD-1/PD-L1 checkpoint inhibitors in tumor immunotherapy. Front. Pharmacol., 2021, 12731798
[http://dx.doi.org/10.3389/fphar.2021.731798] [PMID: 34539412]
[67]
Petrelli, F.; Ferrara, R.; Signorelli, D.; Ghidini, A.; Proto, C.; Roudi, R.; Sabet, M.N.; Facelli, S.; Garassino, M.C.; Luciani, A.; Roviello, G. Immune checkpoint inhibitors and chemotherapy in first-line NSCLC: A meta-analysis. Immunotherapy, 2021, 13(7), 621-631.
[http://dx.doi.org/10.2217/imt-2020-0224] [PMID: 33775103]
[68]
Zhu, J.; Li, R.; Tiselius, E.; Roudi, R.; Teghararian, O.; Suo, C.; Song, H. Immunotherapy (excluding checkpoint inhibitors) for stage I to III non-small cell lung cancer treated with surgery or radiotherapy with curative intent. Cochrane Database Syst. Rev., 2017, 12CD011300
[http://dx.doi.org/10.1002/14651858.CD011300.pub2] [PMID: 29247502]
[69]
Tartarone, A.; Roviello, G.; Lerose, R.; Roudi, R.; Aieta, M.; Zoppoli, P. Anti-PD-1 versus anti-PD-L1 therapy in patients with pretreated advanced non-small-cell lung cancer: A meta-analysis. Future Oncol., 2019, 15(20), 2423-2433.
[http://dx.doi.org/10.2217/fon-2018-0868] [PMID: 31237152]
[70]
Garcia-Diaz, A.; Shin, D.S.; Moreno, B.H.; Saco, J.; Escuin-Ordinas, H.; Rodriguez, G.A.; Zaretsky, J.M.; Sun, L.; Hugo, W.; Wang, X.; Parisi, G.; Saus, C.P.; Torrejon, D.Y.; Graeber, T.G.; Comin-Anduix, B.; Hu-Lieskovan, S.; Damoiseaux, R.; Lo, R.S.; Ribas, A. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep., 2017, 19(6), 1189-1201.
[http://dx.doi.org/10.1016/j.celrep.2017.04.031] [PMID: 28494868]
[71]
Jin, Y; Xue, Q; Shen, X; Zheng, Q; Chen, H; Zhou, X; Li, Y. .PDL1 expression and comprehensive molecular profiling predict survival in nonsmall cell lung cancer: A real-world study of a large Chinese cohort. Clin Lung Cancer, 2021, S1525-7304(21), 00213- 00218..
[72]
Flaifel, A.; Xie, W.; Braun, D.A.; Ficial, M.; Bakouny, Z.; Nassar, A.H.; Jennings, R.B.; Escudier, B.; George, D.J.; Motzer, R.J.; Morris, M.J.; Powles, T.; Wang, E.; Huang, Y.; Freeman, G.J.; Choueiri, T.K.; Signoretti, S. PD-L1 expression and clinical outcomes to cabozantinib, everolimus, and sunitinib in patients with metastatic renal cell carcinoma: Analysis of the randomized clinical trials METEOR and CABOSUN. Clin. Cancer Res., 2019, 25(20), 6080-6088.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-1135] [PMID: 31371341]
[73]
Zurlo, I.V.; Schino, M.; Strippoli, A.; Calegari, M.A.; Cocomazzi, A.; Cassano, A. Predictive value of NLR, TILs (CD4+/CD8+) and PD-L1 expression for prognosis and response to preoperative chemotherapy in gastric cancer. Cancer Immunol. Immunother., 2021, 71(1), 45-55.
[http://dx.doi.org/10.1007/s00262-021-02960-1] [PMID: 34009410]
[74]
Zhang, C.; Yang, Q. Predictive values of programmed cell death-ligand 1 expression for prognosis, clinicopathological factors, and response to programmed cell death-1/programmed cell death-ligand 1 inhibitors in patients with gynecological cancers: A meta-analysis. Front. Oncol., 2021, 10572203
[http://dx.doi.org/10.3389/fonc.2020.572203] [PMID: 33634012]
[75]
Martin, V.; Chiriaco, C.; Modica, C.; Acquadro, A.; Cortese, M.; Galimi, F.; Perera, T.; Gammaitoni, L.; Aglietta, M.; Comoglio, P.M.; Vigna, E.; Sangiolo, D. Met inhibition revokes IFNγ-induction of PD-1 ligands in MET-amplified tumours. Br. J. Cancer, 2019, 120(5), 527-536.
[http://dx.doi.org/10.1038/s41416-018-0315-3] [PMID: 30723303]
[76]
Saigi, M.; Alburquerque-Bejar, J.J.; Mc Leer-Florin, A.; Pereira, C.; Pros, E.; Romero, O.A.; Baixeras, N.; Esteve-Codina, A.; Nadal, E.; Brambilla, E.; Sanchez-Cespedes, M. MET-oncogenic and JAK2-inactivating alterations are independent factors that affect regulation of PD-L1 expression in lung cancer. Clin. Cancer Res., 2018, 24(18), 4579-4587.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0267] [PMID: 29898990]
[77]
Albitar, M.; Sudarsanam, S.; Ma, W.; Jiang, S.; Chen, W.; Funari, V.; Blocker, F.; Agersborg, S. Correlation of MET gene amplification and TP53 mutation with PD-L1 expression in non-small cell lung cancer. Oncotarget, 2018, 9(17), 13682-13693.
[http://dx.doi.org/10.18632/oncotarget.24455] [PMID: 29568386]
[78]
Mazieres, J.; Drilon, A.; Lusque, A.; Mhanna, L.; Cortot, A.B.; Mezquita, L.; Thai, A.A.; Mascaux, C.; Couraud, S.; Veillon, R.; Van den Heuvel, M.; Neal, J.; Peled, N.; Früh, M.; Ng, T.L.; Gounant, V.; Popat, S.; Diebold, J.; Sabari, J.; Zhu, V.W.; Rothschild, S.I.; Bironzo, P.; Martinez-Marti, A.; Curioni-Fontecedro, A.; Rosell, R.; Lattuca-Truc, M.; Wiesweg, M.; Besse, B.; Solomon, B.; Barlesi, F.; Schouten, R.D.; Wakelee, H.; Camidge, D.R.; Zalcman, G.; Novello, S.; Ou, S.I.; Milia, J.; Gautschi, O. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: Results from the IMMUNOTARGET registry. Ann. Oncol., 2019, 30(8), 1321-1328.
[http://dx.doi.org/10.1093/annonc/mdz167] [PMID: 31125062]
[79]
Finisguerra, V.; Di Conza, G.; Di Matteo, M.; Serneels, J.; Costa, S.; Thompson, A.A.; Wauters, E.; Walmsley, S.; Prenen, H.; Granot, Z.; Casazza, A.; Mazzone, M. MET is required for the recruitment of anti-tumoural neutrophils. Nature, 2015, 522(7556), 349-353.
[http://dx.doi.org/10.1038/nature14407] [PMID: 25985180]
[80]
Benkhoucha, M.; Santiago-Raber, M.L.; Schneiter, G.; Chofflon, M.; Funakoshi, H.; Nakamura, T.; Lalive, P.H. Hepatocyte growth factor inhibits CNS autoimmunity by inducing tolerogenic dendritic cells and CD25+Foxp3+ regulatory T cells. Proc. Natl. Acad. Sci. USA, 2010, 107(14), 6424-6429.
[http://dx.doi.org/10.1073/pnas.0912437107] [PMID: 20332205]
[81]
George, D.J.; Lee, C.H.; Heng, D. New approaches to first-line treatment of advanced renal cell carcinoma. Ther. Adv. Med. Oncol., 2021, 1317588359211034708
[http://dx.doi.org/10.1177/17588359211034708] [PMID: 34527080]
[82]
Yuan, Q.; Liang, Q.; Sun, Z.; Yuan, X.; Hou, W.; Wang, Y.; Wang, H.; Yu, M. Development of bispecific anti-c-Met/PD-1 diabodies for the treatment of solid tumors and the effect of c-Met binding affinity on efficacy. OncoImmunology, 2021, 10(1)1914954
[http://dx.doi.org/10.1080/2162402X.2021.1914954] [PMID: 34350059]
[83]
Malik, R.; Mambetsariev, I.; Fricke, J.; Chawla, N.; Nam, A.; Pharaon, R.; Salgia, R. MET receptor in oncology: From biomarker to therapeutic target. Adv. Cancer Res., 2020, 147, 259-301.
[http://dx.doi.org/10.1016/bs.acr.2020.04.006] [PMID: 32593403]
[84]
Miranda, O.; Farooqui, M.; Siegfried, J.M. Status of agents targeting the HGF/c-Met axis in lung cancer. Cancers (Basel), 2018, 10(9), 280.
[http://dx.doi.org/10.3390/cancers10090280] [PMID: 30134579]
[85]
Patnaik, A.; Weiss, G.J.; Papadopoulos, K.P.; Hofmeister, C.C.; Tibes, R.; Tolcher, A.; Isaacs, R.; Jac, J.; Han, M.; Payumo, F.C.; Cotreau, M.M.; Ramanathan, R.K. Phase I ficlatuzumab monotherapy or with erlotinib for refractory advanced solid tumours and multiple myeloma. Br. J. Cancer, 2014, 111(2), 272-280.
[http://dx.doi.org/10.1038/bjc.2014.290] [PMID: 24901237]
[86]
Yoh, K.; Doi, T.; Ohmatsu, H.; Kojima, T.; Takahashi, H.; Zenke, Y.; Wacheck, V.; Enatsu, S.; Nakamura, T.; Turner, K.; Uenaka, K. A phase I dose-escalation study of LY2875358, a bivalent MET antibody, given as monotherapy or in combination with erlotinib or gefitinib in Japanese patients with advanced malignancies. Invest. New Drugs, 2016, 34(5), 584-595.
[http://dx.doi.org/10.1007/s10637-016-0370-7] [PMID: 27422720]
[87]
Ross Camidge, D.; Moran, T.; Demedts, I.; Grosch, H.; Di Mercurio, J.P.; Mileham, K.F. A randomized, open-label, phase 2 study of emibetuzumab plus erlotinib (LY+E) and emibetuzumab monotherapy (LY) in patients with acquired resistance to erlotinib and MET diagnostic positive (MET Dx+) metastatic NSCLC. J. Clin. Oncol., 2016, 34(15)(Suppl.), 9070-9070.
[http://dx.doi.org/10.1200/JCO.2016.34.15_suppl.9070]
[88]
Modica, C.; Basilico, C.; Chiriaco, C.; Borrelli, N.; Comoglio, P.M.; Vigna, E. A receptor-antibody hybrid hampering MET-driven metastatic spread. J. Exp. Clin. Cancer Res., 2021, 40(1), 32.
[http://dx.doi.org/10.1186/s13046-020-01822-5] [PMID: 33446252]
[89]
Wolf, J.; Seto, T.; Han, J.Y.; Reguart, N.; Garon, E.B.; Groen, H.J.M.; Tan, D.S-W.; Hida, T.; De Jonge, M.J.; Orlov, S.V.; Smit, E.F.; Souquet, P.J.; Vansteenkiste, J.F.; Giovannini, M.; Le Mouhaer, S.; Robeva, A.; Waldron-Lynch, M.; Heist, R.S. Capmatinib (INC280) in METDex14-mutated advanced non-small cell lung cancer (NSCLC): Efficacy data from the phase II GEOMETRY mono-1 study. J. Clin. Oncol., 2019, 37(15)(Suppl.), 9004-9004.
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.9004]
[90]
Drilon, A.; Cappuzzo, F.; Ou, S.I.; Camidge, D.R. Targeting MET in lung cancer: Will expectations finally be MET? J. Thorac. Oncol., 2017, 12(1), 15-26.
[http://dx.doi.org/10.1016/j.jtho.2016.10.014] [PMID: 27794501]
[91]
Hughes, V.S.; Siemann, D.W. Failures in preclinical and clinical trials of c-Met inhibitors: Evaluation of pathway activity as a promising selection criterion. Oncotarget, 2019, 10(2), 184-197.
[http://dx.doi.org/10.18632/oncotarget.26546] [PMID: 30719213]
[92]
Peters, S.; Adjei, A.A. MET: A promising anticancer therapeutic target. Nat. Rev. Clin. Oncol., 2012, 9(6), 314-326.
[http://dx.doi.org/10.1038/nrclinonc.2012.71] [PMID: 22566105]
[93]
Joffre, C.; Barrow, R.; Ménard, L.; Calleja, V.; Hart, I.R.; Kermorgant, S. A direct role for met endocytosis in tumorigenesis. Nat. Cell Biol., 2011, 13(7), 827-837.
[http://dx.doi.org/10.1038/ncb2257] [PMID: 21642981]
[94]
Nakamura, Y.; Niki, T.; Goto, A.; Morikawa, T.; Miyazawa, K.; Nakajima, J.; Fukayama, M. c-Met activation in lung adenocarcinoma tissues: An immunohistochemical analysis. Cancer Sci., 2007, 98(7), 1006-1013.
[http://dx.doi.org/10.1111/j.1349-7006.2007.00493.x] [PMID: 17459054]
[95]
Watermann, I.; Schmitt, B.; Stellmacher, F.; Müller, J.; Gaber, R.; Kugler, Ch.; Reinmuth, N.; Huber, R.M.; Thomas, M.; Zabel, P.; Rabe, K.F.; Jonigk, D.; Warth, A.; Vollmer, E.; Reck, M.; Goldmann, T. Improved diagnostics targeting c-MET in non-small cell lung cancer: Expression, amplification and activation? Diagn. Pathol., 2015, 10(1), 130.
[http://dx.doi.org/10.1186/s13000-015-0362-5] [PMID: 26215852]
[96]
Friedlaender, A.; Drilon, A.; Banna, G.L.; Peters, S.; Addeo, A. The METeoric rise of MET in lung cancer. Cancer, 2020, 126(22), 4826-4837.
[http://dx.doi.org/10.1002/cncr.33159] [PMID: 32888330]
[97]
Srivastava, A.K.; Navas, T.; Herrick, W.G.; Hollingshead, M.G.; Bottaro, D.P.; Doroshow, J.H.; Parchment, R.E. Effective implementation of novel MET pharmacodynamic assays in translational studies. Ann. Transl. Med., 2017, 5(1), 3-3.
[http://dx.doi.org/10.21037/atm.2016.12.78] [PMID: 28164088]
[98]
Huang, F.; Ma, Z.; Pollan, S.; Yuan, X.; Swartwood, S.; Gertych, A.; Rodriguez, M.; Mallick, J.; Bhele, S.; Guindi, M.; Dhall, D.; Walts, A.E.; Bose, S.; de Peralta Venturina, M.; Marchevsky, A.M.; Luthringer, D.J.; Feller, S.M.; Berman, B.; Freeman, M.R.; Alvord, W.G.; Vande Woude, G.; Amin, M.B.; Knudsen, B.S. Quantitative imaging for development of companion diagnostics to drugs targeting HGF/MET. J. Pathol. Clin. Res., 2016, 2(4), 210-222.
[http://dx.doi.org/10.1002/cjp2.49] [PMID: 27785366]
[99]
Guo, R.; Berry, L.D.; Aisner, D.L.; Sheren, J.; Boyle, T.; Bunn, P.A., Jr; Johnson, B.E.; Kwiatkowski, D.J.; Drilon, A.; Sholl, L.M.; Kris, M.G. MET IHC, is a poor screen for MET amplification or MET exon 14 mutations in lung adenocarcinomas: Data from a tri-institutional cohort of the lung cancer mutation consortium. J. Thorac. Oncol., 2019, 14(9), 1666-1671.
[http://dx.doi.org/10.1016/j.jtho.2019.06.009] [PMID: 31228623]
[100]
Frampton, G.M.; Ali, S.M.; Rosenzweig, M.; Chmielecki, J.; Lu, X.; Bauer, T.M.; Akimov, M.; Bufill, J.A.; Lee, C.; Jentz, D.; Hoover, R.; Ou, S.H.; Salgia, R.; Brennan, T.; Chalmers, Z.R.; Jaeger, S.; Huang, A.; Elvin, J.A.; Erlich, R.; Fichtenholtz, A.; Gowen, K.A.; Greenbowe, J.; Johnson, A.; Khaira, D.; McMahon, C.; Sanford, E.M.; Roels, S.; White, J.; Greshock, J.; Schlegel, R.; Lipson, D.; Yelensky, R.; Morosini, D.; Ross, J.S.; Collisson, E.; Peters, M.; Stephens, P.J.; Miller, V.A. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov., 2015, 5(8), 850-859.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0285] [PMID: 25971938]
[101]
Awad, M.M.; Oxnard, G.R.; Jackman, D.M.; Savukoski, D.O.; Hall, D.; Shivdasani, P.; Heng, J.C.; Dahlberg, S.E.; Jänne, P.A.; Verma, S.; Christensen, J.; Hammerman, P.S.; Sholl, L.M. MET exon 14 mutations in non-small-cell lung cancer are associated with advanced age and stage-dependent MET genomic amplification and c-Met overexpression. J. Clin. Oncol., 2016, 34(7), 721-730.
[http://dx.doi.org/10.1200/JCO.2015.63.4600] [PMID: 26729443]
[102]
Santini, F.C.; Kunte, S.; Drilon, A. Combination MET- and EGFR-directed therapy in MET-overexpressing non-small cell lung cancers: Time to move on to better biomarkers? Transl. Lung Cancer Res., 2017, 6(3), 393-395.
[103]
Duplaquet, L.; Kherrouche, Z.; Baldacci, S.; Jamme, P.; Cortot, A.B.; Copin, M.C.; Tulasne, D. The multiple paths towards MET receptor addiction in cancer. Oncogene, 2018, 37(24), 3200-3215.
[http://dx.doi.org/10.1038/s41388-018-0185-4] [PMID: 29551767]
[104]
Garber, K. MET inhibitors start on road to recovery. Nat. Rev. Drug Discov., 2014, 13(8), 563-565.
[http://dx.doi.org/10.1038/nrd4406] [PMID: 25082276]
[105]
Yin, W.; Cheng, J.; Tang, Z.; Toruner, G.; Hu, S.; Guo, M.; Robinson, M.; Medeiros, L.J.; Tang, G. MET amplification (MET/CEP7 ratio > 1.8) is an independent poor prognostic marker in patients with treatment-naïve non-small-cell lung cancer. Clin. Lung Cancer, 2021, 22(4), e512-e518.
[http://dx.doi.org/10.1016/j.cllc.2020.11.002] [PMID: 33288441]
[106]
Paik, P.K.; Drilon, A.; Fan, P-D.P.D.; Yu, H.; Rekhtman, N.; Ginsberg, M.S.; Borsu, L.; Schultz, N.; Berger, M.F.; Rudin, C.M.; Ladanyi, M. Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring MET mutations causing exon 14 skipping. Cancer Discov., 2015, 5(8), 842-849.
[http://dx.doi.org/10.1158/2159-8290.CD-14-1467] [PMID: 25971939]
[107]
Collisson, E.A.; Campbell, J.D.; Brooks, A.N.; Berger, A.H.; Lee, W.; Chmielecki, J. Comprehensive molecular profiling of lung adenocarcinoma: The cancer genome atlas research network. Nature 2014; 511: 543-550. Lung Cancer Res., 2017, 6, 393-395.
[108]
Spigel, D.R.; Reynolds, C.; Waterhouse, D.; Garon, E.B.; Chandler, J.; Babu, S.; Thurmes, P.; Spira, A.; Jotte, R.; Zhu, J.; Lin, W.H.; Blumenschein, G. Jr Phase 1/2 study of the safety and tolerability of nivolumab plus crizotinib for the first-line treatment of anaplastic lymphoma kinase translocation – positive advanced non-small cell lung cancer (CheckMate 370). J. Thorac. Oncol., 2018, 13(5), 682-688.
[http://dx.doi.org/10.1016/j.jtho.2018.02.022] [PMID: 29518553]
[109]
Tang, X.L.; Yan, L.; Zhu, L.; Jiao, D.M.; Chen, J.; Chen, Q.Y. Salvianolic acid A reverses cisplatin resistance in lung cancer A549 cells by targeting c-met and attenuating Akt/mTOR pathway. J. Pharmacol. Sci., 2017, 135(1), 1-7.
[http://dx.doi.org/10.1016/j.jphs.2017.06.006] [PMID: 28939129]
[110]
Sun, C.Y.; Zhu, Y.; Li, X.F.; Wang, X.Q.; Tang, L.P.; Su, Z.Q.; Li, C.Y.; Zheng, G.J.; Feng, B. Scutellarin increases cisplatin-induced apoptosis and autophagy to overcome cisplatin resistance in non-small cell lung cancer via ERK/p53 and c-met/AKT signaling pathways. Front. Pharmacol., 2018, 9, 92.
[http://dx.doi.org/10.3389/fphar.2018.00092] [PMID: 29487530]
[111]
Hage, C.; Rausch, V.; Giese, N.; Giese, T.; Schönsiegel, F.; Labsch, S.; Nwaeburu, C.; Mattern, J.; Gladkich, J.; Herr, I. The novel c-Met inhibitor cabozantinib overcomes gemcitabine resistance and stem cell signaling in pancreatic cancer. Cell Death Dis., 2013, 4(5)e627
[http://dx.doi.org/10.1038/cddis.2013.158] [PMID: 23661005]
[112]
Rucki, A.A.; Xiao, Q.; Muth, S.; Chen, J.; Che, X.; Kleponis, J.; Sharma, R.; Anders, R.A.; Jaffee, E.M.; Zheng, L. Dual inhibition of Hedgehog and c-Met pathways for pancreatic cancer treatment. Mol. Cancer Ther., 2017, 16(11), 2399-2409.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0452] [PMID: 28864680]
[113]
Gao, Y.; Chen, M.K.; Chu, Y.Y.; Yang, L.; Yu, D.; Liu, Y.; Hung, M.C. Nuclear translocation of the receptor tyrosine kinase c-MET reduces the treatment efficacies of olaparib and gemcitabine in pancreatic ductal adenocarcinoma cells. Am. J. Cancer Res., 2021, 11(1), 236-250.
[PMID: 33520371]
[114]
Grotegut, S.; Kappler, R.; Tarimoradi, S.; Lehembre, F.; Christofori, G.; Von Schweinitz, D. Hepatocyte growth factor protects hepatoblastoma cells from chemotherapy-induced apoptosis by AKT activation. Int. J. Oncol., 2010, 36(5), 1261-1267.
[PMID: 20372801]
[115]
Eng, C.; Bessudo, A.; Hart, L.L.; Severtsev, A.; Gladkov, O.; Müller, L.; Kopp, M.V.; Vladimirov, V.; Langdon, R.; Kotiv, B.; Barni, S.; Hsu, C.; Bolotin, E.; von Roemeling, R.; Schwartz, B.; Bendell, J.C. A randomized, placebo-controlled, phase 1/2 study of tivantinib (ARQ 197) in combination with irinotecan and cetuximab in patients with metastatic colorectal cancer with wild-type KRAS who have received first-line systemic therapy. Int. J. Cancer, 2016, 139(1), 177-186.
[http://dx.doi.org/10.1002/ijc.30049] [PMID: 26891420]
[116]
Bendell, J.C.; Hochster, H.; Hart, L.L.; Firdaus, I.; Mace, J.R.; McFarlane, J.J.; Kozloff, M.; Catenacci, D.; Hsu, J.J.; Hack, S.P.; Shames, D.S.; Phan, S.C.; Koeppen, H.; Cohn, A.L. A phase II randomized trial (GO27827) of first-line FOLFOX plus bevacizumab with or without the MET inhibitor onartuzumab in patients with metastatic colorectal cancer. Oncologist, 2017, 22(3), 264-271.
[http://dx.doi.org/10.1634/theoncologist.2016-0223] [PMID: 28209746]
[117]
Iveson, T.; Donehower, R.C.; Davidenko, I.; Tjulandin, S.; Deptala, A.; Harrison, M.; Nirni, S.; Lakshmaiah, K.; Thomas, A.; Jiang, Y.; Zhu, M.; Tang, R.; Anderson, A.; Dubey, S.; Oliner, K.S.; Loh, E. Rilotumumab in combination with epirubicin, cisplatin, and capecitabine as first-line treatment for gastric or oesophagogastric junction adenocarcinoma: An open-label, dose de-escalation phase 1b study and a double-blind, randomised phase 2 study. Lancet Oncol., 2014, 15(9), 1007-1018.
[http://dx.doi.org/10.1016/S1470-2045(14)70023-3] [PMID: 24965569]
[118]
Ryan, C.J.; Rosenthal, M.; Ng, S.; Alumkal, J.; Picus, J.; Gravis, G.; Fizazi, K.; Forget, F.; Machiels, J.P.; Srinivas, S.; Zhu, M.; Tang, R.; Oliner, K.S.; Jiang, Y.; Loh, E.; Dubey, S.; Gerritsen, W.R. Targeted MET inhibition in castration-resistant prostate cancer: A randomized phase II study and biomarker analysis with rilotumumab plus mitoxantrone and prednisone. Clin. Cancer Res., 2013, 19(1), 215-224.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2605] [PMID: 23136195]
[119]
Leone, J.P.; Duda, D.G.; Hu, J.; Barry, W.T.; Trippa, L.; Gerstner, E.R.; Jain, R.K.; Tan, S.; Lawler, E.; Winer, E.P.; Lin, N.U.; Tolaney, S.M. A phase II study of cabozantinib alone or in combination with trastuzumab in breast cancer patients with brain metastases. Breast Cancer Res. Treat., 2020, 179(1), 113-123.
[http://dx.doi.org/10.1007/s10549-019-05445-z] [PMID: 31541381]
[120]
Delord, J.P.; Argilés, G.; Fayette, J.; Wirth, L.; Kasper, S.; Siena, S.; Mesia, R.; Berardi, R.; Cervantes, A.; Dekervel, J.; Zhao, S.; Sun, Y.; Hao, H.X.; Tiedt, R.; Vicente, S.; Myers, A.; Siu, L.L. A phase 1b study of the MET inhibitor capmatinib combined with cetuximab in patients with MET-positive colorectal cancer who had progressed following anti-EGFR monoclonal antibody treatment. Invest. New Drugs, 2020, 38(6), 1774-1783.
[http://dx.doi.org/10.1007/s10637-020-00928-z] [PMID: 32410080]
[121]
Tarhini, A.A.; Rafique, I.; Floros, T.; Tran, P.; Gooding, W.E.; Villaruz, L.C.; Burns, T.F.; Friedland, D.M.; Petro, D.P.; Farooqui, M.; Gomez-Garcia, J.; Gaither-Davis, A.; Dacic, S.; Argiris, A.; Socinski, M.A.; Stabile, L.P.; Siegfried, J.M. Phase 1/2 study of rilotumumab (AMG 102), a hepatocyte growth factor inhibitor, and erlotinib in patients with advanced non-small cell lung cancer. Cancer, 2017, 123(15), 2936-2944.
[http://dx.doi.org/10.1002/cncr.30717] [PMID: 28472537]
[122]
Sequist, L.V.; Han, J.Y.; Ahn, M.J.; Cho, B.C.; Yu, H.; Kim, S.W.; Yang, J.C.; Lee, J.S.; Su, W.C.; Kowalski, D.; Orlov, S.; Cantarini, M.; Verheijen, R.B.; Mellemgaard, A.; Ottesen, L.; Frewer, P.; Ou, X.; Oxnard, G. Osimertinib plus savolitinib in patients with EGFR mutation-positive, MET-amplified, non-small-cell lung cancer after progression on EGFR tyrosine kinase inhibitors: Interim results from a multicentre, open-label, phase 1b study. Lancet Oncol., 2020, 21(3), 373-386.
[http://dx.doi.org/10.1016/S1470-2045(19)30785-5] [PMID: 32027846]
[123]
Wu, Y.L.; Cheng, Y.; Zhou, J.; Lu, S.; Zhang, Y.; Zhao, J.; Kim, D.W.; Soo, R.A.; Kim, S.W.; Pan, H.; Chen, Y.M.; Chian, C.F.; Liu, X.; Tan, D.S.W.; Bruns, R.; Straub, J.; Johne, A.; Scheele, J.; Park, K.; Yang, J.C.; Wu, Y-L.; Liu, X.; Liu, Z.; Lu, S.; Chen, X.; Pan, H.; Wang, M.; Yu, S.; Zhang, H.; Zhang, Y.; Fang, J.; Li, W.; Zhou, J.; Zhao, J.; Cheng, Y.; Yang, C-H.; Chang, G-C.; Chen, Y-M.; Hsia, T-C.; Chian, C-F.; Yang, C-T.; Wang, C-C.; Kim, S-W.; Park, K.; Kim, D-W.; Cho, B.C.; Lee, K.H.; Kim, Y-C.; An, H.J.; Woo, I.S.; Cho, J.Y.; Shin, S.W.; Lee, J-S.; Kim, J-H.; Yoo, S.S.; Kato, T.; Shinagawa, N.; Soo, R.A.; Tan, S.W.D.; Ngo, L.S-M.; Ratnavelu, K.; Ahmad, A.R.; Liam, C.K.; de Marinis, F.; Tassone, P.; Molla, A.I.; Calles Blanco, A.; Lazaro Quintela, M.E.; Felip Font, E.; Dingemans, A-M.; Bui, L. Tepotinib plus gefitinib in patients with EGFR-mutant non-small-cell lung cancer with MET overexpression or MET amplification and acquired resistance to previous EGFR inhibitor (INSIGHT study): An open-label, phase 1b/2, multicentre, randomised trial. Lancet Respir. Med., 2020, 8(11), 1132-1143.
[http://dx.doi.org/10.1016/S2213-2600(20)30154-5] [PMID: 32479794]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy