Review Article

Roles of M6A Regulators in Hepatocellular Carcinoma: Promotion or Suppression

Author(s): Jiamao Chen, Qian Zhang, Ting Liu and Hua Tang*

Volume 22, Issue 1, 2022

Published on: 30 December, 2021

Page: [40 - 50] Pages: 11

DOI: 10.2174/1566523221666211126105940

Price: $65

Abstract

Abstract: Hepatocellular carcinoma (HCC) is the sixth globally diagnosed cancer with a poor prognosis. Although the pathological factors of hepatocellular carcinoma are well elucidated, the underlying molecular mechanisms remain unclear. N6-methyladenosine (M6A) is adenosine methylation occurring at the N6 site, which is the most prevalent modification of eukaryotic mRNA. Recent studies have shown that M6A can regulate gene expression, thus modulating the processes of cell self-renewal, differentiation, and apoptosis. The methyls in M6A are installed by methyltransferases (“writers”), removed by demethylases (“erasers”) and recognized by M6A-binding proteins (“readers”). In this review, we discuss the roles of the above regulators in the progression and prognosis of HCC, and summarize the clinical association between M6A modification and hepatocellular carcinoma, so as to provide more valuable information for clinical treatment.

Keywords: Hepatocellular carcinoma, N6-methyladenosine, RNA methylation, methyltransferase, demethylase, m6A-binding protein.

Graphical Abstract

[1]
Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin 2017; 67(1): 7-30.
[http://dx.doi.org/10.3322/caac.21387] [PMID: 28055103]
[2]
Zhou Y, Yin Z, Hou B, et al. Expression profiles and prognostic significance of RNA N6-methyladenosine-related genes in patients with hepatocellular carcinoma: Evidence from independent datasets. Cancer Manag Res 2019; 11: 3921-31.
[http://dx.doi.org/10.2147/CMAR.S191565] [PMID: 31118805]
[3]
Liu J, Lian X, Liu F, et al. Identification of Novel Key Targets and candidate drugs in oral squamous cell carcinoma. Curr Bioinform 2020; 15(4): 328-37.
[http://dx.doi.org/10.2174/1574893614666191127101836]
[4]
Zhang CH, Li M, Lin YP, Gao Q. Systemic therapy for hepatocellular carcinoma: Advances and hopes. Curr Gene Ther 2020; 20(2): 84-99.
[http://dx.doi.org/10.2174/1566523220666200628014530] [PMID: 32600231]
[5]
Yu L, Wang M, Yang Y, et al. Predicting therapeutic drugs for hepatocellular carcinoma based on tissue-specific pathways. PLOS Comput Biol 2021; 17(2): e1008696.
[http://dx.doi.org/10.1371/journal.pcbi.1008696] [PMID: 33561121]
[6]
Yu L, Xu F, Gao L. Predict new therapeutic drugs for hepatocellular carcinoma based on gene mutation and expression. Front Bioeng Biotechnol 2020; 8: 8.
[http://dx.doi.org/10.3389/fbioe.2020.00008] [PMID: 32047745]
[7]
Zhang ZM, Wang JS, Zulfiqar H, Lv H, Dao FY, Lin H. Early diagnosis of pancreatic ductal adenocarcinoma by combining relative expression orderings with machine-learning method. Front Cell Dev Biol 2020; 8: 582864.
[http://dx.doi.org/10.3389/fcell.2020.582864] [PMID: 33178697]
[8]
Zhang ZM, Tan JX, Wang F, Dao FY, Zhang ZY, Lin H. Early diagnosis of hepatocellular carcinoma using machine learning method. Front Bioeng Biotechnol 2020; 8: 254.
[http://dx.doi.org/10.3389/fbioe.2020.00254] [PMID: 32292778]
[9]
Beemon K, Keith J. Localization of N6-methyladenosine in the Rous sarcoma virus genome. J Mol Biol 1977; 113(1): 165-79.
[http://dx.doi.org/10.1016/0022-2836(77)90047-X] [PMID: 196091]
[10]
Krug RM, Morgan MA, Shatkin AJ. Influenza viral mRNA contains internal N6-methyladenosine and 5′-terminal 7-methylguanosine in cap structures. J Virol 1976; 20(1): 45-53.
[http://dx.doi.org/10.1128/jvi.20.1.45-53.1976] [PMID: 1086370]
[11]
Elhefnawi M, Salah Z, Soliman B. The Promise of miRNA Replacement therapy for hepatocellular carcinoma. Curr Gene Ther 2019; 19(5): 290-304.
[http://dx.doi.org/10.2174/1566523219666191023101433] [PMID: 31657677]
[12]
Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 2012; 149(7): 1635-46.
[http://dx.doi.org/10.1016/j.cell.2012.05.003] [PMID: 22608085]
[13]
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 2012; 485(7397): 201-6.
[http://dx.doi.org/10.1038/nature11112] [PMID: 22575960]
[14]
Bokar JA, Shambaugh ME, Polayes D, Matera AG, Rottman FM. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA 1997; 3(11): 1233-47.
[PMID: 9409616]
[15]
Wei CM, Moss B. Nucleotide sequences at the N6-methyladenosine sites of HeLa cell messenger ribonucleic acid. Biochemistry 1977; 16(8): 1672-6.
[http://dx.doi.org/10.1021/bi00627a023] [PMID: 856255]
[16]
Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA Modifications in gene expression regulation. Cell 2017; 169(7): 1187-200.
[http://dx.doi.org/10.1016/j.cell.2017.05.045] [PMID: 28622506]
[17]
Wang P, Doxtader KA, Nam Y. Structural basis for cooperative function of mettl3 and mettl14 methyltransferases. Mol Cell 2016; 63(2): 306-17.
[http://dx.doi.org/10.1016/j.molcel.2016.05.041] [PMID: 27373337]
[18]
Wang X, Feng J, Xue Y, et al. Corrigendum: Structural basis of N6-adenosine methylation by the METTL3-METTL14 complex. Nature 2017; 542(7640): 260.
[http://dx.doi.org/10.1038/nature21073] [PMID: 28099411]
[19]
Ping XL, Sun BF, Wang L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 2014; 24(2): 177-89.
[http://dx.doi.org/10.1038/cr.2014.3] [PMID: 24407421]
[20]
Patil DP, Chen CK, Pickering BF, et al. m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature 2016; 537(7620): 369-73.
[http://dx.doi.org/10.1038/nature19342] [PMID: 27602518]
[21]
Wen J, Lv R, Ma H, et al. Zc3h13 regulates nuclear RNA m6A methylation and mouse embryonic stem cell self-renewal. Mol Cell 2018; 69(6): 1028-1038.e6.
[http://dx.doi.org/10.1016/j.molcel.2018.02.015] [PMID: 29547716]
[22]
Růžička K, Zhang M, Campilho A, et al. Identification of factors required for m6 A mRNA methylation in arabidopsis reveals a role for the conserved E3 ubiquitin ligase HAKAI. New Phytol 2017; 215(1): 157-72.
[http://dx.doi.org/10.1111/nph.14586] [PMID: 28503769]
[23]
Yue Y, Liu J, Cui X, et al. VIRMA mediates preferential m6A mRNA methylation in 3'UTR and near stop codon and associates with alternative polyadenylation. Cell Discov 2018; 4: 10.
[http://dx.doi.org/10.1038/s41421-018-0019-0] [PMID: 29507755]
[24]
Pendleton KE, Chen B, Liu K, et al. The U6 snRNA m6A Methyltransferase METTL16 regulates SAM synthetase intron retention. Cell 2017; 169(5): 824-835.e14.
[http://dx.doi.org/10.1016/j.cell.2017.05.003] [PMID: 28525753]
[25]
Jia G, Fu Y, Zhao X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 2011; 7(12): 885-7.
[http://dx.doi.org/10.1038/nchembio.687] [PMID: 22002720]
[26]
Zheng G, Dahl JA, Niu Y, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 2013; 49(1): 18-29.
[http://dx.doi.org/10.1016/j.molcel.2012.10.015] [PMID: 23177736]
[27]
Jia G, Yang CG, Yang S, et al. Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett 2008; 582(23-24): 3313-9.
[http://dx.doi.org/10.1016/j.febslet.2008.08.019] [PMID: 18775698]
[28]
Toh JDW, Sun L, Lau LZM, et al. A strategy based on nucleotide specificity leads to a subfamily-selective and cell-active inhibitor of N6-methyladenosine demethylase FTO. Chem Sci (Camb) 2015; 6(1): 112-22.
[http://dx.doi.org/10.1039/C4SC02554G] [PMID: 28553460]
[29]
Aik W, Scotti JS, Choi H, et al. Structure of human RNA N⁶-methyladenine demethylase ALKBH5 provides insights into its mechanisms of nucleic acid recognition and demethylation. Nucleic Acids Res 2014; 42(7): 4741-54.
[http://dx.doi.org/10.1093/nar/gku085] [PMID: 24489119]
[30]
Chen W, Zhang L, Zheng G, et al. Crystal structure of the RNA demethylase ALKBH5 from zebrafish. FEBS Lett 2014; 588(6): 892-8.
[http://dx.doi.org/10.1016/j.febslet.2014.02.021] [PMID: 24561204]
[31]
Fu Y, Jia G, Pang X, et al. FTO-mediated formation of N6-hydroxymethyladenosine and N6-formyladenosine in mammalian RNA. Nat Commun 2013; 4: 1798.
[http://dx.doi.org/10.1038/ncomms2822] [PMID: 23653210]
[32]
Chen XY, Zhang J, Zhu JS. The role of m6A RNA methylation in human cancer. Mol Cancer 2019; 18(1): 103.
[http://dx.doi.org/10.1186/s12943-019-1033-z] [PMID: 31142332]
[33]
Casella G, Tsitsipatis D, Abdelmohsen K, Gorospe M. mRNA methylation in cell senescence. Wiley Interdiscip Rev RNA 2019; 10(6): e1547.
[http://dx.doi.org/10.1002/wrna.1547] [PMID: 31144457]
[34]
Xu C, Wang X, Liu K, et al. Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain. Nat Chem Biol 2014; 10(11): 927-9.
[http://dx.doi.org/10.1038/nchembio.1654] [PMID: 25242552]
[35]
Wang X, Zhao BS, Roundtree IA, et al. N(6)-methyladenosine modulates messenger RNA translation Efficiency. Cell 2015; 161(6): 1388-99.
[http://dx.doi.org/10.1016/j.cell.2015.05.014] [PMID: 26046440]
[36]
Wang X, Lu Z, Gomez A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 2014; 505(7481): 117-20.
[http://dx.doi.org/10.1038/nature12730] [PMID: 24284625]
[37]
Li A, Chen YS, Ping XL, et al. Cytoplasmic m6A reader YTHDF3 promotes mRNA translation. Cell Res 2017; 27(3): 444-7.
[http://dx.doi.org/10.1038/cr.2017.10] [PMID: 28106076]
[38]
Shi H, Wang X, Lu Z, et al. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res 2017; 27(3): 315-28.
[http://dx.doi.org/10.1038/cr.2017.15] [PMID: 28106072]
[39]
Kasowitz SD, Ma J, Anderson SJ, et al. Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLoS Genet 2018; 14(5): e1007412.
[http://dx.doi.org/10.1371/journal.pgen.1007412] [PMID: 29799838]
[40]
Hsu PJ, Zhu Y, Ma H, et al. Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res 2017; 27(9): 1115-27.
[http://dx.doi.org/10.1038/cr.2017.99] [PMID: 28809393]
[41]
Li T, Hu PS, Zuo Z, et al. METTL3 facilitates tumor progression via an m6A-IGF2BP2-dependent mechanism in colorectal carcinoma. Mol Cancer 2019; 18(1): 112.
[http://dx.doi.org/10.1186/s12943-019-1038-7] [PMID: 31230592]
[42]
Müller S, Glaß M, Singh AK, et al. IGF2BP1 promotes SRF-dependent transcription in cancer in a m6A- and miRNA-dependent manner. Nucleic Acids Res 2019; 47(1): 375-90.
[http://dx.doi.org/10.1093/nar/gky1012] [PMID: 30371874]
[43]
Wang S, Chim B, Su Y, et al. Enhancement of LIN28B-induced hematopoietic reprogramming by IGF2BP3. Genes Dev 2019; 33(15-16): 1048-68.
[http://dx.doi.org/10.1101/gad.325100.119] [PMID: 31221665]
[44]
Alarcón CR, Goodarzi H, Lee H, Liu X, Tavazoie S, Tavazoie SF. HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell 2015; 162(6): 1299-308.
[http://dx.doi.org/10.1016/j.cell.2015.08.011] [PMID: 26321680]
[45]
Zuo X, Chen Z, Gao W, et al. M6A-mediated upregulation of LINC00958 increases lipogenesis and acts as a nanotherapeutic target in hepatocellular carcinoma. J Hematol Oncol 2020; 13(1): 5.
[http://dx.doi.org/10.1186/s13045-019-0839-x] [PMID: 31915027]
[46]
Chen M, Wei L, Law CT, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology 2018; 67(6): 2254-70.
[http://dx.doi.org/10.1002/hep.29683] [PMID: 29171881]
[47]
Lin X, Chai G, Wu Y, et al. RNA m6A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of Snail. Nat Commun 2019; 10(1): 2065.
[http://dx.doi.org/10.1038/s41467-019-09865-9] [PMID: 31061416]
[48]
Xu H, Wang H, Zhao W, et al. SUMO1 modification of methyltransferase-like 3 promotes tumor progression via regulating Snail mRNA homeostasis in hepatocellular carcinoma. Theranostics 2020; 10(13): 5671-86.
[http://dx.doi.org/10.7150/thno.42539] [PMID: 32483411]
[49]
Cui M, Sun J, Hou J, et al. The suppressor of cytokine signaling 2 (SOCS2) inhibits tumor metastasis in hepatocellular carcinoma. Tumour Biol 2016; 37(10): 13521-31.
[http://dx.doi.org/10.1007/s13277-016-5215-7] [PMID: 27465557]
[50]
Hernández-Caballero ME, Sierra-Ramírez JA. Single nucleotide polymorphisms of the FTO gene and cancer risk: An overview. Mol Biol Rep 2015; 42(3): 699-704.
[http://dx.doi.org/10.1007/s11033-014-3817-y] [PMID: 25387436]
[51]
Huang X, Zhao J, Yang M, Li M, Zheng J. Association between FTO gene polymorphism (rs9939609 T/A) and cancer risk: a meta-analysis. Eur J Cancer Care (Engl) 2017; 26(5)
[http://dx.doi.org/10.1111/ecc.12464] [PMID: 26931363]
[52]
Kaklamani V, Yi N, Sadim M, et al. The role of the fat mass and obesity associated gene (FTO) in breast cancer risk. BMC Med Genet 2011; 12: 52.
[http://dx.doi.org/10.1186/1471-2350-12-52] [PMID: 21489227]
[53]
Kalo E, Güvenç C, Marasigan V, Lambrechts D, van den Oord J, Garmyn M. A variant in FTO gene shows association with histological ulceration in cutaneous melanoma. J Cutan Pathol 2020; 47(1): 98-101.
[http://dx.doi.org/10.1111/cup.13575] [PMID: 31469442]
[54]
Zhou W, Yang F, Xu Z, et al. Comprehensive analysis of copy number variations in kidney cancer by single-cell exome sequencing. Front Genet 2020; 10: 1379.
[http://dx.doi.org/10.3389/fgene.2019.01379] [PMID: 32038722]
[55]
Liu G, Hu Y, Jin S, Jiang Q. Genetic variant rs763361 regulates multiple sclerosis CD226 gene expression. Proc Natl Acad Sci USA 2017; 114(6): E906-7.
[http://dx.doi.org/10.1073/pnas.1618520114] [PMID: 28137889]
[56]
Li J, Zhu L, Shi Y, Liu J, Lin L, Chen X. m6A demethylase FTO promotes hepatocellular carcinoma tumorigenesis via mediating PKM2 demethylation. Am J Transl Res 2019; 11(9): 6084-92.
[PMID: 31632576]
[57]
Zhao X, Chen Y, Mao Q, et al. Overexpression of YTHDF1 is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Biomark 2018; 21(4): 859-68.
[http://dx.doi.org/10.3233/CBM-170791] [PMID: 29439311]
[58]
Lan T, Li H, Zhang D, et al. KIAA1429 contributes to liver cancer progression through N6-methyladenosine-dependent post-transcriptional modification of GATA3. Mol Cancer 2019; 18(1): 186.
[http://dx.doi.org/10.1186/s12943-019-1106-z] [PMID: 31856849]
[59]
Wang Y, Shi J, Chai K, Ying X, Zhou BP. The Role of Snail in EMT and Tumorigenesis. Curr Cancer Drug Targets 2013; 13(9): 963-72.
[http://dx.doi.org/10.2174/15680096113136660102] [PMID: 24168186]
[60]
Cheng X, Li M, Rao X, et al. KIAA1429 regulates the migration and invasion of hepatocellular carcinoma by altering m6A modification of ID2 mRNA. OncoTargets Ther 2019; 12: 3421-8.
[http://dx.doi.org/10.2147/OTT.S180954] [PMID: 31118692]
[61]
Wang M, Yang Y, Yang J, Yang J, Han S. circ_KIAA1429 accelerates hepatocellular carcinoma advancement through the mechanism of m6A-YTHDF3-Zeb1. Life Sci 2020; 257: 118082.
[http://dx.doi.org/10.1016/j.lfs.2020.118082] [PMID: 32653519]
[62]
Zhang C, Huang S, Zhuang H, et al. YTHDF2 promotes the liver cancer stem cell phenotype and cancer metastasis by regulating OCT4 expression via m6A RNA methylation. Oncogene 2020; 39(23): 4507-18.
[http://dx.doi.org/10.1038/s41388-020-1303-7] [PMID: 32366907]
[63]
Bian S, Ni W, Zhu M, et al. Identification and validation of the N6-Methyladenosine RNA methylation regulator YTHDF1 as a novel prognostic marker and potential target for hepatocellular carcinoma. Front Mol Biosci 2020; 7: 604766.
[http://dx.doi.org/10.3389/fmolb.2020.604766] [PMID: 33363211]
[64]
Wang H, Liang L, Dong Q, et al. Long noncoding RNA miR503HG, a prognostic indicator, inhibits tumor metastasis by regulating the HNRNPA2B1/NF-κB pathway in hepatocellular carcinoma. Theranostics 2018; 8(10): 2814-29.
[http://dx.doi.org/10.7150/thno.23012] [PMID: 29774077]
[65]
Scharnhorst V, van der Eb AJ, Jochemsen AG. WT1 proteins: Functions in growth and differentiation. Gene 2001; 273(2): 141-61.
[http://dx.doi.org/10.1016/S0378-1119(01)00593-5] [PMID: 11595161]
[66]
Sera T, Hiasa Y, Mashiba T, et al. Wilms’ tumour 1 gene expression is increased in hepatocellular carcinoma and associated with poor prognosis. Eur J Cancer 2008; 44(4): 600-8.
[http://dx.doi.org/10.1016/j.ejca.2008.01.008] [PMID: 18255279]
[67]
Chen Y, Peng C, Chen J, et al. WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1. Mol Cancer 2019; 18(1): 127.
[http://dx.doi.org/10.1186/s12943-019-1053-8] [PMID: 31438961]
[68]
Kessler SM, Laggai S, Barghash A, et al. IMP2/p62 induces genomic instability and an aggressive hepatocellular carcinoma phenotype. Cell Death Dis 2015; 6: e1894.
[http://dx.doi.org/10.1038/cddis.2015.241] [PMID: 26426686]
[69]
Simon Y, Kessler SM, Bohle RM, Haybaeck J, Kiemer AK. The insulin-like growth factor 2 (IGF2) mRNA-binding protein p62/IGF2BP2-2 as a promoter of NAFLD and HCC? Gut 2014; 63(5): 861-3.
[http://dx.doi.org/10.1136/gutjnl-2013-305736] [PMID: 24173291]
[70]
Fawzy IO, Hamza MT, Hosny KA, Esmat G, El Tayebi HM, Abdelaziz AI. miR-1275: A single microRNA that targets the three IGF2-mRNA-binding proteins hindering tumor growth in hepatocellular carcinoma. FEBS Lett 2015; 589(17): 2257-65.
[http://dx.doi.org/10.1016/j.febslet.2015.06.038] [PMID: 26160756]
[71]
Fawzy IO, Hamza MT, Hosny KA, Esmat G, Abdelaziz AI. Abrogating the interplay between IGF2BP1, 2 and 3 and IGF1R by let-7i arrests hepatocellular carcinoma growth. Growth Factors 2016; 34(1-2): 42-50.
[http://dx.doi.org/10.3109/08977194.2016.1169532] [PMID: 27126374]
[72]
Zhang Y, Liu T, Wang J, et al. Cellinker: A platform of ligand-receptor interactions for intercellular communication analysis. Bioinformatics 2021; btab036.
[http://dx.doi.org/10.1093/bioinformatics/btab036] [PMID: 33471060]
[73]
Liu GM, Zeng HD, Zhang CY, Xu JW. Identification of METTL3 as an adverse prognostic biomarker in hepatocellular carcinoma. Dig Dis Sci 2021; 66(4): 1110-26.
[http://dx.doi.org/10.1007/s10620-020-06260-z] [PMID: 32333311]
[74]
Zhou J, Wang J, Hong B, et al. Gene signatures and prognostic values of m6A regulators in clear cell renal cell carcinoma - a retrospective study using TCGA database. Aging (Albany NY) 2019; 11(6): 1633-47.
[http://dx.doi.org/10.18632/aging.101856] [PMID: 30877265]
[75]
Xie Q, Wu TP, Gimple RC, et al. N6-methyladenine DNA modification in glioblastoma. Cell 2018; 175(5): 1228-1243.e20.
[http://dx.doi.org/10.1016/j.cell.2018.10.006] [PMID: 30392959]
[76]
Zhang S, Zhao BS, Zhou A, et al. m6A Demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell 2017; 31(4): 591-606.e6.
[http://dx.doi.org/10.1016/j.ccell.2017.02.013] [PMID: 28344040]
[77]
Zhang C, Samanta D, Lu H, et al. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m⁶A-demethylation of NANOG mRNA. Proc Natl Acad Sci USA 2016; 113(14): E2047-56.
[http://dx.doi.org/10.1073/pnas.1602883113] [PMID: 27001847]
[78]
Aguilo F, Zhang F, Sancho A, et al. Coordination of m(6)A mRNA Methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming. Cell Stem Cell 2015; 17(6): 689-704.
[http://dx.doi.org/10.1016/j.stem.2015.09.005] [PMID: 26526723]
[79]
Chen Y, Zhao Y, Chen J, et al. ALKBH5 suppresses malignancy of hepatocellular carcinoma via m6A-guided epigenetic inhibition of LYPD1. Mol Cancer 2020; 19(1): 123.
[http://dx.doi.org/10.1186/s12943-020-01239-w] [PMID: 32772918]
[80]
Zhong L, Liao D, Zhang M, et al. YTHDF2 suppresses cell proliferation and growth via destabilizing the EGFR mRNA in hepatocellular carcinoma. Cancer Lett 2019; 442: 252-61.
[http://dx.doi.org/10.1016/j.canlet.2018.11.006] [PMID: 30423408]
[81]
Ma JZ, Yang F, Zhou CC, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6 -methyladenosine-dependent primary MicroRNA processing. Hepatology 2017; 65(2): 529-43.
[http://dx.doi.org/10.1002/hep.28885] [PMID: 27774652]
[82]
Zhao Y, You S, Yu YQ, et al. Decreased nuclear expression of FTO in human primary hepatocellular carcinoma is associated with poor prognosis. Int J Clin Exp Pathol 2019; 12(9): 3376-83.
[PMID: 31934180]
[83]
Hou J, Zhang H, Liu J, et al. YTHDF2 reduction fuels inflammation and vascular abnormalization in hepatocellular carcinoma. Mol Cancer 2019; 18(1): 163.
[http://dx.doi.org/10.1186/s12943-019-1082-3] [PMID: 31735169]
[84]
Li Z, Li F, Peng Y, Fang J, Zhou J. Identification of three m6A-related mRNAs signature and risk score for the prognostication of hepatocellular carcinoma. Cancer Med 2020; 9(5): 1877-89.
[http://dx.doi.org/10.1002/cam4.2833] [PMID: 31943856]
[85]
Fang Q, Chen H. The significance of m6A RNA methylation regulators in predicting the prognosis and clinical course of HBV-related hepatocellular carcinoma. Mol Med 2020; 26(1): 60.
[http://dx.doi.org/10.1186/s10020-020-00185-z] [PMID: 32552682]
[86]
Wu X, Zhang X, Tao L, Dai X, Chen P. Prognostic value of an m6A RNA methylation regulator-based signature in patients with hepatocellular carcinoma. BioMed Res Int 2020; 2020: 2053902.
[http://dx.doi.org/10.1155/2020/2053902] [PMID: 32733931]
[87]
Qi LW, Jia JH, Jiang CH, Hu JM. Contributions and Prognostic Values of N6-Methyladenosine RNA Methylation Regulators in Hepatocellular Carcinoma. Front Genet 2021; 11: 614566.
[http://dx.doi.org/10.3389/fgene.2020.614566] [PMID: 33519919]
[88]
Qu N, Qin S, Zhang X, et al. Multiple m6A RNA methylation modulators promote the malignant progression of hepatocellular carcinoma and affect its clinical prognosis. BMC Cancer 2020; 20(1): 165.
[http://dx.doi.org/10.1186/s12885-020-6638-5] [PMID: 32111180]
[89]
Zhang L, Qiao Y, Huang J, et al. Expression pattern and prognostic value of key regulators for m6A RNA modification in hepatocellular carcinoma. Front Med (Lausanne) 2020; 7: 556.
[http://dx.doi.org/10.3389/fmed.2020.00556] [PMID: 33072775]
[90]
Liu W, Zhong C, Lv D, Tang M, Xie F. N6-methyladenosine RNA methylation regulators have clinical prognostic values in hepatocellular carcinoma. Front Genet 2020; 11: 863.
[http://dx.doi.org/10.3389/fgene.2020.00863] [PMID: 32903675]
[91]
Zhu GQ, Yu L, Zhou YJ, et al. Genetic alterations and transcriptional expression of m6A RNA methylation regulators drive a malignant phenotype and have clinical prognostic impact in hepatocellular carcinoma. Front Oncol 2020; 10: 900.
[http://dx.doi.org/10.3389/fonc.2020.00900] [PMID: 32850303]
[92]
Li W, Chen QF, Huang T, Shen L, Huang ZL, Wu P. Profiles of m6A RNA methylation regulators for the prognosis of hepatocellular carcinoma. Oncol Lett 2020; 19(4): 3296-306.
[http://dx.doi.org/10.3892/ol.2020.11435] [PMID: 32256825]
[93]
Shang Y, Gao L, Zou Q, et al. Prediction of drug-target interactions based on multi-layer network representation learning. Neurocomputing 2021; 434: 80-9.
[http://dx.doi.org/10.1016/j.neucom.2020.12.068]
[94]
Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol 2019; 16(10): 589-604.
[http://dx.doi.org/10.1038/s41575-019-0186-y] [PMID: 31439937]
[95]
Zeng W, Wang F, Ma Y, et al. Dysfunctional Mechanism of Liver Cancer Mediated by Transcription Factor and Non-coding RNA. Curr Bioinform 2019; 14(2): 100-7.
[http://dx.doi.org/10.2174/1574893614666181119121916]
[96]
He L, Li J, Wang X, et al. The dual role of N6-methyladenosine modification of RNAs is involved in human cancers. J Cell Mol Med 2018; 22(10): 4630-9.
[http://dx.doi.org/10.1111/jcmm.13804] [PMID: 30039919]
[97]
Wang S, Chai P, Jia R, Jia R. Novel insights on m6A RNA methylation in tumorigenesis: A double-edged sword. Mol Cancer 2018; 17(1): 101.
[http://dx.doi.org/10.1186/s12943-018-0847-4] [PMID: 30031372]
[98]
Tang W, Wan S, Yang Z, Teschendorff AE, Zou Q. Tumor origin detection with tissue-specific miRNA and DNA methylation markers. Bioinformatics 2018; 34(3): 398-406.
[http://dx.doi.org/10.1093/bioinformatics/btx622] [PMID: 29028927]
[99]
Yu L, Shi Y, Zou Q, Wang S, Zheng L, Gao L. Exploring drug treatment patterns based on the action of drug and multilayer network model. Int J Mol Sci 2020; 21(14): E5014.
[http://dx.doi.org/10.3390/ijms21145014] [PMID: 32708644]
[100]
Du Y, Hou G, Zhang H, et al. SUMOylation of the m6A-RNA methyltransferase METTL3 modulates its function. Nucleic Acids Res 2018; 46(10): 5195-208.
[http://dx.doi.org/10.1093/nar/gky156] [PMID: 29506078]
[101]
Wang Q, Chen C, Ding Q, et al. METTL3-mediated m6A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance. Gut 2020; 69(7): 1193-205.
[http://dx.doi.org/10.1136/gutjnl-2019-319639] [PMID: 31582403]
[102]
Du M, Zhang Y, Mao Y, et al. MiR-33a suppresses proliferation of NSCLC cells via targeting METTL3 mRNA. Biochem Biophys Res Commun 2017; 482(4): 582-9.
[http://dx.doi.org/10.1016/j.bbrc.2016.11.077] [PMID: 27856248]
[103]
Ning L, Cui T, Zheng B, et al. MNDR v3.0: mammal ncRNA-disease repository with increased coverage and annotation. Nucleic Acids Res 2021; 49(D1): D160-4.
[http://dx.doi.org/10.1093/nar/gkaa707] [PMID: 32833025]
[104]
Huang Y, Wang J, Zhao Y, et al. cncRNAdb: A manually curated resource of experimentally supported RNAs with both protein-coding and noncoding function. Nucleic Acids Res 2021; 49(D1): D65-70.
[http://dx.doi.org/10.1093/nar/gkaa791] [PMID: 33010163]
[105]
Jiang Q, Wang J, Wu X, et al. LncRNA2Target: A database for differentially expressed genes after lncRNA knockdown or overexpression. Nucleic Acids Res 2015; 43(Database issue): D193-6.
[http://dx.doi.org/10.1093/nar/gku1173] [PMID: 25399422]
[106]
Jiang Q, Ma R, Wang J, et al. LncRNA2Function: A comprehensive resource for functional investigation of human lncRNAs based on RNA-seq data. BMC Genomics 2015; 16(Suppl. 3): S2.
[http://dx.doi.org/10.1186/1471-2164-16-S3-S2] [PMID: 25707511]
[107]
Zhang BH, Yan LN, Yang JY. Pending role of METTL14 in liver cancer. Hepatobiliary Surg Nutr 2019; 8(6): 669-70.
[http://dx.doi.org/10.21037/hbsn.2019.10.16] [PMID: 31930004]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy