Review Article

Genetically-modified Stem Cell in Regenerative Medicine and Cancer Therapy; A New Era

Author(s): Ali Hassanzadeh, Somayeh Shamlou , Niloufar Yousefi, Marzieh Nikoo and Javad Verdi*

Volume 22, Issue 1, 2022

Published on: 07 July, 2021

Page: [23 - 39] Pages: 17

DOI: 10.2174/1566523221666210707125342

Price: $65

Abstract

Abstract: Recently, genetic engineering by various strategies to stimulate gene expression in a specific and controllable mode is a speedily growing therapeutic approach. Genetic modification of human stem or progenitor cells, such as Embryonic Stem Cells (ESCs), Neural Progenitor Cells (NPCs), Mesenchymal Stem/Stromal Cells (MSCs), and Hematopoietic Stem Cells (HSCs) for direct delivery of specific therapeutic molecules or genes has been evidenced as an opportune plan in the context of regenerative medicine due to their supported viability, proliferative features, and metabolic qualities. On the other hand, a large number of studies have investigated the efficacy of modified stem cells in cancer therapy using cells from various sources, disparate transfection means for gene delivery, different transfected yields, and wide variability of tumor models. Accordingly, cell-based gene therapy holds substantial aptitude for the treatment of human malignancy as it could relieve signs or even cure cancer succeeding expression of therapeutic or suicide transgene products; however, there exist inconsistent results in this regard. Herein, we deliver a brief overview of stem cell potential to use in cancer therapy and regenerative medicine and importantly discuss stem cells based gene delivery competencies to stimulate tissue repair and replacement in concomitant with their potential to use as an anti-cancer therapeutic strategy, focusing on the last two decades’ in vivo studies.

Keywords: Stem cell, gene delivery, cancer, regenerative medicine, cytokines, cell therapy.

Graphical Abstract

[1]
Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR. Gene therapy clinical trials worldwide to 2017: an update. J Gene Med 2018; 20(5): e3015.
[http://dx.doi.org/10.1002/jgm.3015] [PMID: 29575374]
[2]
Zonari E, Desantis G, Petrillo C, et al. Efficient ex vivo engineering and expansion of highly purified human hematopoietic stem and progenitor cell populations for gene therapy. Stem Cell Reports 2017; 8(4): 977-90.
[http://dx.doi.org/10.1016/j.stemcr.2017.02.010] [PMID: 28330619]
[3]
Portnow J, Synold TW, Badie B, et al. Neural stem cell–based anticancer gene therapy: a first-in-human study in recurrent high-grade glioma patients. Clin Cancer Res 2017; 23(12): 2951-60.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1518] [PMID: 27979915]
[4]
Chu D-T, Nguyen TT, Tien NLB, et al. Recent progress of stem cell therapy in cancer treatment: Molecular mechanisms and potential applications. Cells 2020; 9(3): 563.
[http://dx.doi.org/10.3390/cells9030563] [PMID: 32121074]
[5]
Patel N. Development of recombinant non-viral vectors for the safe and efficient gene transfer to mesenchymal stem cells. Rutgers University-School of Graduate Studies 2020; pp. 01-87.
[http://dx.doi.org/10.7282/t3-8yk9-vt93]
[6]
Smith C. Stable vs. transient transfection of eukaryotic cells. 2013.
[7]
Zohra FT, Chowdhury EH, Tada S, Hoshiba T, Akaike T. Effective delivery with enhanced translational activity synergistically accelerates mRNA-based transfection. Biochem Biophys Res Commun 2007; 358(1): 373-8.
[http://dx.doi.org/10.1016/j.bbrc.2007.04.059] [PMID: 17475211]
[8]
Warnock JN, Daigre C, Al-Rubeai M. Introduction to viral vectors. In: Viral vectors for gene therapy. Germany: Springer 2011; pp. 1-25.
[http://dx.doi.org/10.1007/978-1-61779-095-9_1]
[9]
Papait A, Stefani FR, Cargnoni A, Magatti M, Parolini O, Silini AR. The multifaceted roles of MSCs in the tumor microenvironment: interactions with immune cells and exploitation for therapy. Front Cell Dev Biol 2020; 8: 447.
[http://dx.doi.org/10.3389/fcell.2020.00447] [PMID: 32637408]
[10]
Kidd S, Spaeth E, Dembinski JL, et al. Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells 2009; 27(10): 2614-23.
[http://dx.doi.org/10.1002/stem.187] [PMID: 19650040]
[11]
Hombach AA, Geumann U, Günther C, Hermann FG, Abken H. IL7-IL12 Engineered mesenchymal stem cells (MSCs) improve a CAR T cell attack against colorectal cancer cells. Cells 2020; 9(4): 873.
[http://dx.doi.org/10.3390/cells9040873] [PMID: 32260097]
[12]
Shariati A, Nemati R, Sadeghipour Y, et al. Mesenchymal stromal cells (MSCs) for neurodegenerative disease: A promising frontier. Eur J Cell Biol 2020; 99(6): 151097.
[http://dx.doi.org/10.1016/j.ejcb.2020.151097] [PMID: 32800276]
[13]
Tavakoli S, Ghaderi Jafarbeigloo HR, Shariati A, et al. Mesenchymal stromal cells; a new horizon in regenerative medicine. J Cell Physiol 2020; 235(12): 9185-210.
[http://dx.doi.org/10.1002/jcp.29803] [PMID: 32452052]
[14]
Stagg J, Lejeune L, Paquin A, Galipeau J. Marrow stromal cells for interleukin-2 delivery in cancer immunotherapy. Hum Gene Ther 2004; 15(6): 597-608.
[http://dx.doi.org/10.1089/104303404323142042] [PMID: 15212718]
[15]
Seo SH, Kim KS, Park SH, et al. The effects of mesenchymal stem cells injected via different routes on modified IL-12-mediated antitumor activity. Gene Ther 2011; 18(5): 488-95.
[http://dx.doi.org/10.1038/gt.2010.170] [PMID: 21228885]
[16]
Xu C, Lin L, Cao G, et al. Interferon-α-secreting mesenchymal stem cells exert potent antitumor effect in vivo. Oncogene 2014; 33(42): 5047-52.
[http://dx.doi.org/10.1038/onc.2013.458] [PMID: 24186200]
[17]
Berebichez-Fridman R, Montero-Olvera PR. Sources and clinical applications of mesenchymal stem cells: state-of-the-art review. Sultan Qaboos Univ Med J 2018; 18(3): e264-77.
[http://dx.doi.org/10.18295/squmj.2018.18.03.002] [PMID: 30607265]
[18]
Bujko K, Kucia M, Ratajczak J, Ratajczak MZ. Hematopoietic stem and progenitor cells (HSPCs). Adv Exp Med Biol 2019; 1201: 49-77.
[http://dx.doi.org/10.1007/978-3-030-31206-0_3] [PMID: 31898781]
[19]
Sipp D. Challenges in the clinical application of induced pluripotent stem cells. Stem Cell Res Ther 2010; 1(1): 9.
[http://dx.doi.org/10.1186/scrt9] [PMID: 20504290]
[20]
Benavides-Castellanos MP, Garzón-Orjuela N, Linero I. Effectiveness of mesenchymal stem cell-conditioned medium in bone regeneration in animal and human models: a systematic review and meta-analysis. Cell Regen (Lond) 2020; 9(1): 5.
[PMID: 32588230]
[21]
Farouk S, Sabet S, Abu Zahra FA, El-Ghor AA. Bone marrow derived-mesenchymal stem cells downregulate IL17A dependent IL6/STAT3 signaling pathway in CCl4-induced rat liver fibrosis. PLoS One 2018; 13(10): e0206130.
[http://dx.doi.org/10.1371/journal.pone.0206130] [PMID: 30346985]
[22]
Mohamed HE, Elswefy SE, Rashed LA, Younis NN, Shaheen MA, Ghanim AM. Bone marrow-derived mesenchymal stem cells effectively regenerate fibrotic liver in bile duct ligation rat model. Exp Biol Med (Maywood) 2016; 241(6): 581-91.
[http://dx.doi.org/10.1177/1535370215627219] [PMID: 26811102]
[23]
Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal stem cells for regenerative medicine. Cells 2019; 8(8): 886.
[http://dx.doi.org/10.3390/cells8080886] [PMID: 31412678]
[24]
Maumus M, Guérit D, Toupet K, Jorgensen C, Noël D. Mesenchymal stem cell-based therapies in regenerative medicine: applications in rheumatology. Stem Cell Res Ther 2011; 2(2): 14.
[http://dx.doi.org/10.1186/scrt55] [PMID: 21457518]
[25]
Aydemir I, Öztürk Ş, Sönmez PK, Tuğlu Mİ. Mesenchymal stem cells in skin wound healing. Anatomy 2016; 10(3): 228-34.
[http://dx.doi.org/10.2399/ana.16.043]
[26]
Rajabzadeh N, Fathi E, Farahzadi R. Stem cell-based regenerative medicine. Stem Cell Investig 2019; 6: 19.
[http://dx.doi.org/10.21037/sci.2019.06.04] [PMID: 31463312]
[27]
Joel MDM, Yuan J, Wang J, et al. MSC: immunoregulatory effects, roles on neutrophils and evolving clinical potentials. Am J Transl Res 2019; 11(6): 3890-904.
[PMID: 31312397]
[28]
Roddy GW, Oh JY, Lee RH, et al. Action at a distance: systemically administered adult stem/progenitor cells (MSCs) reduce inflammatory damage to the cornea without engraftment and primarily by secretion of TNF-α stimulated gene/protein 6. Stem Cells 2011; 29(10): 1572-9.
[http://dx.doi.org/10.1002/stem.708] [PMID: 21837654]
[29]
Hayashi Y, Tsuji S, Tsujii M, et al. Topical implantation of mesenchymal stem cells has beneficial effects on healing of experimental colitis in rats. J Pharmacol Exp Ther 2008; 326(2): 523-31.
[http://dx.doi.org/10.1124/jpet.108.137083] [PMID: 18448866]
[30]
Amado LC, Saliaris AP, Schuleri KH, et al. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci USA 2005; 102(32): 11474-9.
[http://dx.doi.org/10.1073/pnas.0504388102] [PMID: 16061805]
[31]
Liu S-P, Fu R-H, Huang S-J, et al. Stem cell applications in regenerative medicine for neurological disorders. Cell Transplant 2013; 22(4): 631-7.
[http://dx.doi.org/10.3727/096368912X655145] [PMID: 23127757]
[32]
Bai Y, Wang J, He Z, Yang M, Li L, Jiang H. Mesenchymal stem cells reverse diabetic nephropathy disease via lipoxin A4 by targeting transforming growth factor β (TGF-β)/smad pathway and pro-Inflammatory cytokines. Med Sci Monit 2019; 25: 3069-76.
[http://dx.doi.org/10.12659/MSM.914860] [PMID: 31023998]
[33]
Zischek C, Niess H, Ischenko I, et al. Erratum: Targeting tumor stroma using engineered mesenchymal stem cells reduces the growth of pancreatic carcinoma (Annals of Surgery (2009) 250: 5 (747-753)). Ann Surg 2010; 251(1): 187.
[http://dx.doi.org/10.1097/01.sla.0000366105.63325.8a]
[34]
Corsten MF, Shah K. Therapeutic stem-cells for cancer treatment: hopes and hurdles in tactical warfare. Lancet Oncol 2008; 9(4): 376-84.
[http://dx.doi.org/10.1016/S1470-2045(08)70099-8] [PMID: 18374291]
[35]
Teo AK, Vallier L. Emerging use of stem cells in regenerative medicine. Biochem J 2010; 428(1): 11-23.
[http://dx.doi.org/10.1042/BJ20100102] [PMID: 20423328]
[36]
Serakinci N, Christensen R, Fahrioglu U, et al. Mesenchymal stem cells as therapeutic delivery vehicles targeting tumor stroma. Cancer Biother Radiopharm 2011; 26(6): 767-73.
[http://dx.doi.org/10.1089/cbr.2011.1024] [PMID: 21877908]
[37]
Roorda BD, ter Elst A, Kamps WA, de Bont ES. Bone marrow-derived cells and tumor growth: contribution of bone marrow-derived cells to tumor micro-environments with special focus on mesenchymal stem cells. Crit Rev Oncol Hematol 2009; 69(3): 187-98.
[http://dx.doi.org/10.1016/j.critrevonc.2008.06.004] [PMID: 18675551]
[38]
Rani S, Ryan AE, Griffin MD, Ritter T. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther 2015; 23(5): 812-23.
[http://dx.doi.org/10.1038/mt.2015.44] [PMID: 25868399]
[39]
Lu L, Chen G, Yang J, et al. Bone marrow mesenchymal stem cells suppress growth and promote the apoptosis of glioma U251 cells through downregulation of the PI3K/AKT signaling pathway. Biomed Pharmacother 2019; 112: 108625.
[http://dx.doi.org/10.1016/j.biopha.2019.108625] [PMID: 30784920]
[40]
Loebinger MR, Janes SM. Stem cells as vectors for antitumour therapy. Thorax 2010; 65(4): 362-9.
[http://dx.doi.org/10.1136/thx.2009.128025] [PMID: 20388765]
[41]
Qiao L, Xu Z, Zhao T, et al. Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res 2008; 18(4): 500-7.
[http://dx.doi.org/10.1038/cr.2008.40] [PMID: 18364678]
[42]
Zhu Y, Sun Z, Han Q, et al. Human mesenchymal stem cells inhibit cancer cell proliferation by secreting DKK-1. Leukemia 2009; 23(5): 925-33.
[http://dx.doi.org/10.1038/leu.2008.384] [PMID: 19148141]
[43]
Wu S, Ju G-Q, Du T, Zhu Y-J, Liu G-H. Microvesicles derived from human umbilical cord Wharton’s jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo. PLoS One 2013; 8(4): e61366.
[http://dx.doi.org/10.1371/journal.pone.0061366] [PMID: 23593475]
[44]
Fontanella R, Pelagalli A, Nardelli A, et al. A novel antagonist of CXCR4 prevents bone marrow-derived mesenchymal stem cell-mediated osteosarcoma and hepatocellular carcinoma cell migration and invasion. Cancer Lett 2016; 370(1): 100-7.
[http://dx.doi.org/10.1016/j.canlet.2015.10.018] [PMID: 26517945]
[45]
König A, Menzel T, Lynen S, et al. Basic fibroblast growth factor (bFGF) upregulates the expression of bcl-2 in B cell chronic lymphocytic leukemia cell lines resulting in delaying apoptosis. Leukemia 1997; 11(2): 258-65.
[http://dx.doi.org/10.1038/sj.leu.2400556] [PMID: 9009090]
[46]
Dias S, Shmelkov SV, Lam G, Rafii S. VEGF(165) promotes survival of leukemic cells by Hsp90-mediated induction of Bcl-2 expression and apoptosis inhibition. Blood 2002; 99(7): 2532-40.
[http://dx.doi.org/10.1182/blood.V99.7.2532] [PMID: 11895790]
[47]
Zhu W, Huang L, Li Y, et al. Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. Cancer Lett 2012; 315(1): 28-37.
[http://dx.doi.org/10.1016/j.canlet.2011.10.002] [PMID: 22055459]
[48]
Otsu K, Das S, Houser SD, Quadri SK, Bhattacharya S, Bhattacharya J. Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood 2009; 113(18): 4197-205.
[http://dx.doi.org/10.1182/blood-2008-09-176198] [PMID: 19036701]
[49]
Pakravan K, Babashah S, Sadeghizadeh M, et al. MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/ HIF-1α/VEGF signaling axis in breast cancer cells. Cell Oncol (Dordr) 2017; 40(5): 457-70.
[http://dx.doi.org/10.1007/s13402-017-0335-7] [PMID: 28741069]
[50]
Suzuki K, Sun R, Origuchi M, et al. Mesenchymal stromal cells promote tumor growth through the enhancement of neovascularization. Mol Med 2011; 17(7-8): 579-87.
[http://dx.doi.org/10.2119/molmed.2010.00157] [PMID: 21424106]
[51]
Spaeth EL, Dembinski JL, Sasser AK, et al. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One 2009; 4(4): e4992.
[http://dx.doi.org/10.1371/journal.pone.0004992] [PMID: 19352430]
[52]
McBride JD, Rodriguez-Menocal L, Guzman W, Candanedo A, Garcia-Contreras M, Badiavas EV. Bone marrow mesenchymal stem cell-derived CD63+ exosomes transport Wnt3a exteriorly and enhance dermal fibroblast proliferation, migration, and angiogenesis in vitro. Stem Cells Dev 2017; 26(19): 1384-98.
[http://dx.doi.org/10.1089/scd.2017.0087] [PMID: 28679315]
[53]
Bortolotti F, Ukovich L, Razban V, et al. In vivo therapeutic potential of mesenchymal stromal cells depends on the source and the isolation procedure. Stem Cell Reports 2015; 4(3): 332-9.
[http://dx.doi.org/10.1016/j.stemcr.2015.01.001] [PMID: 25660405]
[54]
Bajetto A, Pattarozzi A, Corsaro A, et al. Different effects of human umbilical cord mesenchymal stem cells on glioblastoma stem cells by direct cell interaction or via released soluble factors. Front Cell Neurosci 2017; 11: 312.
[http://dx.doi.org/10.3389/fncel.2017.00312] [PMID: 29081734]
[55]
Marofi F, Hassanzadeh A, Solali S, et al. Epigenetic mechanisms are behind the regulation of the key genes associated with the osteoblastic differentiation of the mesenchymal stem cells: The role of zoledronic acid on tuning the epigenetic changes. J Cell Physiol 2019; 234(9): 15108-22.
[http://dx.doi.org/10.1002/jcp.28152] [PMID: 30652308]
[56]
Naji A, Eitoku M, Favier B, Deschaseaux F, Rouas-Freiss N, Suganuma N. Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci 2019; 76(17): 3323-48.
[http://dx.doi.org/10.1007/s00018-019-03125-1] [PMID: 31055643]
[57]
Liu X, Duan B, Cheng Z, et al. SDF-1/CXCR4 axis modulates bone marrow mesenchymal stem cell apoptosis, migration and cytokine secretion. Protein Cell 2011; 2(10): 845-54.
[http://dx.doi.org/10.1007/s13238-011-1097-z] [PMID: 22058039]
[58]
Bhakta S, Hong P, Koc O. The surface adhesion molecule CXCR4 stimulates mesenchymal stem cell migration to stromal cell-derived factor-1 in vitro but does not decrease apoptosis under serum deprivation. Cardiovasc Revasc Med 2006; 7(1): 19-24.
[http://dx.doi.org/10.1016/j.carrev.2005.10.008] [PMID: 16513519]
[59]
Baek SJ, Kang SK, Ra JC. In vitro migration capacity of human adipose tissue-derived mesenchymal stem cells reflects their expression of receptors for chemokines and growth factors. Exp Mol Med 2011; 43(10): 596-603.
[http://dx.doi.org/10.3858/emm.2011.43.10.069] [PMID: 21847008]
[60]
Ponte AL, Marais E, Gallay N, et al. The in vitro migration capacity of human bone marrow mesenchymal stem cells: Comparison of chemokine and growth factor chemotactic activities. Stem Cells 2007; 25(7): 1737-45.
[http://dx.doi.org/10.1634/stemcells.2007-0054] [PMID: 17395768]
[61]
Chen Y, Xiang LX, Shao JZ, et al. Recruitment of endogenous bone marrow mesenchymal stem cells towards injured liver. J Cell Mol Med 2010; 14(6B): 1494-508.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00912.x] [PMID: 19780871]
[62]
Yu Q, Chen L, You Y, et al. Erythropoietin combined with granulocyte colony-stimulating factor enhances MMP-2 expression in mesenchymal stem cells and promotes cell migration. Mol Med Rep 2011; 4(1): 31-6.
[PMID: 21461559]
[63]
Yun WS, Choi JS, Ju HM, et al. Enhanced homing technique of mesenchymal stem cells using iron oxide nanoparticles by magnetic attraction in olfactory-injured mouse models. Int J Mol Sci 2018; 19(5): E1376.
[http://dx.doi.org/10.3390/ijms19051376] [PMID: 29734748]
[64]
Conrad C, Gupta R, Mohan H, et al. Genetically engineered stem cells for therapeutic gene delivery. Curr Gene Ther 2007; 7(4): 249-60.
[http://dx.doi.org/10.2174/156652307781369119] [PMID: 17969558]
[65]
Alessandri G, Emanueli C, Madeddu P. Genetically engineered stem cell therapy for tissue regeneration. Ann N Y Acad Sci 2004; 1015(1): 271-84.
[http://dx.doi.org/10.1196/annals.1302.023] [PMID: 15201167]
[66]
Zhou L, Liu S, Wang Z, et al. Bone marrow-derived mesenchymal stem cells modified with Akt1 ameliorates acute liver GVHD. Biol Proced Online 2019; 21(1): 24.
[http://dx.doi.org/10.1186/s12575-019-0112-2] [PMID: 31889917]
[67]
Yanagihara K, Uchida S, Ohba S, Kataoka K, Itaka K. Treatment of bone defects by transplantation of genetically modified mesenchymal stem cell spheroids. Mol Ther Methods Clin Dev 2018; 9: 358-66.
[http://dx.doi.org/10.1016/j.omtm.2018.04.006] [PMID: 30038939]
[68]
Han J, Liu Y, Liu H, Li Y. Genetically modified mesenchymal stem cell therapy for acute respiratory distress syndrome. Stem Cell Res Ther 2019; 10(1): 386.
[http://dx.doi.org/10.1186/s13287-019-1518-0] [PMID: 31843004]
[69]
Sato M, Inada E, Saitoh I, Watanabe S, Nakamura S. piggyBac-based non-viral in vivo gene delivery useful for production of genetically modified animals and organs. Pharmaceutics 2020; 12(3): 277.
[http://dx.doi.org/10.3390/pharmaceutics12030277] [PMID: 32204422]
[70]
Devetzi M, Goulielmaki M, Khoury N, et al. Genetically-modified stem cells in treatment of human diseases: Tissue kallikrein (KLK1)-based targeted therapy (Review). Int J Mol Med 2018; 41(3): 1177-86.
[http://dx.doi.org/10.3892/ijmm.2018.3361] [PMID: 29328364]
[71]
Marin-Bañasco C, Benabdellah K, Melero-Jerez C, et al. Gene therapy with mesenchymal stem cells expressing IFN-ß ameliorates neuroinflammation in experimental models of multiple sclerosis. Br J Pharmacol 2017; 174(3): 238-53.
[http://dx.doi.org/10.1111/bph.13674] [PMID: 27882538]
[72]
Hojati Z, Kay M, Dehghanian F. Chapter 15 - Mechanism of Action of Interferon Beta in Treatment of Multiple Sclerosis. In: Minagar A, Ed. Multiple Sclerosis. San Diego: Academic Press 2016; pp. 365-92.
[http://dx.doi.org/10.1016/B978-0-12-800763-1.00015-4]
[73]
Li X, Zhang Y, Yan Y, et al. LINGO-1-Fc-transduced neural stem cells are effective therapy for chronic stage experimental autoimmune encephalomyelitis. Mol Neurobiol 2017; 54(6): 4365-78.
[http://dx.doi.org/10.1007/s12035-016-9994-z] [PMID: 27344330]
[74]
Bonilla-Porras AR, Arevalo-Arbelaez A, Alzate-Restrepo JF, Velez-Pardo C, Jimenez-Del-Rio M. PARKIN overexpression in human mesenchymal stromal cells from Wharton’s jelly suppresses 6-hydroxydopamine-induced apoptosis: Potential therapeutic strategy in Parkinson’s disease. Cytotherapy 2018; 20(1): 45-61.
[http://dx.doi.org/10.1016/j.jcyt.2017.09.011] [PMID: 29079356]
[75]
Liu K, Zhang W, Li Y, et al. Human peripheral blood-derived mesenchymal stem cells with NTRK1 over-expression enhance repairing capability in a rat model of Parkinson’s disease. Cytotechnology 2018; 70(5): 1291-9.
[http://dx.doi.org/10.1007/s10616-017-0175-3] [PMID: 29978273]
[76]
Hoban DB, Howard L, Dowd E. GDNF-secreting mesenchymal stem cells provide localized neuroprotection in an inflammation-driven rat model of Parkinson’s disease. Neuroscience 2015; 303: 402-11.
[http://dx.doi.org/10.1016/j.neuroscience.2015.07.014] [PMID: 26166730]
[77]
Hong M, Mukhida K, Mendez I. GDNF therapy for Parkinson’s disease. Expert Rev Neurother 2008; 8(7): 1125-39.
[http://dx.doi.org/10.1586/14737175.8.7.1125] [PMID: 18590482]
[78]
Zhu K, Lai H, Guo C, Xu D, Wang C. Novel vascular endothelial growth factor gene delivery system-manipulated mesenchymal stem cells repair infarcted myocardium. Exp Biol Med (Maywood) 2012; 237(6): 678-87.
[http://dx.doi.org/10.1258/ebm.2012.011430] [PMID: 22728704]
[79]
Oduk Y, Zhu W, Kannappan R, et al. VEGF nanoparticles repair the heart after myocardial infarction. Am J Physiol Heart Circ Physiol 2018; 314(2): H278-84.
[http://dx.doi.org/10.1152/ajpheart.00471.2017] [PMID: 29101176]
[80]
Haridhasapavalan KK, Borgohain MP, Dey C, et al. An insight into non-integrative gene delivery approaches to generate transgene-free induced pluripotent stem cells. Gene 2019; 686: 146-59.
[http://dx.doi.org/10.1016/j.gene.2018.11.069] [PMID: 30472380]
[81]
Yang M, Zhang G-G, Wang T, et al. TBX18 gene induces adipose-derived stem cells to differentiate into pacemaker-like cells in the myocardial microenvironment. Int J Mol Med 2016; 38(5): 1403-10.
[http://dx.doi.org/10.3892/ijmm.2016.2736] [PMID: 27632938]
[82]
Gorabi AM, Hajighasemi S, Khori V, et al. Functional biological pacemaker generation by T-Box18 protein expression via stem cell and viral delivery approaches in a murine model of complete heart block. Pharmacol Res 2019; 141: 443-50.
[http://dx.doi.org/10.1016/j.phrs.2019.01.034] [PMID: 30677516]
[83]
Wang B, Yao K, Huuskes BM, et al. Mesenchymal stem cells deliver exogenous microRNA-let7c via exosomes to attenuate renal fibrosis. Mol Ther 2016; 24(7): 1290-301.
[http://dx.doi.org/10.1038/mt.2016.90] [PMID: 27203438]
[84]
Liu LN, Wang G, Hendricks K, et al. Comparison of drug and cell-based delivery: engineered adult mesenchymal stem cells expressing soluble tumor necrosis factor receptor II prevent arthritis in mouse and rat animal models. Stem Cells Transl Med 2013; 2(5): 362-75.
[http://dx.doi.org/10.5966/sctm.2012-0135] [PMID: 23592838]
[85]
Chien KH, Chang YL, Wang ML, et al. Promoting induced pluripotent stem cell-driven biomineralization and periodontal regeneration in rats with maxillary-molar defects using injectable BMP-6 hydrogel. Sci Rep 2018; 8(1): 114.
[http://dx.doi.org/10.1038/s41598-017-18415-6] [PMID: 29311578]
[86]
Klein SM, Behrstock S, McHugh J, et al. GDNF delivery using human neural progenitor cells in a rat model of ALS. Hum Gene Ther 2005; 16(4): 509-21.
[http://dx.doi.org/10.1089/hum.2005.16.509] [PMID: 15871682]
[87]
Park S, Kim HT, Yun S, et al. Growth factor-expressing human neural progenitor cell grafts protect motor neurons but do not ameliorate motor performance and survival in ALS mice. Exp Mol Med 2009; 41(7): 487-500.
[http://dx.doi.org/10.3858/emm.2009.41.7.054] [PMID: 19322031]
[88]
Chien Y, Chang YL, Li HY, et al. Synergistic effects of carboxymethyl-hexanoyl chitosan, cationic polyurethane-short branch PEI in miR122 gene delivery: accelerated differentiation of iPSCs into mature hepatocyte-like cells and improved stem cell therapy in a hepatic failure model. Acta Biomater 2015; 13: 228-44.
[http://dx.doi.org/10.1016/j.actbio.2014.11.018] [PMID: 25463491]
[89]
Jung G, Sun J, Petrowitz B, et al. Genetically modified neural stem cells for a local and sustained delivery of neuroprotective factors to the dystrophic mouse retina. Stem Cells Transl Med 2013; 2(12): 1001-10.
[http://dx.doi.org/10.5966/sctm.2013-0013] [PMID: 24167317]
[90]
Bahrambeigi V, Ahmadi N, Salehi R, Javanmard SH. Genetically modified murine adipose-derived mesenchymal stem cells producing interleukin-2 favor B16F10 melanoma cell proliferation. Immunol Invest 2015; 44(3): 216-36.
[http://dx.doi.org/10.3109/08820139.2014.988719] [PMID: 25565576]
[91]
Niess H, Bao Q, Conrad C, et al. Selective targeting of genetically engineered mesenchymal stem cells to tumor stroma microenvironments using tissue-specific suicide gene expression suppresses growth of hepatocellular carcinoma. Ann Surg 2011; 254(5): 767-74.
[http://dx.doi.org/10.1097/SLA.0b013e3182368c4f] [PMID: 22042469]
[92]
Bagheri-Mohammadi S, Moradian-Tehrani R, Noureddini M, Alani B. Novel application of adipose-derived mesenchymal stem cells via producing antiangiogenic factor TSP-1 in lung metastatic melanoma animal model. Biol: J Int Assoc Biol Standard 2020; 68: 9-18.
[http://dx.doi.org/10.1016/j.biologicals.2020.09.004] [PMID: 33032882]
[93]
Bahrambeigi V, Ahmadi N, Moisyadi S, Urschitz J, Salehi R, Haghjooy Javanmard S. PhiC31/PiggyBac modified stromal stem cells: effect of interferon γ and/or tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) on murine melanoma. Mol Cancer 2014; 13: 255.
[http://dx.doi.org/10.1186/1476-4598-13-255] [PMID: 25428727]
[94]
Liu B, Chen F, Wu Y, et al. Enhanced tumor growth inhibition by mesenchymal stem cells derived from iPSCs with targeted integration of interleukin24 into rDNA loci. Oncotarget 2017; 8(25): 40791-803.
[http://dx.doi.org/10.18632/oncotarget.16584] [PMID: 28388559]
[95]
Heo JR, Hwang KA, Kim SU, Choi KC. A potential therapy using engineered stem cells prevented malignant melanoma in cellular and xenograft mouse models. Cancer Res Treatm 2019; 51(2): 797-811.
[http://dx.doi.org/10.4143/crt.2018.364] [PMID: 30213181]
[96]
Chulpanova DS, Solovyeva VV, James V, et al. Human mesenchymal stem cells overexpressing interleukin 2 can suppress proliferation of neuroblastoma cells in co-culture and activate mononuclear cells in vitro. Bioengineering (Basel) 2020; 7(2): E59.
[http://dx.doi.org/10.3390/bioengineering7020059] [PMID: 32560387]
[97]
Nakamizo A, Marini F, Amano T, et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 2005; 65(8): 3307-18.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1874] [PMID: 15833864]
[98]
Ryu CH, Park KY, Kim SM, et al. Valproic acid enhances anti-tumor effect of mesenchymal stem cell mediated HSV-TK gene therapy in intracranial glioma. Biochem Biophys Res Commun 2012; 421(3): 585-90.
[http://dx.doi.org/10.1016/j.bbrc.2012.04.050] [PMID: 22525671]
[99]
Amara I, Pramil E, Senamaud-Beaufort C, et al. Engineered mesenchymal stem cells as vectors in a suicide gene therapy against preclinical murine models for solid tumors. J Control Rel 2016; 239: 82-91.
[http://dx.doi.org/10.1016/j.jconrel.2016.08.019] [PMID: 27565211]
[100]
Yi BR, Hwang KA, Aboody KS, Jeung EB, Kim SU, Choi KC. Selective antitumor effect of neural stem cells expressing cytosine deaminase and interferon-beta against ductal breast cancer cells in cellular and xenograft models. Stem Cell Res (Amst) 2014; 12(1): 36-48.
[http://dx.doi.org/10.1016/j.scr.2013.09.010] [PMID: 24141111]
[101]
Eliopoulos N, Francois M, Boivin M-N, Martineau D, Galipeau J. Neo-organoid of marrow mesenchymal stromal cells secreting interleukin-12 for breast cancer therapy. Cancer Res 2008; 68(12): 4810-8.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0160] [PMID: 18559528]
[102]
Ling X, Marini F, Konopleva M, et al. Mesenchymal stem cells overexpressing IFN-β inhibit breast cancer growth and metastases through Stat3 signaling in a syngeneic tumor model. Cancer Microenviron 2010; 3(1): 83-95.
[http://dx.doi.org/10.1007/s12307-010-0041-8] [PMID: 21209776]
[103]
Park GT, Kim SU, Choi KC. Anti-proliferative effect of engineered neural stem cells expressing cytosine deaminase and interferon-β against lymph node-derived metastatic colorectal adenocarcinoma in cellular and xenograft mouse models. Cancer Res Treatm 2017; 49(1): 79-91.
[http://dx.doi.org/10.4143/crt.2015.503] [PMID: 27188205]
[104]
Zhang Y, Wang J, Ren M, et al. Gene therapy of ovarian cancer using IL-21-secreting human umbilical cord mesenchymal stem cells in nude mice. J Ovarian Res 2014; 7(1): 8.
[http://dx.doi.org/10.1186/1757-2215-7-8] [PMID: 24444073]
[105]
Kidd S, Caldwell L, Dietrich M, et al. Mesenchymal stromal cells alone or expressing interferon-β suppress pancreatic tumors in vivo, an effect countered by anti-inflammatory treatment. Cytotherapy 2010; 12(5): 615-25.
[http://dx.doi.org/10.3109/14653241003631815] [PMID: 20230221]
[106]
Chen X, Wang K, Chen S, Chen Y. Effects of mesenchymal stem cells harboring the Interferon-β gene on A549 lung cancer in nude mice. Pathol Res Pract 2019; 215(3): 586-93.
[http://dx.doi.org/10.1016/j.prp.2019.01.013] [PMID: 30683475]
[107]
Fitzsimmons RE, Mazurek MS, Soos A, Simmons CA. Mesenchymal stromal/stem cells in regenerative medicine and tissue engineering. Stem Cells Int 2018; 2018.
[http://dx.doi.org/10.1155/2018/8031718] [PMID: 8031718]
[108]
Musiał-Wysocka A, Kot M, Majka M. The pros and cons of mesenchymal stem cell-based therapies. Cell Transplant 2019; 28(7): 801-12.
[http://dx.doi.org/10.1177/0963689719837897] [PMID: 31018669]
[109]
Forslöw U, Blennow O, LeBlanc K, et al. Treatment with mesenchymal stromal cells is a risk factor for pneumonia-related death after allogeneic hematopoietic stem cell transplantation. Eur J Haematol 2012; 89(3): 220-7.
[http://dx.doi.org/10.1111/j.1600-0609.2012.01824.x] [PMID: 22765507]
[110]
Lukomska B, Stanaszek L, Zuba-Surma E, Legosz P, Sarzynska S, Drela K. Challenges and controversies in human mesenchymal stem cell therapy. Stem Cells Int 2019; 2019: 9628536.
[http://dx.doi.org/10.1155/2019/9628536] [PMID: 31093291]
[111]
Rubio D, Garcia-Castro J, Martín MC, et al. Spontaneous human adult stem cell transformation. Cancer Res 2005; 65(8): 3035-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-4194] [PMID: 15833829]
[112]
Hoare M, Greiser U, Schu S, et al. Enhanced lipoplex-mediated gene expression in mesenchymal stem cells using reiterated nuclear localization sequence peptides. J Gene Med 2010; 12(2): 207-18.
[http://dx.doi.org/10.1002/jgm.1426]
[113]
McGinley L, McMahon J, Strappe P, et al. Lentiviral vector mediated modification of mesenchymal stem cells & enhanced survival in an in vitro model of ischemia. Stem Cell Res Ther 2011; 2(2): 12.
[http://dx.doi.org/10.1186/scrt53] [PMID: 21385372]
[114]
Chen S, Tang Y, Liu Y, et al. Exosomes derived from miR-375-overexpressing human adipose mesenchymal stem cells promote bone regeneration. Cell Prolif 2019; 52(5): e12669.
[http://dx.doi.org/10.1111/cpr.12669] [PMID: 31380594]
[115]
Mao G, Zhang Z, Hu S, et al. Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A. Stem Cell Res Ther 2018; 9(1): 247.
[http://dx.doi.org/10.1186/s13287-018-1004-0] [PMID: 30257711]
[116]
Jin Z, Ren J, Qi S. Human bone mesenchymal stem cells-derived exosomes overexpressing microRNA-26a-5p alleviate osteoarthritis via down-regulation of PTGS2. Int Immunopharmacol 2020; 78: 105946.
[http://dx.doi.org/10.1016/j.intimp.2019.105946] [PMID: 31784400]
[117]
Zimmermann T, Remmers F, Lutz B, Leschik J. ESC-derived BDNF-overexpressing neural progenitors differentially promote recovery in huntington’s disease models by enhanced striatal differentiation. Stem Cell Reports 2016; 7(4): 693-706.
[http://dx.doi.org/10.1016/j.stemcr.2016.08.018] [PMID: 27693427]
[118]
Scheper V, Schwieger J, Hamm A, Lenarz T, Hoffmann A. BDNF-overexpressing human mesenchymal stem cells mediate increased neuronal protection in vitro. J Neurosci Res 2019; 97(11): 1414-29.
[http://dx.doi.org/10.1002/jnr.24488] [PMID: 31257632]
[119]
Mahboudi H, Soleimani M, Hanaee-Ahvaz H, et al. New approach for differentiation of bone marrow mesenchymal stem cells toward chondrocyte cells with overexpression of MicroRNA-140. ASAIO journal (American Society for Artificial Internal Organs : 1992) 2018; 64(5): 662-72.
[http://dx.doi.org/10.1097/MAT.0000000000000688] [PMID: 29040159]
[120]
Dayer AG, Jenny B, Sauvain MO, et al. Expression of FGF-2 in neural progenitor cells enhances their potential for cellular brain repair in the rodent cortex. Brain 2007; 130(Pt 11): 2962-76.
[http://dx.doi.org/10.1093/brain/awm200] [PMID: 17728358]
[121]
Zhaleh F, Amiri F, Mohammadzadeh-Vardin M, et al. Nuclear factor erythroid-2 related factor 2 overexpressed mesenchymal stem cells transplantation, improves renal function, decreases injuries markers and increases repair markers in glycerol-induced Acute kidney injury rats. Iran J Basic Med Sci 2016; 19(3): 323-9.
[PMID: 27114803]
[122]
Khalid RS, Khan I, Zaidi MB, et al. IL-7 overexpression enhances therapeutic potential of rat bone marrow mesenchymal stem cells for diabetic wounds. Wound Rep Regen 2019; 27(3): 235-48.
[http://dx.doi.org/10.1111/wrr.12706] [PMID: 30761686]
[123]
Wakabayashi T, Shimada Y, Akiyama K, et al. Hematopoietic stem cell gene therapy corrects neuropathic phenotype in murine model of mucopolysaccharidosis type II. Hum Gene Ther 2015; 26(6): 357-66.
[http://dx.doi.org/10.1089/hum.2014.158] [PMID: 25761450]
[124]
Bauer TR Jr, Hai M, Tuschong LM, et al. Correction of the disease phenotype in canine leukocyte adhesion deficiency using ex vivo hematopoietic stem cell gene therapy. Blood 2006; 108(10): 3313-20.
[http://dx.doi.org/10.1182/blood-2006-03-006908] [PMID: 16868255]
[125]
Xu L, Shunmei E, Lin S, et al. Sox11-modified mesenchymal stem cells accelerate cartilage defect repair in SD rats. Cell Tissue Res 2019; 376(2): 247-55.
[http://dx.doi.org/10.1007/s00441-018-02979-4] [PMID: 30617615]
[126]
Lian Jin H, Pennant WA, Hyung Lee M, et al. Neural stem cells modified by a hypoxia-inducible VEGF gene expression system improve cell viability under hypoxic conditions and spinal cord injury. Spine 2011; 36(11): 857-64.
[http://dx.doi.org/10.1097/BRS.0b013e3181e7f34b] [PMID: 21192293]
[127]
Copray S, Balasubramaniyan V, Levenga J, de Bruijn J, Liem R, Boddeke E. Olig2 overexpression induces the in vitro differentiation of neural stem cells into mature oligodendrocytes. Stem Cells 2006; 24(4): 1001-10.
[http://dx.doi.org/10.1634/stemcells.2005-0239] [PMID: 16253982]
[128]
Kim SW, Lee DW, Yu LH, et al. Mesenchymal stem cells overexpressing GCP-2 improve heart function through enhanced angiogenic properties in a myocardial infarction model. Cardiovasc Res 2012; 95(4): 495-506.
[http://dx.doi.org/10.1093/cvr/cvs224] [PMID: 22886775]
[129]
Jung S, Kim JH, Yim C, Lee M, Kang HJ, Choi D. Therapeutic effects of a mesenchymal stem cell-based insulin-like growth factor-1/enhanced green fluorescent protein dual gene sorting system in a myocardial infarction rat model. Mol Med Rep 2018; 18(6): 5563-71.
[http://dx.doi.org/10.3892/mmr.2018.9561] [PMID: 30365087]
[130]
Paz AH, Salton GD, Ayala-Lugo A, et al. Betacellulin overexpression in mesenchymal stem cells induces insulin secretion in vitro and ameliorates streptozotocin-induced hyperglycemia in rats. Stem Cells Dev 2011; 20(2): 223-32.
[http://dx.doi.org/10.1089/scd.2009.0490] [PMID: 20836700]
[131]
Ghazavi H, Hoseini S J, Ebrahimzadeh-Bideskan A, et al. Fibroblast growth factor type 1 (FGF1)-overexpressed adipose-derived mesenchaymal stem cells (AD-MSC(FGF1)) induce neuroprotection and functional recovery in a rat stroke model. Stem cell reviews and reports 2017; 13(5): 670-85.
[http://dx.doi.org/10.1007/s12015-017-9755-z] [PMID: 28795363]
[132]
Allahdadi KJ, de Santana TA, Santos GC, et al. IGF-1 overexpression improves mesenchymal stem cell survival and promotes neurological recovery after spinal cord injury. Stem Cell Res Ther 2019; 10(1): 146.
[http://dx.doi.org/10.1186/s13287-019-1223-z] [PMID: 31113444]
[133]
Zhang Y, Guo C, Zhang H, Dong S. Synergistic protecting effect of cord blood CD34+ cells over-expressing both interleukin-3 and Flt3 ligand on lethally irradiated mice. Int J Hematol 2009; 90(1): 64-73.
[http://dx.doi.org/10.1007/s12185-009-0348-8] [PMID: 19529981]
[134]
Cho JW, Lee CY, Ko Y. Therapeutic potential of mesenchymal stem cells overexpressing human forkhead box A2 gene in the regeneration of damaged liver tissues. J Gastroenterol Hepatol 2012; 27(8): 1362-70.
[http://dx.doi.org/10.1111/j.1440-1746.2012.07137.x] [PMID: 22432472]
[135]
Liu Z, Wang C, Wang X, Xu S. Therapeutic effects of transplantation of As-MiR-937-expressing mesenchymal stem cells in murine model of alzheimer's disease. Cell Physiol Biochem 2015; 37(1): 321-30.
[http://dx.doi.org/10.1159/000430356] [PMID: 26316079]
[136]
Lejkowska R, Kawa MP, Pius-Sadowska E, et al. Preclinical evaluation of long-term neuroprotective effects of BDNF-engineered mesenchymal stromal cells as intravitreal therapy for chronic retinal degeneration in Rd6 mutant mice. Int J Mol Sci 2019; 20(3): E777.
[http://dx.doi.org/10.3390/ijms20030777] [PMID: 30759764]
[137]
Cho J, Zhai P, Maejima Y, Sadoshima J. Myocardial injection with GSK-3β-overexpressing bone marrow-derived mesenchymal stem cells attenuates cardiac dysfunction after myocardial infarction. Circ Res 2011; 108(4): 478-89.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.229658] [PMID: 21233455]
[138]
Das H, George JC, Joseph M, et al. Stem cell therapy with overexpressed VEGF and PDGF genes improves cardiac function in a rat infarct model. PLoS One 2009; 4(10): e7325.
[http://dx.doi.org/10.1371/journal.pone.0007325] [PMID: 19809493]
[139]
Gao Y, Yao A, Zhang W, et al. Human mesenchymal stem cells overexpressing pigment epithelium-derived factor inhibit hepatocellular carcinoma in nude mice. Oncogene 2010; 29(19): 2784-94.
[http://dx.doi.org/10.1038/onc.2010.38] [PMID: 20190814]
[140]
Chen Q, Cheng P, Yin T, et al. Therapeutic potential of bone marrow-derived mesenchymal stem cells producing pigment epithelium-derived factor in lung carcinoma. Int J Mol Med 2012; 30(3): 527-34.
[http://dx.doi.org/10.3892/ijmm.2012.1015] [PMID: 22684097]
[141]
Dickson PV, Hamner JB, Burger RA, et al. Intravascular administration of tumor tropic neural progenitor cells permits targeted delivery of interferon-beta and restricts tumor growth in a murine model of disseminated neuroblastoma. J Pediatr Surg 2007; 42(1): 48-53.
[http://dx.doi.org/10.1016/j.jpedsurg.2006.09.050] [PMID: 17208540]
[142]
Yu Y, Liu Y, Zong C, et al. Mesenchymal stem cells with Sirt1 overexpression suppress breast tumor growth via chemokine-dependent natural killer cells recruitment. Sci Rep 2016; 6: 35998.
[http://dx.doi.org/10.1038/srep35998] [PMID: 27782173]
[143]
Yu Y, Zhang Q, Meng Q, et al. Mesenchymal stem cells overexpressing Sirt1 inhibit prostate cancer growth by recruiting natural killer cells and macrophages. Oncotarget 2016; 7(44): 71112-22.
[http://dx.doi.org/10.18632/oncotarget.12737] [PMID: 27764779]
[144]
Li H, Yang C, Shi Y, Zhao L. Exosomes derived from siRNA against GRP78 modified bone-marrow-derived mesenchymal stem cells suppress Sorafenib resistance in hepatocellular carcinoma. J Nanobiotechnology 2018; 16(1): 103.
[http://dx.doi.org/10.1186/s12951-018-0429-z] [PMID: 30572882]
[145]
Ito S, Natsume A, Shimato S, et al. Human neural stem cells transduced with IFN-beta and cytosine deaminase genes intensify bystander effect in experimental glioma. Cancer Gene Ther 2010; 17(5): 299-306.
[http://dx.doi.org/10.1038/cgt.2009.80] [PMID: 19893595]
[146]
Zhang X, Huang W, Chen X, et al. CXCR5-overexpressing mesenchymal stromal cells exhibit enhanced homing and can decrease contact hypersensitivity. Mol Ther 2017; 25(6): 1434-47.
[http://dx.doi.org/10.1016/j.ymthe.2017.04.004] [PMID: 28454789]
[147]
Harati MD, Amiri F, Jaleh F, et al. Targeting delivery of lipocalin 2-engineered mesenchymal stem cells to colon cancer in order to inhibit liver metastasis in nude mice. Tumour Biol 2015; 36(8): 6011-8.
[http://dx.doi.org/10.1007/s13277-015-3277-6] [PMID: 25740061]
[148]
Li T, Wan Y, Su Z, Li J, Han M, Zhou C. Mesenchymal Stem Cell-Derived Exosomal microRNA-3940-5p Inhibits Colorectal Cancer Metastasis by Targeting Integrin α6. Dig Dis Sci 2021; 66: 1916-27.
[http://dx.doi.org/10.1007/s10620-020-06458-1]
[149]
Xu Y, Shen L, Li F, Yang J, Wan X, Ouyang M. microRNA-16-5p-containing exosomes derived from bone marrow-derived mesenchymal stem cells inhibit proliferation, migration, and invasion, while promoting apoptosis of colorectal cancer cells by downregulating ITGA2. J Cell Physiol 2019; 234(11): 21380-94.
[http://dx.doi.org/10.1002/jcp.28747] [PMID: 31102273]
[150]
Lathrop MJ, Sage EK, Macura SL, et al. Antitumor effects of TRAIL-expressing mesenchymal stromal cells in a mouse xenograft model of human mesothelioma. Cancer Gene Ther 2015; 22(1): 44-54.
[http://dx.doi.org/10.1038/cgt.2014.68] [PMID: 25525034]
[151]
Yang B, Wu X, Mao Y, et al. Dual-targeted antitumor effects against brainstem glioma by intravenous delivery of tumor necrosis factor-related, apoptosis-inducing, ligand-engineered human mesenchymal stem cells. Neurosurgery 2009; 65(3): 610-24.
[http://dx.doi.org/10.1227/01.NEU.0000350227.61132.A7] [PMID: 19687708]
[152]
Menon LG, Kelly K, Yang HW, Kim SK, Black PM, Carroll RS. Human bone marrow-derived mesenchymal stromal cells expressing S-TRAIL as a cellular delivery vehicle for human glioma therapy. Stem Cells 2009; 27(9): 2320-30.
[http://dx.doi.org/10.1002/stem.136] [PMID: 19544410]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy