Review Article

硫氧还蛋白相互作用蛋白(TXNIP):糖尿病干预的潜在靶点

卷 23, 期 7, 2022

发表于: 14 April, 2022

页: [761 - 767] 页: 7

弟呕挨: 10.2174/1389450123666220303092324

价格: $65

摘要

背景:糖尿病(DM)是一种常见的代谢紊乱,其特征是血糖持续升高。2型糖尿病的特点是胰岛素抵抗和β细胞功能障碍。硫氧还蛋白相互作用蛋白(TXNIP)是控制胰腺β-细胞产生和丢失的因素之一。 目的:近期研究表明,高糖可显著上调TXNIP的表达。TXNIP在β细胞中过表达不仅能诱导细胞凋亡,还能减少胰岛素的分泌。同时,TXNIP缺乏保护β细胞凋亡,导致胰岛素分泌增加。因此,寻找可以调节TXNIP表达和下游信号通路的小分子是至关重要的。因此,抑制TXNIP对糖尿病患者心血管系统及心脏、肾脏等组织均有有益作用。因此,糖尿病治疗必须针对TXNIP的小分子活性,抑制表达,促进内源性细胞数量和胰岛素的产生。 结论:本文综述了TXNIP的作用机制、调控机制及晶体结构。此外,我们强调了TXNIP信号网络如何促进糖尿病,并与抑制糖尿病发展的药物相互作用及其复合物。最后,对TXNIP靶向治疗的现状和前景进行了展望。

关键词: TXNIP、β细胞、DM、FOXO1、ChREBP、胰岛素。

« Previous
图形摘要

[1]
Kharroubi AT, Darwish HM. Diabetes mellitus: The epidemic of the century. World J Diabetes 2015; 6(6): 850-67.
[http://dx.doi.org/10.4239/wjd.v6.i6.850] [PMID: 26131326]
[2]
Roberto S, Crisafulli A. Consequences of type 1 and 2 diabetes mellitus on the cardiovascular regulation during exercise: A brief review. Curr Diabetes Rev 2017; 13(6): 560-5.
[http://dx.doi.org/10.2174/1573399812666160614123226] [PMID: 27306960]
[3]
Lotfy M, Adeghate J, Kalasz H, Singh J, Adeghate E. Chronic complications of diabetes mellitus: A mini review. Curr Diabetes Rev 2017; 13(1): 3-10.
[http://dx.doi.org/10.2174/1573399812666151016101622] [PMID: 26472574]
[4]
Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet 2014; 383(9911): 69-82.
[http://dx.doi.org/10.1016/S0140-6736(13)60591-7] [PMID: 23890997]
[5]
Sørgjerd EP. Type 1 diabetes-related autoantibodies in different forms of diabetes. Curr Diabetes Rev 2019; 15(3): 199-204.
[http://dx.doi.org/10.2174/1573399814666180730105351] [PMID: 30058495]
[6]
Olokoba AB, Obateru OA, Olokoba LB. Type 2 diabetes mellitus: A review of current trends. Oman Med J 2012; 27(4): 269-73.
[http://dx.doi.org/10.5001/omj.2012.68] [PMID: 23071876]
[7]
Berbudi A, Rahmadika N, Tjahjadi AI, Ruslami R. Type 2 diabetes and its impact on the immune system. Curr Diabetes Rev 2020; 16(5): 442-9.
[http://dx.doi.org/10.2174/1573399815666191024085838] [PMID: 31657690]
[8]
Elizabeth MM, Alarcon-Aguilar JF, Clara OC, Del Carmen M. Pancreatic -cells and type 2 diabetes development. Curr Diabetes Rev 2017; 13(2): 108-21.
[http://dx.doi.org/10.2174/1573399812666151020101222] [PMID: 28917077]
[9]
Kampmann U, Madsen LR, Skajaa GO, Iversen DS, Moeller N, Ovesen P. Gestational diabetes: A clinical update. World J Diabetes 2015; 6(8): 1065-72.
[http://dx.doi.org/10.4239/wjd.v6.i8.1065] [PMID: 26240703]
[10]
Davey RX. Gestational diabetes mellitus: A review from 2004. Curr Diabetes Rev 2005; 1(2): 203-13.
[http://dx.doi.org/10.2174/1573399054022776] [PMID: 18220596]
[11]
Shalev A. Minireview: Thioredoxin-interacting protein: Regulation and function in the pancreatic -cell. Mol Endocrinol 2014; 28(8): 1211-20.
[http://dx.doi.org/10.1210/me.2014-1095] [PMID: 24911120]
[12]
Chen KS, DeLuca HF. Isolation and characterization of a novel cDNA from HL-60 cells treated with 1,25-dihydroxyvitamin D-3. Biochim Biophys Acta 1994; 1219(1): 26-32.
[http://dx.doi.org/10.1016/0167-4781(94)90242-9] [PMID: 8086474]
[13]
Nishiyama A, Matsui M, Iwata S, et al. Identification of thioredoxin-binding protein-2/vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression. J Biol Chem 1999; 274(31): 21645-50.
[http://dx.doi.org/10.1074/jbc.274.31.21645] [PMID: 10419473]
[14]
Yamanaka H, Maehira F, Oshiro M, et al. A possible interaction of thioredoxin with VDUP1 in HeLa cells detected in a yeast two-hybrid system. Biochem Biophys Res Commun 2000; 271(3): 796-800.
[http://dx.doi.org/10.1006/bbrc.2000.2699] [PMID: 10814541]
[15]
Junn E, Han SH, Im JY, et al. Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function. J Immunol 2000; 164(12): 6287-95.
[http://dx.doi.org/10.4049/jimmunol.164.12.6287] [PMID: 10843682]
[16]
Nishiyama A, Masutani H, Nakamura H, Nishinaka Y, Yodoi J. Redox regulation by thioredoxin and thioredoxin-binding proteins. IUBMB Life 2001; 52(1-2): 29-33.
[http://dx.doi.org/10.1080/15216540252774739] [PMID: 11795589]
[17]
Patwari P, Higgins LJ, Chutkow WA, Yoshioka J, Lee RT. The interaction of thioredoxin with Txnip. Evidence for formation of a mixed disulfide by disulfide exchange. J Biol Chem 2006; 281(31): 21884-91.
[http://dx.doi.org/10.1074/jbc.M600427200] [PMID: 16766796]
[18]
Fould B, Lamamy V, Guenin SP, et al. Mutagenic analysis in a pure molecular system shows that thioredoxin-interacting protein residue Cys247 is necessary and sufficient for a mixed disulfide formation with thioredoxin. Protein Sci 2012; 21(9): 1323-33.
[19]
Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 2010; 11(2): 136-40.
[http://dx.doi.org/10.1038/ni.1831] [PMID: 20023662]
[20]
Nishinaka Y, Nishiyama A, Masutani H, et al. Loss of thioredoxin-binding protein-2/vitamin D3 up-regulated protein 1 in human T-cell leukemia virus type I-dependent T-cell transformation: Implications for adult T-cell leukemia leukemogenesis. Cancer Res 2004; 64(4): 1287-92.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-0908] [PMID: 14983878]
[21]
Oka S, Yoshihara E, Bizen-Abe A, et al. Thioredoxin binding protein-2/thioredoxin-interacting protein is a critical regulator of insulin secretion and peroxisome proliferator-activated receptor function. Endocrinology 2009; 150(3): 1225-34.
[http://dx.doi.org/10.1210/en.2008-0646] [PMID: 18974273]
[22]
Alhawiti NM, Al Mahri S, Aziz MA, Malik SS, Mohammad S. TXNIP in metabolic regulation: Physiological role and therapeutic outlook. Curr Drug Targets 2017; 18(9): 1095-103.
[http://dx.doi.org/10.2174/1389450118666170130145514] [PMID: 28137209]
[23]
Shakya A, Chaudary SK, Garabadu D, Bhat HR, Kakoti BB, Ghosh SK. A comprehensive review on preclinical diabetic models. Curr Diabetes Rev 2020; 16(2): 104-16.
[http://dx.doi.org/10.2174/1573399815666190510112035] [PMID: 31074371]
[24]
Gillespie KM. Type 1 diabetes: Pathogenesis and prevention. CMAJ 2006; 175(2): 165-70.
[http://dx.doi.org/10.1503/cmaj.060244] [PMID: 16847277]
[25]
Ozougwu J, Obimba K, Belonwu C, Unakalamba C. The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus. J Physiol Pathophysiol 2013; 4(4): 46-57.
[http://dx.doi.org/10.5897/JPAP2013.0001]
[26]
Basnet R, Khadka S, Basnet BB, Gupta R. Perspective on acetylcholinesterase: A potential target for Alzheimer’s disease intervention. Curr Enzym Inhib 2020; 16(3): 181-8.
[http://dx.doi.org/10.2174/1573408016999200801021329]
[27]
Li L, Ismael S, Nasoohi S, et al. Thioredoxin-Interacting Protein (TXNIP) associated NLRP3 inflammasome activation in human Alzheimer’s disease brain. J Alzheimers Dis 2019; 68(1): 255-65.
[http://dx.doi.org/10.3233/JAD-180814] [PMID: 30741672]
[28]
Nasoohi S, Parveen K, Ishrat T. Metabolic syndrome, brain insulin resistance, and Alzheimer’s disease: Thioredoxin Interacting Protein (TXNIP) and inflammasome as core amplifiers. J Alzheimers Dis 2018; 66(3): 857-85.
[http://dx.doi.org/10.3233/JAD-180735] [PMID: 30372683]
[29]
Zhang M, Hu G, Shao N, et al. Thioredoxin-interacting protein (TXNIP) as a target for Alzheimer’s disease: Flavonoids and phenols. Inflammopharmacology 2021; 29(5): 1317-29.
[http://dx.doi.org/10.1007/s10787-021-00861-4] [PMID: 34350508]
[30]
Xiao YD, Huang YY, Wang HX, et al. Thioredoxin-interacting protein mediates NLRP3 inflammasome activation involved in the susceptibility to ischemic acute kidney injury in diabetes. Oxidative Med Cell Longev 2016. 2016.
[http://dx.doi.org/10.1155/2016/2386068]
[31]
Yu J, Nagasu H, Murakami T, et al. Inflammasome activation leads to Caspase-1-dependent mitochondrial damage and block of mitophagy. Proc Natl Acad Sci 2014; 111(43): 15514-9.
[http://dx.doi.org/10.1073/pnas.1414859111] [PMID: 25313054]
[32]
Banerjee M, Saxena M. Interleukin-1 (IL-1) family of cytokines: Role in type 2 diabetes. Clin Chim Acta 2012; 413(15-16): 1163-70.
[http://dx.doi.org/10.1016/j.cca.2012.03.021] [PMID: 22521751]
[33]
Bolívar BE, Vogel TP, Bouchier-Hayes L. Inflammatory caspase regulation: Maintaining balance between inflammation and cell death in health and disease. FEBS J 2019; 286(14): 2628-44.
[http://dx.doi.org/10.1111/febs.14926] [PMID: 31090171]
[34]
Parikh H, Carlsson E, Chutkow WA, et al. TXNIP regulates peripheral glucose metabolism in humans. PLoS Med 2007; 4(5)e158
[http://dx.doi.org/10.1371/journal.pmed.0040158] [PMID: 17472435]
[35]
Chutkow WA, Patwari P, Yoshioka J, Lee RT. Thioredoxin-Interacting Protein (Txnip) is a critical regulator of hepatic glucose production. J Biol Chem 2008; 283(4): 2397-406.
[http://dx.doi.org/10.1074/jbc.M708169200] [PMID: 17998203]
[36]
Hong K, Xu G, Grayson TB, Shalev A. Cytokines regulate -cell thioredoxin-interacting protein (TXNIP) via distinct mechanisms and pathways. J Biol Chem 2016; 291(16): 8428-39.
[http://dx.doi.org/10.1074/jbc.M115.698365] [PMID: 26858253]
[37]
Minn AH, Hafele C, Shalev A. Thioredoxin-interacting protein is stimulated by glucose through a carbohydrate response element and induces -cell apoptosis. Endocrinology 2005; 146(5): 2397-405.
[http://dx.doi.org/10.1210/en.2004-1378] [PMID: 15705778]
[38]
Xu G, Chen J, Jing G, Shalev A. Thioredoxin-interacting protein regulates insulin transcription through microRNA-204. Nat Med 2013; 19(9): 1141-6.
[http://dx.doi.org/10.1038/nm.3287] [PMID: 23975026]
[39]
Saxena G, Chen J, Shalev A. Intracellular shuttling and mitochondrial function of thioredoxin-interacting protein. J Biol Chem 2010; 285(6): 3997-4005.
[http://dx.doi.org/10.1074/jbc.M109.034421] [PMID: 19959470]
[40]
Filios SR, Xu G, Chen J, Hong K, Jing G, Shalev A. MicroRNA-200 is induced by thioredoxin-interacting protein and regulates Zeb1 protein signaling and beta cell apoptosis. J Biol Chem 2014; 289(52): 36275-83.
[http://dx.doi.org/10.1074/jbc.M114.592360] [PMID: 25391656]
[41]
Jing G, Westwell-Roper C, Chen J, Xu G, Verchere CB, Shalev A. Thioredoxin-interacting protein promotes islet amyloid polypeptide expression through miR-124a and FoxA2. J Biol Chem 2014; 289(17): 11807-15.
[http://dx.doi.org/10.1074/jbc.M113.525022] [PMID: 24627476]
[42]
Westermark P, Andersson A, Westermark GT. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev 2011; 91(3): 795-826.
[http://dx.doi.org/10.1152/physrev.00042.2009] [PMID: 21742788]
[43]
Abedini A, Schmidt AM. Mechanisms of islet amyloidosis toxicity in type 2 diabetes. FEBS Lett 2013; 587(8): 1119-27.
[http://dx.doi.org/10.1016/j.febslet.2013.01.017] [PMID: 23337872]
[44]
Metukuri MR, Zhang P, Basantani MK, et al. ChREBP mediates glucose-stimulated pancreatic -cell proliferation. Diabetes 2012; 61(8): 2004-15.
[http://dx.doi.org/10.2337/db11-0802] [PMID: 22586588]
[45]
Poungvarin N, Lee JK, Yechoor VK, et al. Carbohydrate Response Element-Binding Protein (ChREBP) plays a pivotal role in beta cell glucotoxicity. Diabetologia 2012; 55(6): 1783-96.
[http://dx.doi.org/10.1007/s00125-012-2506-4] [PMID: 22382520]
[46]
Yu FX, Luo Y. Tandem ChoRE and CCAAT motifs and associated factors regulate Txnip expression in response to glucose or adenosine-containing molecules. PLoS One 2009; 4(12)e8397
[http://dx.doi.org/10.1371/journal.pone.0008397] [PMID: 20027290]
[47]
Jeong Y-S, Kim D, Lee YS, et al. Integrated expression profiling and genome-wide analysis of ChREBP targets reveals the dual role for ChREBP in glucose-regulated gene expression. PLoS One 2011; 6(7)e22544
[http://dx.doi.org/10.1371/journal.pone.0022544] [PMID: 21811631]
[48]
Filhoulaud G, Guilmeau S, Dentin R, Girard J, Postic C. Novel insights into ChREBP regulation and function. Trends Endocrinol Metab 2013; 24(5): 257-68.
[http://dx.doi.org/10.1016/j.tem.2013.01.003] [PMID: 23597489]
[49]
Davies MN, O’Callaghan BL, Towle HC. Glucose activates ChREBP by increasing its rate of nuclear entry and relieving repression of its transcriptional activity. J Biol Chem 2008; 283(35): 24029-38.
[http://dx.doi.org/10.1074/jbc.M801539200] [PMID: 18591247]
[50]
Kibbe C, Chen J, Xu G, Jing G, Shalev A. FOXO1 competes with Carbohydrate Response Element-Binding Protein (ChREBP) and inhibits thioredoxin-interacting protein (TXNIP) transcription in pancreatic beta cells. J Biol Chem 2013; 288(32): 23194-202.
[http://dx.doi.org/10.1074/jbc.M113.473082] [PMID: 23803610]
[51]
Kibbe C, Chen J, Xu G, Jing G, Shalev A. FOXO1 competes with chREBP and inhibits TXNIP transcription in pancreatic beta cells. J Biol Chem 2013; 288(32): 23194-02.
[52]
Hang Y, Stein R. MafA and MafB activity in pancreatic cells. Trends Endocrinol Metab 2011; 22(9): 364-73.
[http://dx.doi.org/10.1016/j.tem.2011.05.003] [PMID: 21719305]
[53]
Kim DH, Zhang T, Ringquist S, Dong HH. Targeting FoxO1 for hypertriglyceridemia. Curr Drug Targets 2011; 12(9): 1245-55.
[http://dx.doi.org/10.2174/138945011796150262] [PMID: 21443465]
[54]
Pandey A, Kumar GS, Kadakol A, Malek V, Gaikwad AB. FoxO1 inhibitors: The future medicine for metabolic disorders? Curr Diabetes Rev 2016; 12(3): 223-30.
[http://dx.doi.org/10.2174/1573399811666150804104858] [PMID: 26239835]
[55]
Kaneto H, Matsuoka TA, Katakami N, Matsuhisa M. Combination of MafA, PDX-1 and NeuroD is a useful tool to efficiently induce insulin-producing surrogate beta-cells. Curr Med Chem 2009; 16(24): 3144-51.
[http://dx.doi.org/10.2174/092986709788802980] [PMID: 19689288]
[56]
Kaneto H. Pancreatic -cell glucose toxicity in type 2 diabetes mellitus. Curr Diabetes Rev 2015; 11(1): 2-6.
[http://dx.doi.org/10.2174/1573399811666141216160217] [PMID: 25515340]
[57]
Hwang J, Suh HW, Jeon YH, et al. The structural basis for the negative regulation of thioredoxin by thioredoxin-interacting protein. Nat Commun 2014; 5(1): 2958.
[http://dx.doi.org/10.1038/ncomms3958] [PMID: 24389582]
[58]
Liu Y, Lau J, Li W, et al. Structural basis for the regulatory role of the PPxY motifs in the thioredoxin-interacting protein TXNIP. Biochem J 2016; 473(2): 179-87.
[http://dx.doi.org/10.1042/BJ20150830] [PMID: 26527736]
[59]
Protein Data Bank. Crystal Structure of the VAV2 SH2 domain in complex with TXNIP phosphorylated peptide. 2014. Available www.rcsb.org/structure/4ROJ
[60]
Protein Data Bank. Crystal Structure of ITCH WW3 domain in complex with TXNIP peptide. 2014. Available from: www.rcsb.org/structure/5DWS
[61]
Protein Data Bank. Crystal Structure of WW4 domain of ITCH in complex with TXNIP peptide. 2014. Available from: www.rcsb.org/structure/5DZD
[62]
Spindel ON, Burke RM, Yan C, Berk BC. Thioredoxin-interacting protein is a biomechanical regulator of Src activity: Key role in endothelial cell stress fiber formation. Circ Res 2014; 114(7): 1125-32.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.301315] [PMID: 24515523]
[63]
Ahn B, Soundarapandian MM, Sessions H, et al. MondoA coordinately regulates skeletal myocyte lipid homeostasis and insulin signaling. J Clin Invest 2016; 126(9): 3567-79.
[http://dx.doi.org/10.1172/JCI87382] [PMID: 27500491]
[64]
Krammer P, Gülow K, Sass S. Inhibitors of Thioredoxin- Interacting Protein (TXNIP) for therapy. Google Patent EP2657340A1, 2015.
[65]
Krammer P, Gülow K, Sass S. Inhibitors of Thioredoxin- Interacting Protein (TXNIP) for therapy. Google Patents WO2013159879A1 2013.
[66]
Thielen L, Chen J, Xu G, et al. Novel small molecule TXNIP inhibitor protects against diabetes. Am Diabetes Assoc 2018; 67: 87.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy