Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Targeting Ferroptosis Pathways: A Novel Strategy for Cancer Therapy

Author(s): Devangkumar Maru, Akhil Hothi, Chintan Bagariya and Anmol Kumar*

Volume 22, Issue 3, 2022

Published on: 25 March, 2022

Page: [234 - 244] Pages: 11

DOI: 10.2174/1568009622666220211122745

Price: $65

Abstract

Ferroptosis is an iron-dependent nonapoptotic kind of regulated cell death resulting from the destruction of redox balance in the cytosol. Unlike apoptosis, ferroptosis is caused by an increase in intracellular iron and lipid peroxides that causes significant damage to the membrane lipid bilayer and mitochondria leading to cell death. Increased iron level in the cell promotes ROS production. Ferroptosis inducer molecules increase ROS production and inhibit the antioxidant defence mechanism to facilitate ferroptosis in cancer cells. Inhibition of GPX4, redox-active iron availability, and lipid peroxidation are major contributors to ferroptosis. Ferroptosis is involved in many diseases like heart disease, neurodegenerative disease, and cancer. Ferroptosis induction recently emerged as an attractive strategy for cancer therapy. In this review, we discuss the regulatory mechanism of ferroptosis, its different hallmarks, including genetic and metabolic regulators and inducers that promote ferroptosis in the cancer cells. Finally, the latest progress and development in ferroptosis research in different cancers focusing on proposing a novel strategy in cancer therapy are discussed.

Keywords: Ferroptosis, cancer, redox imbalance, regulated cell death, hallmarks, inducer.

Graphical Abstract

[1]
Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: An overview. Cancers (Basel), 2014, 6(3), 1769-1792.
[http://dx.doi.org/10.3390/cancers6031769] [PMID: 25198391]
[2]
Alimbetov, D.; Askarova, S.; Umbayev, B.; Davis, T.; Kipling, D. Pharmacological targeting of cell cycle, apoptotic and cell adhesion signaling pathways implicated in chemoresistance of cancer cells. Int. J. Mol. Sci., 2018, 19(6), 1960.
[http://dx.doi.org/10.3390/ijms19061690] [PMID: 29882812]
[3]
Green, D.R.; Llambi, F. Cell death signaling. Cold Spring Harb. Perspect. Biol., 2015, 7(12), a006080.
[http://dx.doi.org/10.1101/cshperspect.a006080] [PMID: 26626938]
[4]
Pfeffer, C.M.; Singh, A.T.K. Apoptosis: A target for anticancer therapy. Int. J. Mol. Sci., 2018, 19(2), 448.
[5]
Han, Z.; Liang, J.; Li, Y.; He, J. Drugs and clinical approaches targeting the antiapoptotic protein: A review. BioMed Res. Int., 2019, 2019, 1212369.
[http://dx.doi.org/10.1155/2019/1212369] [PMID: 31662966]
[6]
Battaglia, A.M.; Chirillo, R.; Aversa, I.; Sacco, A.; Costanzo, F.; Biamonte, F. Ferroptosis and cancer: Mitochondria meet the “Iron Maiden” cell death. Cells, 2020, 9(6), 1505.
[http://dx.doi.org/10.3390/cells9061505] [PMID: 32575749]
[7]
Xie, Y.; Hou, W.; Song, X.; Yu, Y.; Huang, J.; Sun, X.; Kang, R.; Tang, D. Ferroptosis: Process and function. Cell Death Differ., 2016, 23(3), 369-379.
[http://dx.doi.org/10.1038/cdd.2015.158] [PMID: 26794443]
[8]
Zuo, S.; Yu, J.; Pan, H.; Lu, L. Novel insights on targeting ferroptosis in cancer therapy. Biomark. Res., 2020, 8, 50.
[http://dx.doi.org/10.1186/s40364-020-00229-w] [PMID: 33024562]
[9]
Lei, P.; Bai, T.; Sun, Y.; Sun, Y. Mechanisms of ferroptosis and relations with regulated cell death: A review. Front. Physiol., 2019, 10, 139.
[http://dx.doi.org/10.3389/fphys.2019.00139] [PMID: 30863316]
[10]
Conrad, M.; Kagan, V.E.; Bayir, H.; Pagnussat, G.C.; Head, B.; Traber, M.G.; Stockwell, B.R. Regulation of lipid peroxidation and ferroptosis in diverse species. Genes Dev., 2018, 32(9-10), 602-619.
[http://dx.doi.org/10.1101/gad.314674.118] [PMID: 29802123]
[11]
Aggarwal, V.; Tuli, H.S.; Varol, A.; Thakral, F.; Yerer, M.B.; Sak, K.; Varol, M.; Jain, A.; Khan, M.A.; Sethi, G. Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent advancements. Biomolecules, 2019, 9(11), 735.
[http://dx.doi.org/10.3390/biom9110735] [PMID: 31766246]
[12]
Stockwell, B.R.; Jiang, X.; Gu, W. Emerging mechanisms and disease relevance of ferroptosis. Trends Cell Biol., 2020, 30(6), 478-490.
[13]
Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev., 2014, 2014, 360438.
[http://dx.doi.org/10.1155/2014/360438] [PMID: 24999379]
[14]
Gaschler, M.M.; Stockwell, B.R. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun., 2017, 482(3), 419-425.
[http://dx.doi.org/10.1016/j.bbrc.2016.10.086] [PMID: 28212725]
[15]
Li, D.; Li, Y. The interaction between ferroptosis and lipid metabolism in cancer. Signal Transduct. Target. Ther., 2020, 5(1), 1-10.
[http://dx.doi.org/10.1038/s41392-019-0089-y] [PMID: 32296011]
[16]
Yang, W.S.; Kim, K.J.; Gaschler, M.M.; Patel, M.; Shchepinov, M.S.; Stockwell, B.R. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc. Natl. Acad. Sci. USA, 2016, 113(34), E4966-E4975.
[http://dx.doi.org/10.1073/pnas.1603244113] [PMID: 27506793]
[17]
Maiorino, M.; Conrad, M.; Ursini, F. GPx4, lipid peroxidation, and cell death: Discoveries, rediscoveries, and open issues. Antioxid. Redox Signal., 2018, 29(1), 61-74.
[http://dx.doi.org/10.1089/ars.2017.7115] [PMID: 28462584]
[18]
Koppula, P.; Zhuang, L.; Gan, B. Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell, 2021, 12(8), 599-620.
[http://dx.doi.org/10.1007/s13238-020-00789-5] [PMID: 33000412]
[19]
Kerins, M.J.; Ooi, A. The roles of NRF2 in modulating cellular iron homeostasis. Antioxid. Redox Signal., 2018, 29(17), 1756-1773.
[http://dx.doi.org/10.1089/ars.2017.7176] [PMID: 28793787]
[20]
Sun, X.; Ou, Z.; Chen, R.; Niu, X.; Chen, D.; Kang, R.; Tang, D. Activation of the P62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology, 2016, 63(1), 173-184.
[http://dx.doi.org/10.1002/hep.28251]
[21]
Li, Z.; Chen, L.; Chen, C.; Zhou, Y.; Hu, D.; Yang, J.; Chen, Y.; Zhuo, W.; Mao, M.; Zhang, X.; Xu, L.; Wang, L.; Zhou, J. Targeting ferroptosis in breast cancer. Biomark. Res., 2020, 8(1), 58.
[http://dx.doi.org/10.1186/s40364-020-00230-3] [PMID: 33292585]
[22]
Liu, Q.; Wang, K. The induction of ferroptosis by impairing STAT3/Nrf2/GPx4 signaling enhances the sensitivity of osteosarcoma cells to cisplatin. Cell Biol. Int., 2019, 43(11), 1245-1256.
[http://dx.doi.org/10.1002/cbin.11121] [PMID: 30811078]
[23]
Kang, R.; Tang, D. Heat shock proteins: Endogenous modulators of ferroptosis. In: Ferroptosis in Health and Disease; Tang, D., Ed.; Springer: Cham, 2019; pp. 61-81.
[24]
Bogdan, A.R.; Miyazawa, M.; Hashimoto, K.; Tsuji, Y. Regulators of Iron homeostasis: New players in metabolism, cell death, and disease. Trends Biochem. Sci., 2016, 41(3), 274-286.
[http://dx.doi.org/10.1016/j.tibs.2015.11.012] [PMID: 26725301]
[25]
Yi, J.; Zhu, J.; Wu, J.; Thompson, C.B.; Jiang, X. Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc. Natl. Acad. Sci. USA, 2020, 117(49), 31189-31197.
[http://dx.doi.org/10.1073/pnas.2017152117] [PMID: 33229547]
[26]
Tang, D.; Chen, X.; Kang, R.; Kroemer, G. Ferroptosis: molecular mechanisms and health implications. Cell Res., 2021, 31(2), 107-125.
[http://dx.doi.org/10.1038/s41422-020-00441-1] [PMID: 33268902]
[27]
Lee, H.; Zandkarimi, F.; Zhang, Y.; Meena, J.K.; Kim, J.; Zhuang, L.; Tyagi, S.; Ma, L.; Westbrook, T.F.; Steinberg, G.R.; Nakada, D.; Stockwell, B.R.; Gan, B. Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat. Cell Biol., 2020, 22(2), 225-234.
[http://dx.doi.org/10.1038/s41556-020-0461-8] [PMID: 32029897]
[28]
Han, C.; Liu, Y.; Dai, R.; Ismail, N.; Su, W.; Li, B. Ferroptosis and its potential role in human diseases. Front. Pharmacol., 2020, 11, 239.
[http://dx.doi.org/10.3389/fphar.2020.00239] [PMID: 32256352]
[29]
Li, J.; Cao, F.; Yin, H. liang; Huang, Z. jian; Lin, Z. tao; Mao, N.; Sun, B.; Wang, G. Ferroptosis: Past, present and future. Cell Death Dis., 2020, 11(2), 1-13.
[30]
Yang, W.S. SriRamaratnam, R.; Welsch, M.E.; Shimada, K.; Skouta, R.; Viswanathan, V.S.; Cheah, J.H.; Clemons, P.A.; Shamji, A.F.; Clish, C.B.; Brown, L.M.; Girotti, A.W.; Cornish, V.W.; Schreiber, S.L.; Stockwell, B.R. Regulation of ferroptotic cancer cell death by GPX4. Cell, 2014, 156(1-2), 317-331.
[http://dx.doi.org/10.1016/j.cell.2013.12.010] [PMID: 24439385]
[31]
Wang, N.; Zeng, G.Z.; Yin, J.L.; Bian, Z.X. Artesunate activates the ATF4-CHOP-CHAC1 pathway and affects ferroptosis in Burkitt’s lymphoma. Biochem. Biophys. Res. Commun., 2019, 519(3), 533-539.
[http://dx.doi.org/10.1016/j.bbrc.2019.09.023] [PMID: 31537387]
[32]
Wu, J.; Minikes, A.M.; Gao, M.; Bian, H.; Li, Y.; Stockwell, B.R.; Chen, Z.N.; Jiang, X. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling. Nature, 2019, 572(7769), 402-406.
[http://dx.doi.org/10.1038/s41586-019-1426-6] [PMID: 31341276]
[33]
Sun, T.; Chi, J.T. Regulation of ferroptosis in cancer cells by YAP/TAZ and Hippo pathways: The therapeutic implications. Genes Dis., 2020, 8(3), 241-249.
[http://dx.doi.org/10.1016/j.gendis.2020.05.004] [PMID: 33997171]
[34]
Doll, S.; Freitas, F.P.P.; Shah, R.; Aldrovandi, M.; da Silva, M.C.C.; Ingold, I.; Grocin, A.G.G.; Xavier da Silva, T.N.N.; Panzilius, E.; Scheel, C.H.H.; Mourão, A.; Buday, K.; Sato, M.; Wanninger, J.; Vignane, T.; Mohana, V.; Rehberg, M.; Flatley, A.; Schepers, A.; Kurz, A.; White, D.; Sauer, M.; Sattler, M.; Tate, E.W.W.; Schmitz, W.; Schulze, A.; O’Donnell, V.; Proneth, B.; Popowicz, G.M.M.; Pratt, D.A.A.; Angeli, J.P.F.P.F.; Conrad, M. FSP1 is a glutathione-independent ferroptosis suppressor. Nature, 2019, 575(7784), 693-698.
[35]
Bersuker, K.; Hendricks, J.M.; Li, Z.; Magtanong, L.; Ford, B.; Tang, P.H.; Roberts, M.A.; Tong, B.; Maimone, T.J.; Zoncu, R.; Bassik, M.C.; Nomura, D.K.; Dixon, S.J.; Olzmann, J.A. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature, 2019, 575(7784), 688-692.
[http://dx.doi.org/10.1038/s41586-019-1705-2] [PMID: 31634900]
[36]
Stockwell, B.R.; Friedmann Angeli, J.P.; Bayir, H.; Bush, A.I.; Conrad, M.; Dixon, S.J.; Fulda, S.; Gascón, S.; Hatzios, S.K.; Kagan, V.E.; Noel, K.; Jiang, X.; Linkermann, A.; Murphy, M.E.; Overholtzer, M.; Oyagi, A.; Pagnussat, G.C.; Park, J.; Ran, Q.; Rosenfeld, C.S.; Salnikow, K.; Tang, D.; Torti, F.M.; Torti, S.V.; Toyokuni, S.; Woerpel, K.A.; Zhang, D.D.; Pagnussat, G.C.; Park, J.; Ran, Q.; Rosenfeld, C.S.; Salnikow, K.; Tang, D.; Torti, F.M.; Torti, S.V.; Toyokuni, S.; Woerpel, K.A.; Zhang, D.D. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell, 2017, 171(2), 273-285.
[http://dx.doi.org/10.1016/j.cell.2017.09.021] [PMID: 28985560]
[37]
Chen, X.; Yu, C.; Kang, R.; Tang, D. Iron metabolism in ferroptosis. Front. Cell Dev. Biol., 2020, 8, 590226.
[http://dx.doi.org/10.3389/fcell.2020.590226] [PMID: 33117818]
[38]
Wang, Y.; Liu, Y.; Liu, J.; Kang, R.; Tang, D. NEDD4L-mediated LTF protein degradation limits ferroptosis. Biochem. Biophys. Res. Commun., 2020, 531(4), 581-587.
[http://dx.doi.org/10.1016/j.bbrc.2020.07.032] [PMID: 32811647]
[39]
Hou, W.; Xie, Y.; Song, X.; Sun, X.; Lotze, M.T.; Zeh, H.J., III; Kang, R.; Tang, D. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy, 2016, 12(8), 1425-1428.
[http://dx.doi.org/10.1080/15548627.2016.1187366] [PMID: 27245739]
[40]
Sun, X.; Ou, Z.; Xie, M.; Kang, R.; Fan, Y.; Niu, X.; Wang, H.; Cao, L.; Tang, D. HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene, 2015, 34(45), 5617-5625.
[http://dx.doi.org/10.1038/onc.2015.32] [PMID: 25728673]
[41]
Kraft, V.A.N.; Bezjian, C.T.; Pfeiffer, S.; Ringelstetter, L.; Müller, C.; Zandkarimi, F.; Merl-Pham, J.; Bao, X.; Anastasov, N.; Kössl, J.; Brandner, S.; Daniels, J.D.; Schmitt-Kopplin, P.; Hauck, S.M.; Stockwell, B.R.; Hadian, K.; Schick, J.A. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent. Sci., 2020, 6(1), 41-53.
[http://dx.doi.org/10.1021/acscentsci.9b01063] [PMID: 31989025]
[42]
Yang, W.S.; Stockwell, B.R. Ferroptosis: Death by lipid peroxidation. Trends Cell Biol., 2016, 26(3), 165-176.
[http://dx.doi.org/10.1016/j.tcb.2015.10.014] [PMID: 26653790]
[43]
Yuan, H.; Li, X.; Zhang, X.; Kang, R.; Tang, D. Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem. Biophys. Res. Commun., 2016, 478(3), 1338-1343.
[http://dx.doi.org/10.1016/j.bbrc.2016.08.124] [PMID: 27565726]
[44]
Kagan, V.E.; Mao, G.; Qu, F.; Angeli, J.P.F.; Doll, S.; Croix, C.S.; Dar, H.H.; Liu, B.; Tyurin, V.A.; Ritov, V.B.; Kapralov, A.A.; Amoscato, A.A.; Jiang, J.; Anthonymuthu, T.; Mohammadyani, D.; Yang, Q.; Proneth, B.; Klein-Seetharaman, J.; Watkins, S.; Bahar, I.; Greenberger, J.; Mallampalli, R.K.; Stockwell, B.R.; Tyurina, Y.Y.; Conrad, M.; Bayır, H. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol., 2017, 13(1), 81-90.
[http://dx.doi.org/10.1038/nchembio.2238] [PMID: 27842066]
[45]
Wu, Z.; Geng, Y.; Lu, X.; Shi, Y.; Wu, G.; Zhang, M.; Shan, B.; Pan, H.; Yuan, J. Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc. Natl. Acad. Sci. USA, 2019, 116(8), 2996-3005.
[http://dx.doi.org/10.1073/pnas.1819728116] [PMID: 30718432]
[46]
Shimada, K.; Skouta, R.; Kaplan, A.; Yang, W.S.; Hayano, M.; Dixon, S.J.; Brown, L.M.; Valenzuela, C.A.; Wolpaw, A.J.; Stockwell, B.R. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat. Chem. Biol., 2016, 12(7), 497-503.
[http://dx.doi.org/10.1038/nchembio.2079] [PMID: 27159577]
[47]
Yang, Y.; Luo, M.; Zhang, K.; Zhang, J.; Gao, T.; Connell, D.O.; Yao, F.; Mu, C.; Cai, B.; Shang, Y.; Chen, W. Nedd4 ubiquitylates VDAC2/3 to suppress erastin-induced ferroptosis in melanoma. Nat. Commun., 2020, 11(1), 433.
[http://dx.doi.org/10.1038/s41467-020-14324-x] [PMID: 31974380]
[48]
Chen, X.; Comish, P.B.; Tang, D.; Kang, R. Characteristics and biomarkers of ferroptosis. Front. Cell Dev. Biol., 2021, 9, 637162.
[http://dx.doi.org/10.3389/fcell.2021.637162] [PMID: 33553189]
[49]
Wen, Q.; Liu, J.; Kang, R.; Zhou, B.; Tang, D. The release and activity of HMGB1 in ferroptosis. 2019, 510(2), 278-283.
[http://dx.doi.org/10.1016/j.bbrc.2019.01.090]
[50]
Dai, E.; Han, L.; Liu, J.; Xie, Y.; Kroemer, G.; Klionsky, D.J.; Zeh, H.J.; Kang, R.; Wang, J.; Tang, D. Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy, 2020, 16(11), 2069-2083.
[http://dx.doi.org/10.1080/15548627.2020.1714209] [PMID: 31920150]
[51]
Lim, J.K.M.; Delaidelli, A.; Minaker, S.W.; Zhang, H.F.; Colovic, M.; Yang, H.; Negri, G.L.; von Karstedt, S.; Lockwood, W.W.; Schaffer, P.; Leprivier, G.; Sorensen, P.H. Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox balance. Proc. Natl. Acad. Sci. USA, 2019, 116(19), 9433-9442.
[http://dx.doi.org/10.1073/pnas.1821323116] [PMID: 31000598]
[52]
Hayano, M.; Yang, W.S.; Corn, C.K.; Pagano, N.C.; Stockwell, B.R. Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation. Cell Death Differ., 2016, 23(2), 270-278.
[http://dx.doi.org/10.1038/cdd.2015.93] [PMID: 26184909]
[53]
Wang, W.; Green, M.; Choi, J.E.; Gijón, M.; Kennedy, P.D.; Johnson, J.K.; Liao, P.; Lang, X.; Kryczek, I.; Sell, A.; Xia, H.; Zhou, J.; Li, G.; Li, J.; Li, W.; Wei, S.; Vatan, L.; Zhang, H.; Szeliga, W.; Gu, W.; Liu, R.; Lawrence, T.S.; Lamb, C.; Tanno, Y.; Cieslik, M.; Stone, E.; Georgiou, G.; Chan, T.A.; Chinnaiyan, A.; Zou, W. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature, 2019, 569(7755), 270-274.
[http://dx.doi.org/10.1038/s41586-019-1170-y] [PMID: 31043744]
[54]
Lin, X.; Ping, J.; Wen, Y.; Wu, Y. The mechanism of ferroptosis and applications in tumor treatment. Front. Pharmacol., 2020, 11, 1061.
[http://dx.doi.org/10.3389/fphar.2020.01061] [PMID: 32774303]
[55]
Gaschler, M.M.; Andia, A.A.; Liu, H.; Csuka, J.M.; Hurlocker, B.; Vaiana, C.A.; Heindel, D.W.; Zuckerman, D.S.; Bos, P.H.; Reznik, E.; Ye, L.F.; Tyurina, Y.Y.; Lin, A.J.; Shchepinov, M.S.; Chan, A.Y.; Peguero-Pereira, E.; Fomich, M.A.; Daniels, J.D.; Bekish, A.V.; Shmanai, V.V.; Kagan, V.E.; Mahal, L.K.; Woerpel, K.A.; Stockwell, B.R. FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat. Chem. Biol., 2018, 14(5), 507-515.
[http://dx.doi.org/10.1038/s41589-018-0031-6] [PMID: 29610484]
[56]
Hasegawa, M.; Takahashi, H.; Rajabi, H.; Alam, M.; Suzuki, Y.; Yin, L.; Tagde, A.; Maeda, T.; Hiraki, M.; Sukhatme, V.P.; Kufe, D. Functional interactions of the cystine/glutamate antiporter, CD44v and MUC1-C oncoprotein in triple-negative breast cancer cells. Oncotarget, 2016, 7(11), 11756-11769.
[http://dx.doi.org/10.18632/oncotarget.7598] [PMID: 26930718]
[57]
Yu, H.; Yang, C.; Jian, L.; Guo, S.; Chen, R.; Li, K.; Qu, F.; Tao, K.; Fu, Y.; Luo, F.; Liu, S. Sulfasalazine induced ferroptosis in breast cancer cells is reduced by the inhibitory effect of estrogen receptor on the transferrin receptor. Oncol. Rep., 2019, 42(2), 826-838.
[http://dx.doi.org/10.3892/or.2019.7189] [PMID: 31173262]
[58]
Ma, S.; Henson, E.S.; Chen, Y.; Gibson, S.B. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis., 2016, 7(7), e2307.
[http://dx.doi.org/10.1038/cddis.2016.208] [PMID: 27441659]
[59]
Iida, Y.; Okamoto-Katsuyama, M.; Maruoka, S.; Mizumura, K.; Shimizu, T.; Shikano, S.; Hikichi, M.; Takahashi, M.; Tsuya, K.; Okamoto, S.; Inoue, T.; Nakanishi, Y.; Takahashi, N.; Masuda, S.; Hashimoto, S.; Gon, Y. Effective ferroptotic small-cell lung cancer cell death from SLC7A11 inhibition by sulforaphane. Oncol. Lett., 2021, 21(1), 71.
[http://dx.doi.org/10.3892/ol.2020.12332] [PMID: 33365082]
[60]
Alvarez, S.W.; Sviderskiy, V.O.; Terzi, E.M.; Papagiannakopoulos, T.; Moreira, A.L.; Adams, S.; Sabatini, D.M.; Birsoy, K.; Possemato, R. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature, 2017, 551(7682), 639-643.
[http://dx.doi.org/10.1038/nature24637] [PMID: 29168506]
[61]
Xia, Y.; Liu, S.; Li, C.; Ai, Z.; Shen, W.; Ren, W.; Yang, X. Discovery of a novel ferroptosis inducer-talaroconvolutin A-killing colorectal cancer cells in vitro and in vivo. Cell Death Dis., 2020, 11(11), 988.
[http://dx.doi.org/10.1038/s41419-020-03194-2] [PMID: 33203867]
[62]
Wei, G.; Sun, J.; Hou, Z.; Luan, W.; Wang, S.; Cui, S.; Cheng, M.; Liu, Y. Novel antitumor compound optimized from natural saponin Albiziabioside A induced caspase-dependent apoptosis and ferroptosis as a p53 activator through the mitochondrial pathway. Eur. J. Med. Chem., 2018, 157, 759-772.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.036] [PMID: 30142612]
[63]
Eling, N.; Reuter, L.; Hazin, J.; Hamacher-Brady, A.; Brady, N.R. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience, 2015, 2(5), 517-532.
[http://dx.doi.org/10.18632/oncoscience.160] [PMID: 26097885]
[64]
Harshbarger, W.; Gondi, S.; Ficarro, S.B.; Hunter, J.; Udayakumar, D.; Gurbani, D.; Singer, W.D.; Liu, Y.; Li, L.; Marto, J.A.; Westover, K.D. Structural and biochemical analyses reveal the mechanism of glutathione S-transferase Pi 1 inhibition by the anti-cancer compound piperlongumine. J. Biol. Chem., 2017, 292(1), 112-120.
[http://dx.doi.org/10.1074/jbc.M116.750299] [PMID: 27872191]
[65]
Lippmann, J.; Petri, K.; Fulda, S.; Liese, J. Redox modulation and induction of ferroptosis as a new therapeutic strategy in hepatocellular carcinoma. Transl. Oncol., 2020, 13(8), 100785.
[http://dx.doi.org/10.1016/j.tranon.2020.100785] [PMID: 32416440]
[66]
Hong, T.; Lei, G.; Chen, X.; Li, H.; Zhang, X.; Wu, N.; Zhao, Y.; Zhang, Y.; Wang, J. PARP inhibition promotes ferroptosis via repressing SLC7A11 and synergizes with ferroptosis inducers in BRCA-proficient ovarian cancer. Redox Biol., 2021, 42, 101928.
[http://dx.doi.org/10.1016/j.redox.2021.101928] [PMID: 33722571]
[67]
Hao, S.; Yu, J.; He, W.; Huang, Q.; Zhao, Y.; Liang, B.; Zhang, S.; Wen, Z.; Dong, S.; Rao, J.; Liao, W.; Shi, M. Cysteine dioxygenase 1 mediates erastin-induced ferroptosis in human gastric cancer cells. Neoplasia, 2017, 19(12), 1022-1032.
[http://dx.doi.org/10.1016/j.neo.2017.10.005] [PMID: 29144989]
[68]
Yamaguchi, Y.; Kasukabe, T.; Kumakura, S. Piperlongumine rapidly induces the death of human pancreatic cancer cells mainly through the induction of ferroptosis. Int. J. Oncol., 2018, 52(3), 1011-1022.
[http://dx.doi.org/10.3892/ijo.2018.4259] [PMID: 29393418]
[69]
Louandre, C.; Marcq, I.; Bouhlal, H.; Lachaier, E.; Godin, C.; Saidak, Z.; François, C.; Chatelain, D.; Debuysscher, V.; Barbare, J.C.; Chauffert, B.; Galmiche, A. The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer Lett., 2015, 356(2 Pt B), 971-977.
[http://dx.doi.org/10.1016/j.canlet.2014.11.014] [PMID: 25444922]
[70]
Ou, W.; Mulik, R.S.; Anwar, A.; McDonald, J.G.; He, X.; Corbin, I.R. Low-density lipoprotein docosahexaenoic acid nanoparticles induce ferroptotic cell death in hepatocellular carcinoma. Free Radic. Biol. Med., 2017, 112, 597-607.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.09.002] [PMID: 28893626]
[71]
Guo, J.; Xu, B.; Han, Q.; Zhou, H.; Xia, Y.; Gong, C.; Dai, X.; Li, Z.; Wu, G. Ferroptosis: A novel anti-tumor action for cisplatin. Cancer Res. Treat., 2018, 50(2), 445-460.
[http://dx.doi.org/10.4143/crt.2016.572] [PMID: 28494534]
[72]
Ma, S.; Dielschneider, R.F.; Henson, E.S.; Xiao, W.; Choquette, T.R.; Blankstein, A.R.; Chen, Y.; Gibson, S.B. Ferroptosis and autophagy induced cell death occur independently after siramesine and lapatinib treatment in breast cancer cells. PLoS One, 2017, 12(8), e0182921.
[http://dx.doi.org/10.1371/journal.pone.0182921] [PMID: 28827805]
[73]
Greenshields, A.L.; Shepherd, T.G.; Hoskin, D.W. Contribution of reactive oxygen species to ovarian cancer cell growth arrest and killing by the anti-malarial drug artesunate. Mol. Carcinog., 2017, 56(1), 75-93.
[http://dx.doi.org/10.1002/mc.22474] [PMID: 26878598]
[74]
Belavgeni, A.; Bornstein, S.R.; von Mässenhausen, A.; Tonnus, W.; Stumpf, J.; Meyer, C.; Othmar, E.; Latk, M.; Kanczkowski, W.; Kroiss, M.; Hantel, C.; Hugo, C.; Fassnacht, M.; Ziegler, C.G.; Schally, A.V.; Krone, N.P.; Linkermann, A. Exquisite sensitivity of adrenocortical carcinomas to induction of ferroptosis. Proc. Natl. Acad. Sci. USA, 2019, 116(44), 22269-22274.
[http://dx.doi.org/10.1073/pnas.1912700116] [PMID: 31611400]
[75]
Miess, H.; Dankworth, B.; Gouw, A.M.; Rosenfeldt, M.; Schmitz, W.; Jiang, M.; Saunders, B.; Howell, M.; Downward, J.; Felsher, D.W.; Peck, B.; Schulze, A. The glutathione redox system is essential to prevent ferroptosis caused by impaired lipid metabolism in clear cell renal cell carcinoma. Oncogene, 2018, 37(40), 5435-5450.
[http://dx.doi.org/10.1038/s41388-018-0315-z] [PMID: 29872221]
[76]
Kim, S.E.; Zhang, L.; Ma, K.; Riegman, M.; Chen, F.; Ingold, I.; Conrad, M.; Turker, M.Z.; Gao, M.; Jiang, X.; Monette, S.; Pauliah, M.; Gonen, M.; Zanzonico, P.; Quinn, T.; Wiesner, U.; Bradbury, M.S.; Overholtzer, M. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat. Nanotechnol., 2016, 11(11), 977-985.
[http://dx.doi.org/10.1038/nnano.2016.164] [PMID: 27668796]
[77]
Roh, J.L.; Kim, E.H.; Jang, H.; Shin, D. Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol., 2017, 11, 254-262.
[http://dx.doi.org/10.1016/j.redox.2016.12.010] [PMID: 28012440]
[78]
Fanzani, A.; Poli, M. Iron, oxidative damage and ferroptosis in Rhabdomyosarcoma. Int. J. Mol. Sci., 2017, 18(8), 1718.
[http://dx.doi.org/10.3390/ijms18081718] [PMID: 28783123]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy