Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Anti-cancer Effects of 5-Aminoimidazole-4-Carboxamide-1-β-D-Ribofuranoside (AICAR) on Triple-negative Breast Cancer (TNBC) Cells: Mitochondrial Modulation as an Underlying Mechanism

Author(s): Versha Tripathi*, Pooja Jaiswal, Anshul Assaiya, Janesh Kumar and Hamendra Singh Parmar*

Volume 22, Issue 3, 2022

Published on: 17 March, 2022

Page: [245 - 256] Pages: 12

DOI: 10.2174/1568009622666220207101212

Price: $65

Abstract

Background: Triple-negative breast cancer (TNBC) is known for Warburg effect and defects in the mitochondria. AMP-dependent kinase (AMPK) activates the downstream transcription factors PGC-1α, PGC-1β, or FOXO1, which participate in mitochondrial biogenesis. 5- aminoimidazole-4-carboxamide riboside (AICAR) is an analog of adenosine monophosphate and is a direct activator of AMPK.

Objectives: In the present study, we have made an attempt to understand the influence of AICAR on TNBC cells, MDA-MB-231, and the underlying changes in mitochondrial biogenesis, if any.

Methods: We investigated AICAR induced changes in cell viability, apoptosis, migratory potential, and changes in the sensitivity of doxorubicin.

Results: In response to the treatment of MDA-MB-231 breast cancer cells with 750 μM of AICAR for 72 hours, followed by 48 hours in fresh media without AICAR, we observed a decrease in viability via MTT assay, reduction in cell numbers along with the apoptotic appearance, increased cell death by ELISA, decreased lactate in conditioned medium and decrease in migration by scratch and transwell migration assays. These changes in the cancer phenotype were accompanied by an increase in mitochondrial biogenesis, as observed by increased mitochondrial DNA to nuclear DNA ratio, a decrease in lactic acid concentration, an increase in MitoTracker green and red staining, and increased expression of transcription factors PGC-1α, NRF-1, NRF-2, and TFAM, contributing to mitochondrial biogenesis. Pre-treatment of cells with AICAR for 72 hours followed by 48 hours treatment with 1 μM doxorubicin showed an increased sensitivity to doxorubicin as assessed by the MTT assay.

Conclusion: Our results show that AICAR exerts beneficial effects on TNBC cells, possibly via switching off the Warburg effect and switching on the anti-Warburg effect through mitochondrial modulation.

Keywords: AICAR, apoptosis, migration, viability, chemo-sensitivity, mitochondrial modulation.

Graphical Abstract

[1]
Zajkowicz, A.; Rusin, M. The activation of the p53 pathway by the AMP mimetic AICAR is reduced by inhibitors of the ATM or mTOR kinases. Mech. Ageing Dev., 2011, 132(11-12), 543-551.
[http://dx.doi.org/10.1016/j.mad.2011.09.002] [PMID: 21945951]
[2]
Steinberg, G.R.; Jørgensen, S.B. The AMP-activated protein kinase: Role in regulation of skeletal muscle metabolism and insulin sensitivity. Mini Rev. Med. Chem., 2007, 7(5), 519-526.
[http://dx.doi.org/10.2174/138955707780619662] [PMID: 17504187]
[3]
Fodor, T.; Szántó, M.; Abdul-Rahman, O.; Nagy, L.; Dér, Á.; Kiss, B.; Bai, P. Combined treatment of MCF-7 cells with AICAR and methotrexate, arrests cell cycle and reverses Warburg metabolism through AMP-Activated Protein Kinase (AMPK) and FOXO1. PLoS One, 2016, 11(2), e0150232.
[http://dx.doi.org/10.1371/journal.pone.0150232] [PMID: 26919657]
[4]
Su, C.C.; Hsieh, K.L.; Liu, P.L.; Yeh, H.C.; Huang, S.P.; Fang, S.H.; Cheng, W.C.; Huang, K.H.; Chiu, F.Y.; Lin, I.L.; Huang, M.Y.; Li, C.Y. AICAR induces apoptosis and inhibits migration and invasion in prostate cancer cells through an AMPK/mTOR-dependent pathway. Int. J. Mol. Sci., 2019, 20(7), 1647.
[http://dx.doi.org/10.3390/ijms20071647] [PMID: 30987073]
[5]
López, J.M.; Santidrián, A.F.; Campàs, C.; Gil, J. 5-Aminoimidazole-4-carboxamide riboside induces apoptosis in Jurkat cells, but the AMP-activated protein kinase is not involved. Biochem. J., 2003, 370(Pt 3), 1027-1032.
[http://dx.doi.org/10.1042/bj20021053] [PMID: 12452797]
[6]
Jacobs, R.L.; Lingrell, S.; Dyck, J.R.; Vance, D.E. Inhibition of hepatic phosphatidylcholine synthesis by 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside is independent of AMP-activated protein kinase activation. J. Biol. Chem., 2007, 282(7), 4516-4523.
[7]
Fogarty, S.; Hardie, D.G. Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochim. Biophys. Acta, 2010, 1804(3), 581-591.
[8]
Hardie, D.G. Molecular pathways: Is AMPK a friend or a foe in cancer? Clin. Cancer Res., 2015, 21(17), 3836-3840.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3300] [PMID: 26152739]
[9]
Jose, C.; Hébert-Chatelain, E.; Bellance, N.; Larendra, A.; Su, M.; Nouette-Gaulain, K.; Rossignol, R. AICAR inhibits cancer cell growth and triggers cell-type distinct effects on OXPHOS biogenesis, oxidative stress and Akt activation. Biochim. Biophys. Acta, 2011, 1807(6), 707-718.
[http://dx.doi.org/10.1016/j.bbabio.2010.12.002] [PMID: 21692240]
[10]
Kishton, R.J.; Barnes, C.E.; Nichols, A.G.; Cohen, S.; Gerriets, V.A.; Siska, P.J.; Macintyre, A.N.; Goraksha-Hicks, P.; de Cubas, A.A.; Liu, T.; Warmoes, M.O.; Abel, E.D.; Yeoh, A.E.; Gershon, T.R.; Rathmell, W.K.; Richards, K.L.; Locasale, J.W.; Rathmell, J.C.; Macintyre, A.N.; Goraksha-Hicks, P.; de Cubas, A.A.; Liu, T.; Warmoes, M.O. AMPK is essential to balance glycolysis and mitochondrial metabolism to control T-ALL cell stress and survival. Cell Metab., 2016, 23(4), 649-662.
[http://dx.doi.org/10.1016/j.cmet.2016.03.008] [PMID: 27076078]
[11]
Cheng, X.; Kim, J.Y.; Ghafoory, S.; Duvaci, T.; Rafiee, R.; Theobald, J.; Alborzinia, H.; Holenya, P.; Fredebohm, J.; Merz, K.H.; Mehrabi, A.; Hafezi, M.; Saffari, A.; Eisenbrand, G.; Hoheisel, J.D.; Wölfl, S. Methylisoindigo preferentially kills cancer stem cells by interfering cell metabolism via inhibition of LKB1 and activation of AMPK in PDACs. Mol. Oncol., 2016, 10(6), 806-824.
[http://dx.doi.org/10.1016/j.molonc.2016.01.008] [PMID: 26887594]
[12]
Park, S.Y.; Lee, Y.K.; Kim, H.J.; Park, O.J.; Kim, Y.M. AMPK interacts with β-catenin in the regulation of hepatocellular carcinoma cell proliferation and survival with selenium treatment. Oncol. Rep., 2016, 35(3), 1566-1572.
[http://dx.doi.org/10.3892/or.2015.4519] [PMID: 26707164]
[13]
Choudhury, Y.; Yang, Z.; Ahmad, I.; Nixon, C.; Salt, I.P.; Leung, H.Y. AMP-activated protein kinase (AMPK) as a potential therapeutic target independent of PI3K/Akt signaling in prostate cancer. Oncoscience, 2014, 1(6), 446-456.
[http://dx.doi.org/10.18632/oncoscience.49] [PMID: 25594043]
[14]
Seyfried, T.N.; Shelton, L.M. Cancer as a metabolic disease. Nutr. Metab. (Lond.), 2010, 7(7), 7.
[http://dx.doi.org/10.1186/1743-7075-7-7] [PMID: 20181022]
[15]
Coller, H.A. Is cancer a metabolic disease? Am. J. Pathol., 2014, 184(1), 4-17.
[http://dx.doi.org/10.1016/j.ajpath.2013.07.035] [PMID: 24139946]
[16]
Ward, P.S.; Thompson, C.B. Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell, 2012, 21(3), 297-308.
[http://dx.doi.org/10.1016/j.ccr.2012.02.014] [PMID: 22439925]
[17]
Fadaka, A.; Ajiboye, B.; Ojo, O.; Adewale, O.; Olayide, I.; Emuowhochere, R. Biology of glucose metabolization in cancer cells. J. Oncol. Sci, 2017, 3(2), 45-51.
[http://dx.doi.org/10.1016/j.jons.2017.06.002]
[18]
Avagliano, A.; Ruocco, M.R.; Aliotta, F.; Belviso, I.; Accurso, A.; Masone, S.; Montagnani, S.; Arcucci, A. Mitochondrial flexibility of breast cancers: A growth advantage and a therapeutic opportunity. Cells, 2019, 8(5), 401.
[http://dx.doi.org/10.3390/cells8050401]
[19]
Lee, H.C.; Li, S.H.; Lin, J.C.; Wu, C.C.; Yeh, D.C.; Wei, Y.H. Somatic mutations in the D-loop and decrease in the copy number of mitochondrial DNA in human hepatocellular carcinoma. Mutat. Res., 2004, 547(1-2), 71-78.
[http://dx.doi.org/10.1016/j.mrfmmm.2003.12.011] [PMID: 15013701]
[20]
Wu, C.W.; Yin, P.H.; Hung, W.Y.; Li, A.F.; Li, S.H.; Chi, C.W.; Wei, Y.H.; Lee, H.C. Mitochondrial DNA mutations and mitochondrial DNA depletion in gastric cancer. Genes Chromosomes Cancer, 2005, 44(1), 19-28.
[http://dx.doi.org/10.1002/gcc.20213] [PMID: 15892105]
[21]
Tseng, L.M.; Yin, P.H.; Chi, C.W.; Hsu, C.Y.; Wu, C.W.; Lee, L.M.; Wei, Y.H.; Lee, H.C. Mitochondrial DNA mutations and mitochondrial DNA depletion in breast cancer. Genes Chromosomes Cancer, 2006, 45(7), 629-638.
[http://dx.doi.org/10.1002/gcc.20326] [PMID: 16568452]
[22]
Yamada, S.; Nomoto, S.; Fujii, T.; Kaneko, T.; Takeda, S.; Inoue, S.; Kanazumi, N.; Nakao, A. Correlation between copy number of mitochondrial DNA and clinico-pathologic parameters of hepatocellular carcinoma. Eur. J. Surg. Oncol., 2006, 32(3), 303-307.
[http://dx.doi.org/10.1016/j.ejso.2006.01.002] [PMID: 16478656]
[23]
Yu, M.; Zhou, Y.; Shi, Y.; Ning, L.; Yang, Y.; Wei, X.; Zhang, N.; Hao, X.; Niu, R. Reduced mitochondrial DNA copy number is correlated with tumor progression and prognosis in Chinese breast cancer patients. IUBMB Life, 2007, 59(7), 450-457.
[http://dx.doi.org/10.1080/15216540701509955] [PMID: 17654121]
[24]
Xing, J.; Chen, M.; Wood, C.G.; Lin, J.; Spitz, M.R.; Ma, J.; Amos, C.I.; Shields, P.G.; Benowitz, N.L.; Gu, J.; de Andrade, M.; Swan, G.E.; Wu, X. Mitochondrial DNA content: its genetic heritability and association with renal cell carcinoma. J. Natl. Cancer Inst., 2008, 100(15), 1104-1112.
[http://dx.doi.org/10.1093/jnci/djn213] [PMID: 18664653]
[25]
Kim, M.M.; Clinger, J.D.; Masayesva, B.G.; Ha, P.K.; Zahurak, M.L.; Westra, W.H.; Califano, J.A. Mitochondrial DNA quantity increases with histopathologic grade in premalignant and malignant head and neck lesions. Clin. Cancer Res., 2004, 10(24), 8512-8515.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0734] [PMID: 15623632]
[26]
Wang, Y.; Liu, V.W.; Xue, W.C.; Cheung, A.N.; Ngan, H.Y. Association of decreased mitochondrial DNA content with ovarian cancer progression. Br. J. Cancer, 2006, 95(8), 1087-1091.
[http://dx.doi.org/10.1038/sj.bjc.6603377] [PMID: 17047655]
[27]
Lin, C.S.; Chang, S.C.; Wang, L.S.; Chou, T.Y.; Hsu, W.H.; Wu, Y.C.; Wei, Y.H. The role of mitochondrial DNA alterations in esophageal squamous cell carcinomas. J. Thorac. Cardiovasc. Surg., 2010, 139(1), 189-197.e4.
[http://dx.doi.org/10.1016/j.jtcvs.2009.04.007] [PMID: 19660406]
[28]
Ayyasamy, V.; Owens, K.M.; Desouki, M.M.; Liang, P.; Bakin, A.; Thangaraj, K.; Buchsbaum, D.J.; LoBuglio, A.F.; Singh, K.K. Cellular model of Warburg effect identifies tumor promoting function of UCP2 in breast cancer and its suppression by genipin. PLoS One, 2011, 6(9), e24792.
[http://dx.doi.org/10.1371/journal.pone.0024792] [PMID: 21935467]
[29]
Kim, S.; Kim, D.H.; Jung, W.H.; Koo, J.S. Metabolic phenotypes in triple-negative breast cancer. Tumour Biol., 2013, 34(3), 1699-1712.
[http://dx.doi.org/10.1007/s13277-013-0707-1] [PMID: 23443971]
[30]
Feng, W.; Gentles, A.; Nair, R.V.; Huang, M.; Lin, Y.; Lee, C.Y.; Cai, S.; Scheeren, F.A.; Kuo, A.H.; Diehn, M. Targeting unique metabolic properties of breast tumor initiating cells. Stem Cells, 2014, 32(7), 1734-1745.
[http://dx.doi.org/10.1002/stem.1662] [PMID: 24497069]
[31]
Tang, X.; Lin, C.C.; Spasojevic, I.; Iversen, E.S.; Chi, J.T.; Marks, J.R. A joint analysis of metabolomics and genetics of breast cancer. Breast Cancer Res., 2014, 16(4), 415.
[http://dx.doi.org/10.1186/s13058-014-0415-9] [PMID: 25091696]
[32]
Suhane, S.; Ramanujan, V.K. Thyroid hormone differentially modulates Warburg phenotype in breast cancer cells. Biochem. Biophys. Res. Commun., 2011, 414(1), 73-78.
[http://dx.doi.org/10.1016/j.bbrc.2011.09.024] [PMID: 21945435]
[33]
Pineda, C.T.; Ramanathan, S.; Fon Tacer, K.; Weon, J.L.; Potts, M.B.; Ou, Y.H.; White, M.A.; Potts, P.R. Degradation of AMPK by a cancer-specific ubiquitin ligase. Cell, 2015, 160(4), 715-728.
[http://dx.doi.org/10.1016/j.cell.2015.01.034] [PMID: 25679763]
[34]
Isidoro, A.; Casado, E.; Redondo, A.; Acebo, P.; Espinosa, E.; Alonso, A.M.; Cejas, P.; Hardisson, D.; Fresno Vara, J.A.; Belda-Iniesta, C.; González-Barón, M.; Cuezva, J.M. Breast carcinomas fulfill the Warburg hypothesis and provide metabolic markers of cancer prognosis. Carcinogenesis, 2005, 26(12), 2095-2104.
[http://dx.doi.org/10.1093/carcin/bgi188] [PMID: 16033770]
[35]
Gonzalez-Angulo, A.M.; Iwamoto, T.; Liu, S.; Chen, H.; Do, K.A.; Hortobagyi, G.N.; Mills, G.B.; Meric-Bernstam, F.; Symmans, W.F.; Pusztai, L. Gene expression, molecular class changes, and pathway analysis after neoadjuvant systemic therapy for breast cancer. Clin. Cancer Res., 2012, 18(4), 1109-1119.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2762] [PMID: 22235097]
[36]
Yadav, N.; Chandra, D. Mitochondrial DNA mutations and breast tumorigenesis. Biochim. Biophys. Acta, 2013, 1836(2), 336-344.
[http://dx.doi.org/10.1016/j.bbcan.2013.10.002] [PMID: 24140413]
[37]
Mouradian, M.; Kikawa, K.D.; Dranka, B.P.; Komas, S.M.; Kalyanaraman, B.; Pardini, R.S. Docosahexaenoic acid attenuates breast cancer cell metabolism and the Warburg phenotype by targeting bioenergetic function. Mol. Carcinog., 2015, 54(9), 810-820.
[http://dx.doi.org/10.1002/mc.22151]
[38]
Sauer, H.; Engel, S.; Milosevic, N.; Sharifpanah, F.; Wartenberg, M. Activation of AMP-kinase by AICAR induces apoptosis of DU-145 prostate cancer cells through generation of reactive oxygen species and activation of c-Jun N-terminal kinase. Int. J. Oncol., 2012, 40(2), 501-508.
[39]
Zhang, J.; Xu, H.; Zhou, X.; Li, Y.; Liu, T.; Yin, X.; Zhang, B. Role of metformin in inhibiting estrogen-induced proliferation and regulating ERα and ERβ expression in human endometrial cancer cells. Oncol. Lett., 2017, 14(4), 4949-4956.
[http://dx.doi.org/10.3892/ol.2017.6877]
[40]
Morishita, M.; Kawamoto, T.; Hara, H.; Onishi, Y.; Ueha, T.; Minoda, M.; Katayama, E.; Takemori, T.; Fukase, N.; Kurosaka, M.; Kuroda, R.; Akisue, T. AICAR induces mitochondrial apoptosis in human osteosarcoma cells through an AMPK-dependent pathway. Int. J. Oncol., 2017, 50(1), 23-30.
[http://dx.doi.org/10.3892/ijo.2016.3775] [PMID: 27878239]
[41]
Hu, H.; Dong, Z.; Tan, P.; Zhang, Y.; Liu, L.; Yang, L.; Liu, Y.; Cui, H. Antibiotic drug tigecycline inhibits melanoma progression and metastasis in a p21CIP1/Waf1-dependent manner. Oncotarget, 2016, 7(3), 3171-3185.
[http://dx.doi.org/10.18632/oncotarget.6419] [PMID: 26621850]
[42]
Nasser, M.I.; Masood, M.; Wei, W.; Li, X.; Zhou, Y.; Liu, B.; Li, J.; Li, X. Cordycepin induces apoptosis in SGC 7901 cells through mitochondrial extrinsic phosphorylation of PI3K/Akt by generating ROS. Int. J. Oncol., 2017, 50(3), 911-919.
[http://dx.doi.org/10.3892/ijo.2017.3862] [PMID: 28197639]
[43]
Parmar, H.S.; Houdek, Z.; Pesta, M.; Vaclava, C.; Dvorak, P.; Hatina, J. Protective effect of aspirin against oligomeric Aβ42 induced mitochondrial alterations and neurotoxicity in differentiated EC P19 neuronal cells. Curr. Alzheimer Res., 2017, 14(8), 810-819.
[http://dx.doi.org/10.2174/1567205014666170203104757] [PMID: 28164768]
[44]
Piantadosi, C.A.; Suliman, H.B. Redox regulation of mitochondrial biogenesis. Free Radic. Biol. Med., 2012, 53(11), 2043-2053.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.09.014] [PMID: 23000245]
[45]
Marin, T.L.; Gongol, B.; Zhang, F.; Martin, M.; Johnson, D.A.; Xiao, H.; Wang, Y.; Subramaniam, S.; Chien, S.; Shyy, J.Y. AMPK promotes mitochondrial biogenesis and function by phosphorylating the epigenetic factors DNMT1, RBBP7, and HAT1. Sci. Signal., 2017, 10(464), 74-78.
[http://dx.doi.org/10.1126/scisignal.aaf7478]
[46]
Jiang, B. Aerobic glycolysis and high level of lactate in cancer metabolism and microenvironment. Genes Dis., 2017, 4(1), 25-27.
[http://dx.doi.org/10.1016/j.gendis.2017.02.003] [PMID: 30258905]
[47]
Barrett, C.S.; Millena, A.C.; Khan, S.A. TGF-beta effects on prostate cancer cell migration and invasion require Fos B. Prostate, 2017, 77(1), 72-81.
[48]
Cao, W.; Li, J.; Hao, Q.; Vadgama, J.V.; Wu, Y. AMP-activated protein kinase: A potential therapeutic target for triple-negative breast cancer. Breast Cancer Res., 2019, 21(1), 29.
[http://dx.doi.org/10.1186/s13058-019-1107-2] [PMID: 30791936]
[49]
Tsouko, E.; Wang, J.; Frigo, D.E.; Aydogdu, E.; Williams, C. miR-200a inhibits migration of triple-negative breast cancer cells through direct repression of the EPHA2 oncogene. Carcinogenesi, 2015, 36(9), 1051-1060.
[50]
Scott, K.E.; Wheeler, F.B.; Davis, A.L.; Thomas, M.J.; Ntambi, J.M.; Seals, D.F.; Kridel, S.J. Metabolic regulation of invadopodia and invasion by acetyl-CoA carboxylase 1 and de novo lipogenesis. PLoS One, 2012, 7(1), e29761.
[http://dx.doi.org/10.1371/journal.pone.0029761]
[51]
Doria, M.L.; Ribeiro, A.S.; Wang, J.; Cotrim, C.Z.; Domingues, P.; Williams, C.; Domingues, M.R.; Helguero, L.A. Fatty acid and phospholipid biosynthetic pathways are regulated throughout mammary epithelial cell differentiation and correlate to breast cancer survival. FASEB J., 2014, 28(10), 4247-4264.
[http://dx.doi.org/10.1096/fj.14-249672]
[52]
Kikuno, N.; Shiina, H.; Urakami, S.; Kawamoto, K.; Hirata, H.; Tanaka, Y.; Place, R.F.; Pookot, D.; Majid, S.; Igawa, M.; Dahiya, R. Knockdown of astrocyte-elevated gene-1 inhibits prostate cancer progression through upregulation of FOXO3a activity. Oncogene, 2007, 26(55), 7647-7655.
[53]
Sarkar, D.; Park, E.S.; Emdad, L.; Lee, S.G.; Su, Z.Z.; Fisher, P.B. Molecular basis of nuclear factor-kappaB activation by astrocyte elevated gene-1. Cancer Res., 2008, 68(5), 1478-1484.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6164] [PMID: 18316612]
[54]
Rae, C.; Mairs, R.J. AMPK activation by AICAR sensitizes prostate cancer cells to radiotherapy. Oncotarget, 2019, 10(7), 749-759.
[http://dx.doi.org/10.18632/oncotarget.26598] [PMID: 30774777]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy