Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

CCKBR 表达下调抑制胃癌细胞增殖,揭示免疫毒素治疗的潜在靶点

卷 22, 期 3, 2022

发表于: 17 March, 2022

页: [257 - 268] 页: 12

弟呕挨: 10.2174/1568009622666220106113616

价格: $65

摘要

背景:据报道,在许多肿瘤中 CCKBR 表达密度或频率增加。 目的:我们旨在研究 CCKBR 是否促进胃癌 (GC) 的生长及其作为免疫毒素治疗靶点的潜力。 方法:使用慢病毒干扰系统产生CCKBR敲低的胃癌细胞。 Cell Counting Kit-8 和克隆形成测定用于评估细胞增殖。进行伤口愈合和细胞侵袭测定以评估细胞流动性。通过流式细胞术分析细胞周期。使用裸鼠异源肿瘤移植模型研究体内肿瘤生长。此外,我们生成了免疫毒素 FQ17P,并在体外评估了 FQ17P 的结合能力和肿瘤细胞毒性。 结果:CCKBR 表达的稳定下调导致 BGC-823 和 SGC-7901 细胞的增殖、迁移和侵袭减少。通过CCKBR过表达研究进一步验证了CCKBR对胃癌细胞的影响。 CCKBR 表达的下调也抑制了体内胃肿瘤的生长。此外,FQ17P 通过特异性结合肿瘤细胞表面的 CCKBR 杀死过表达 CCKBR 的 GC 细胞。 结论:CCKBR 蛋白驱动胃癌细胞的生长、迁移和侵袭,基于其异常表达、与胃泌素的功能结合相互作用以及随后的内化,它可能成为免疫毒素治疗的有希望的靶点。

关键词: CCKBR,核糖核酸干扰,胃癌增殖,靶向治疗,免疫毒素,FQ17P。

« Previous
图形摘要

[1]
Berna, M.J.; Jensen, R.T. Role of CCK/gastrin receptors in gastrointestinal/metabolic diseases and results of human studies using gastrin/CCK receptor agonists/antagonists in these diseases. Curr. Top. Med. Chem., 2007, 7(12), 1211-1231.
[http://dx.doi.org/10.2174/156802607780960519] [PMID: 17584143]
[2]
Dufresne, M.; Seva, C.; Fourmy, D. Cholecystokinin and gastrin receptors. Physiol. Rev., 2006, 86(3), 805-847.
[http://dx.doi.org/10.1152/physrev.00014.2005] [PMID: 16816139]
[3]
Baldwin, G.S.; Shulkes, A. CCK receptors and cancer. Curr. Top. Med. Chem., 2007, 7(12), 1232-1238.
[http://dx.doi.org/10.2174/156802607780960492] [PMID: 17584144]
[4]
Reubi, J.C. Targeting CCK receptors in human cancers. Curr. Top. Med. Chem., 2007, 7(12), 1239-1242.
[http://dx.doi.org/10.2174/156802607780960546] [PMID: 17584145]
[5]
Aly, A.; Shulkes, A.; Baldwin, G.S. Gastrins, cholecystokinins and gastrointestinal cancer. Biochim. Biophys. Acta, 2004, 1704(1), 1-10.
[http://dx.doi.org/10.1016/j.bbcan.2004.01.004] [PMID: 15238241]
[6]
Reubi, J.C.; Waser, B.; Läderach, U.; Stettler, C.; Friess, H.; Halter, F.; Schmassmann, A. Localization of cholecystokinin A and cholecystokinin B-gastrin receptors in the human stomach. Gastroenterology, 1997, 112(4), 1197-1205.
[http://dx.doi.org/10.1016/S0016-5085(97)70131-8] [PMID: 9098003]
[7]
Quattrone, A.; Dewaele, B.; Wozniak, A.; Bauters, M.; Vanspauwen, V.; Floris, G.; Schöffski, P.; Chibon, F.; Coindre, J.M.; Sciot, R.; Debiec-Rychter, M. Promoting role of cholecystokinin 2 receptor (CCK2R) in gastrointestinal stromal tumour pathogenesis. J. Pathol., 2012, 228(4), 565-574.
[http://dx.doi.org/10.1002/path.4071] [PMID: 22786615]
[8]
Ashurst, H.L.; Varro, A.; Dimaline, R. Regulation of mammalian gastrin/CCK receptor (CCK2R) expression in vitro and in vivo. Exp. Physiol., 2008, 93(2), 223-236.
[http://dx.doi.org/10.1113/expphysiol.2007.040683] [PMID: 17933865]
[9]
Noble, F.; Roques, B.P. CCK-B receptor: Chemistry, molecular biology, biochemistry and pharmacology. Prog. Neurobiol., 1999, 58(4), 349-379.
[http://dx.doi.org/10.1016/S0301-0082(98)00090-2] [PMID: 10368033]
[10]
Edkins, J.S. The chemical mechanism of gastric secretion. J. Physiol., 1906, 34(1-2), 133-144.
[http://dx.doi.org/10.1113/jphysiol.1906.sp001146] [PMID: 16992839]
[11]
Jensen, R.T. Consequences of long-term proton pump blockade: Insights from studies of patients with gastrinomas. Basic Clin. Pharmacol. Toxicol., 2006, 98(1), 4-19.
[http://dx.doi.org/10.1111/j.1742-7843.2006.pto_378.x] [PMID: 16433886]
[12]
Lehmann, F.; Hildebrand, P.; Beglinger, C. New molecular targets for treatment of peptic ulcer disease. Drugs, 2003, 63(17), 1785-1797.
[http://dx.doi.org/10.2165/00003495-200363170-00002] [PMID: 12921485]
[13]
Dockray, G.J. Clinical endocrinology and metabolism. Gastrin. Best Pract. Res. Clin. Endocrinol. Metab., 2004, 18(4), 555-568.
[http://dx.doi.org/10.1016/j.beem.2004.07.003] [PMID: 15533775]
[14]
Smith, J.P.; Fantaskey, A.P.; Liu, G.; Zagon, I.S. Identification of gastrin as a growth peptide in human pancreatic cancer. Am. J. Physiol., 1995, 268(1 Pt 2), R135-R141.
[http://dx.doi.org/10.1152/ajpregu.1995.268.1.R135] [PMID: 7840313]
[15]
Matters, G.L.; Harms, J.F.; McGovern, C.O.; Jayakumar, C.; Crepin, K.; Smith, Z.P.; Nelson, M.C.; Stock, H.; Fenn, C.W.; Kaiser, J.; Kester, M.; Smith, J.P. Growth of human pancreatic cancer is inhibited by down-regulation of gastrin gene expression. Pancreas, 2009, 38(5), e151-e161.
[http://dx.doi.org/10.1097/MPA.0b013e3181a66fdc] [PMID: 19465883]
[16]
Matters, G.L.; McGovern, C.; Harms, J.F.; Markovic, K.; Anson, K.; Jayakumar, C.; Martenis, M.; Awad, C.; Smith, J.P. Role of endogenous cholecystokinin on growth of human pancreatic cancer. Int. J. Oncol., 2011, 38(3), 593-601.
[http://dx.doi.org/10.3892/ijo.2010.886] [PMID: 21186400]
[17]
Watson, S.A.; Michaeli, D.; Grimes, S.; Morris, T.M.; Robinson, G.; Varro, A.; Justin, T.A.; Hardcastle, J.D. Gastrimmune raises antibodies that neutralize amidated and glycine-extended gastrin-17 and inhibit the growth of colon cancer. Cancer Res., 1996, 56(4), 880-885.
[PMID: 8631028]
[18]
Müerköster, S.; Isberner, A.; Arlt, A.; Witt, M.; Reimann, B.; Blaszczuk, E.; Werbing, V.; Fölsch, U.R.; Schmitz, F.; Schäfer, H. Gastrin suppresses growth of CCK2 receptor expressing colon cancer cells by inducing apoptosis in vitro and in vivo. Gastroenterology, 2005, 129(3), 952-968.
[http://dx.doi.org/10.1053/j.gastro.2005.06.059] [PMID: 16143134]
[19]
Sebens Müerköster, S.; Rausch, A.V.; Isberner, A.; Minkenberg, J.; Blaszczuk, E.; Witt, M.; Fölsch, U.R.; Schmitz, F.; Schäfer, H.; Arlt, A. The apoptosis-inducing effect of gastrin on colorectal cancer cells relates to an increased IEX-1 expression mediating NF-kappa B inhibition. Oncogene, 2008, 27(8), 1122-1134.
[http://dx.doi.org/10.1038/sj.onc.1210728] [PMID: 17704804]
[20]
Prince, H.M.; Martin, A.G.; Olsen, E.A.; Fivenson, D.P.; Duvic, M. Denileukin diftitox for the treatment of CD25 low-expression mycosis fungoides and Sézary syndrome. Leuk. Lymphoma, 2013, 54(1), 69-75.
[http://dx.doi.org/10.3109/10428194.2012.706286] [PMID: 22738414]
[21]
Kowalski, M.; Guindon, J.; Brazas, L.; Moore, C.; Entwistle, J.; Cizeau, J.; Jewett, M.A.; MacDonald, G.C. A phase II study of oportuzumab monatox: An immunotoxin therapy for patients with noninvasive urothelial carcinoma in situ previously treated with bacillus Calmette-Guérin. J. Urol., 2012, 188(5), 1712-1718.
[http://dx.doi.org/10.1016/j.juro.2012.07.020] [PMID: 22998907]
[22]
Fino, K.K.; Matters, G.L.; McGovern, C.O.; Gilius, E.L.; Smith, J.P. Downregulation of the CCK-B receptor in pancreatic cancer cells blocks proliferation and promotes apoptosis. Am. J. Physiol. Gastrointest. Liver Physiol., 2012, 302(11), G1244-G1252.
[http://dx.doi.org/10.1152/ajpgi.00460.2011] [PMID: 22442157]
[23]
Chang, J.; Liu, Z-S.; Song, D-F.; Li, M.; Zhang, S.; Zhao, K.; Guan, Y.T.; Ren, H.L.; Li, Y.S.; Zhou, Y.; Liu, X.L.; Lu, S.Y.; Hu, P. Cholecystokinin type 2 receptor in colorectal cancer: Diagnostic and therapeutic target. J. Cancer Res. Clin. Oncol., 2020, 146(9), 2205-2217.
[http://dx.doi.org/10.1007/s00432-020-03273-z] [PMID: 32488497]
[24]
Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.V.S.K.; Varambally, S. UALCAN: A Portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia, 2017, 19(8), 649-658.
[http://dx.doi.org/10.1016/j.neo.2017.05.002] [PMID: 28732212]
[25]
Feng, X-L.; Liu, Z-S.; Liu, X-L.; Lu, S-Y.; Li, Y-S.; Hu, P.; Yan, D.M.; Tong, W.H.; Wang, Q.; Zhou, Y.; Jin, W.; Ding, Y.X.; Gai, D.X.; Ren, H.L. Establishment of a three-step purification scheme for a recombinant protein rG17PE38 and its characteristics identification. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 981-982, 48-56.
[http://dx.doi.org/10.1016/j.jchromb.2015.01.008] [PMID: 25600055]
[26]
Hu, P.; Zhang, S.; Lu, S.Y.; Li, M.; Chang, J.; Wang, M.Y.; Li, C.; Zhao, K.; Guan, Y.T.; Zhang, Y.Y.; Li, Y.S.; Zhou, Y.; Liu, Z.S.; Bai, O.; Ren, H.L. An efficient scheme for purification of a novel recombinant immunotoxin, rCCK8PE38, for anti-tumour experiments. Biomed. Chromatogr., 2018, 32(6), e4197.
[http://dx.doi.org/10.1002/bmc.4197] [PMID: 29359465]
[27]
Smith, J.P.; Hamory, M.W.; Verderame, M.F.; Zagon, I.S. Quantitative analysis of gastrin mRNA and peptide in normal and cancerous human pancreas. Int. J. Mol. Med., 1998, 2(3), 309-315.
[http://dx.doi.org/10.3892/ijmm.2.3.309] [PMID: 9855703]
[28]
Mjønes, P.; Nordrum, I.S.; Sørdal, Ø.; Sagatun, L.; Fossmark, R.; Sandvik, A.; Waldum, H.L. Expression of the cholecystokinin-b receptor in neoplastic gastric cells. Horm. Cancer, 2018, 9(1), 40-54.
[http://dx.doi.org/10.1007/s12672-017-0311-8] [PMID: 28980157]
[29]
Rozengurt, E.; Sinnett-Smith, J.; Kisfalvi, K. Crosstalk between Insulin/IGF-1 and GPCR signaling systems: A novel target for the anti-diabetic drug metformin in pancreatic cancer. Clin. Cancer Res., 2010, 16, 2505-2511.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2229] [PMID: 20388847]
[30]
Young, S.H.; Rozengurt, E. Crosstalk between insulin receptor and G protein-coupled receptor signaling systems leads to Ca2+ oscillations in pancreatic cancer PANC-1 cells. Biochem. Biophys. Res. Commun., 2010, 401(1), 154-158.
[http://dx.doi.org/10.1016/j.bbrc.2010.09.036] [PMID: 20849815]
[31]
Chao, C.; Han, X.; Ives, K.; Park, J.; Kolokoltsov, A.A.; Davey, R.A.; Moyer, M.P.; Hellmich, M.R. CCK2 receptor expression transforms non-tumorigenic human NCM356 colonic epithelial cells into tumor forming cells. Int. J. Cancer, 2010, 126(4), 864-875.
[http://dx.doi.org/10.1002/ijc.24845] [PMID: 19697327]
[32]
Clerc, P.; Leung-Theung-Long, S.; Wang, T.C.; Dockray, G.J.; Bouisson, M.; Delisle, M-B.; Vaysse, N.; Pradayrol, L.; Fourmy, D.; Dufresne, M. Expression of CCK2 receptors in the murine pancreas: Proliferation, transdifferentiation of acinar cells, and neoplasia. Gastroenterology, 2002, 122(2), 428-437.
[http://dx.doi.org/10.1053/gast.2002.30984] [PMID: 11832457]
[33]
Jin, G.; Ramanathan, V.; Quante, M.; Baik, G.H.; Yang, X.; Wang, S.S.W.; Tu, S.; Gordon, S.A.; Pritchard, D.M.; Varro, A.; Shulkes, A.; Wang, T.C. Inactivating cholecystokinin-2 receptor inhibits progastrin-dependent colonic crypt fission, proliferation, and colorectal cancer in mice. J. Clin. Invest., 2009, 119(9), 2691-2701.
[http://dx.doi.org/10.1172/JCI38918] [PMID: 19652364]
[34]
Singh, P.; Velasco, M.; Given, R.; Wargovich, M.; Varro, A.; Wang, T.C. Mice overexpressing progastrin are predisposed for developing aberrant colonic crypt foci in response to AOM. Am. J. Physiol. Gastrointest. Liver Physiol., 2000, 278(3), G390-G399.
[http://dx.doi.org/10.1152/ajpgi.2000.278.3.G390] [PMID: 10712258]
[35]
Pradeep, A.; Sharma, C.; Sathyanarayana, P.; Albanese, C.; Fleming, J.V.; Wang, T.C.; Wolfe, M.M.; Baker, K.M.; Pestell, R.G.; Rana, B. Gastrin-mediated activation of cyclin D1 transcription involves beta-catenin and CREB pathways in gastric cancer cells. Oncogene, 2004, 23(20), 3689-3699.
[http://dx.doi.org/10.1038/sj.onc.1207454] [PMID: 15116100]
[36]
Song, D.H.; Rana, B.; Wolfe, J.R.; Crimmins, G.; Choi, C.; Albanese, C.; Wang, T.C.; Pestell, R.G.; Wolfe, M.M. Gastrin-induced gastric adenocarcinoma growth is mediated through cyclin D1. Am. J. Physiol. Gastrointest. Liver Physiol., 2003, 285(1), G217-G222.
[http://dx.doi.org/10.1152/ajpgi.00516.2002] [PMID: 12606305]
[37]
Zhukova, E.; Sinnett-Smith, J.; Wong, H.; Chiu, T.; Rozengurt, E. CCK(B)/gastrin receptor mediates synergistic stimulation of DNA synthesis and cyclin D1, D3, and E expression in Swiss 3T3 cells. J. Cell. Physiol., 2001, 189(3), 291-305.
[http://dx.doi.org/10.1002/jcp.10018] [PMID: 11748587]
[38]
Bao, Z.; Xu, X.; Liu, Y.; Chao, H.; Lin, C.; Li, Z.; You, Y.; Liu, N.; Ji, J. CBX7 negatively regulates migration and invasion in glioma via Wnt/β-catenin pathway inactivation. Oncotarget, 2017, 8(24), 39048-39063.
[http://dx.doi.org/10.18632/oncotarget.16587] [PMID: 28388562]
[39]
Liu, C-C.; Cai, D-L.; Sun, F.; Wu, Z-H.; Yue, B.; Zhao, S-L.; Wu, X.S.; Zhang, M.; Zhu, X.W.; Peng, Z.H.; Yan, D.W. FERMT1 mediates epithelial-mesenchymal transition to promote colon cancer metastasis, via modulation of β-catenin transcriptional activity. Oncogene, 2017, 36(13), 1779-1792.
[http://dx.doi.org/10.1038/onc.2016.339] [PMID: 27641329]
[40]
Chau, I.; Cunningham, D.; Russell, C.; Norman, A.R.; Kurzawinski, T.; Harper, P.; Harrison, P.; Middleton, G.; Daniels, F.; Hickish, T.; Prendeville, J.; Ross, P.J.; Theis, B.; Hull, R.; Walker, M.; Shankley, N.; Kalindjian, B.; Murray, G.; Gillbanks, A.; Black, J. Gastrazole (JB95008), a novel CCK2/gastrin receptor antagonist, in the treatment of advanced pancreatic cancer: Results from two randomised controlled trials. Br. J. Cancer, 2006, 94(8), 1107-1115.
[http://dx.doi.org/10.1038/sj.bjc.6603058] [PMID: 16622436]
[41]
Meyer, T.; Caplin, M.E.; Palmer, D.H.; Valle, J.W.; Larvin, M.; Waters, J.S.; Coxon, F.; Borbath, I.; Peeters, M.; Nagano, E.; Kato, H. A phase Ib/IIa trial to evaluate the CCK2 receptor antagonist Z-360 in combination with gemcitabine in patients with advanced pancreatic cancer. Eur. J. Cancer, 2010, 46(3), 526-533.
[http://dx.doi.org/10.1016/j.ejca.2009.11.004] [PMID: 20006921]
[42]
Calatayud, S.; Alvarez, A.; Víctor, V.M. Gastrin: An acid-releasing, proliferative and immunomodulatory peptide? Mini Rev. Med. Chem., 2010, 10(1), 8-19.
[http://dx.doi.org/10.2174/138955710791112532] [PMID: 20380639]
[43]
Kreitman, R.J.; Dearden, C.; Zinzani, P.L.; Delgado, J.; Karlin, L.; Robak, T.; Gladstone, D.E.; le Coutre, P.; Dietrich, S.; Gotic, M.; Larratt, L.; Offner, F.; Schiller, G.; Swords, R.; Bacon, L.; Bocchia, M.; Bouabdallah, K.; Breems, D.A.; Cortelezzi, A.; Dinner, S.; Doubek, M.; Gjertsen, B.T.; Gobbi, M.; Hellmann, A.; Lepretre, S.; Maloisel, F.; Ravandi, F.; Rousselot, P.; Rummel, M.; Siddiqi, T.; Tadmor, T.; Troussard, X.; Yi, C.A.; Saglio, G.; Roboz, G.J.; Balic, K.; Standifer, N.; He, P.; Marshall, S.; Wilson, W.; Pastan, I.; Yao, N.S.; Giles, F. Moxetumomab pasudotox in relapsed/refractory hairy cell leukemia. Leukemia, 2018, 32(8), 1768-1777.
[http://dx.doi.org/10.1038/s41375-018-0210-1] [PMID: 30030507]
[44]
Reubi, J.C.; Mäcke, H.R.; Krenning, E.P. Candidates for peptide receptor radiotherapy today and in the future. J. Nucl. Med., 2005, 46(Suppl. 1), 67S-75S.
[PMID: 15653654]
[45]
Laverman, P.; Béhé, M.; Oyen, W.J.G.; Willems, P.H.G.M.; Corstens, F.H.M.; Behr, T.M.; Boerman, O.C. Two technetium-99m-labeled cholecystokinin-8 (CCK8) peptides for scintigraphic imaging of CCK receptors. Bioconjug. Chem., 2004, 15(3), 561-568.
[http://dx.doi.org/10.1021/bc034208w] [PMID: 15149184]
[46]
Song, J.; Ren, H.; Li, Y.; Xu, J.; Kong, H.; Tong, W.; Zhou, Y.; Gao, S.; Liu, Y.; Hui, Q.; Peng, Q.; Lu, S.; Liu, Z. rG17PE38, a novel immunotoxin target to gastric cancer with overexpressed CCK-2R. J. Drug Target., 2013, 21(4), 375-382.
[http://dx.doi.org/10.3109/1061186X.2012.757770] [PMID: 23311704]
[47]
Feng, X-L.; Liu, X-L.; Lu, S-Y.; Ren, H-L.; Li, Y-S.; Hu, P.; Wang, Q.; Tong, W.; Yan, D.M.; Zhou, Y.; Zhang, S.; Jin, W.; Liu, Z.S. Expression, purification and characterization of recombinant toxins consisting of truncated gastrin 17 and pseudomonas exotoxin. Protein Pept. Lett., 2015, 22(2), 193-201.
[http://dx.doi.org/10.2174/0929866521666141028214723] [PMID: 25353354]
[48]
Vlachostergios, P.J.; Jakubowski, C.D.; Niaz, M.J.; Lee, A.; Thomas, C.; Hackett, A.L.; Patel, P.; Rashid, N.; Tagawa, S.T. Antibody-drug conjugates in bladder cancer. Bladder Cancer, 2018, 4(3), 247-259.
[http://dx.doi.org/10.3233/BLC-180169] [PMID: 30112436]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy