Generic placeholder image

Current Chinese Chemistry

Editor-in-Chief

ISSN (Print): 2666-0016
ISSN (Online): 2666-0008

Review Article

Flavaglines: Their Discovery from Plants Used in Traditional Chinese Medicine, Synthesis, and Drug Development Against Cancer and Immune Disorders

Author(s): Dong Wang , Mustafa Tezeren, Hussein Abou-Hamdan , Peng Yu , Canan G. Nebigil and Laurent Désaubry*

Volume 2, Issue 2, 2022

Published on: 18 January, 2022

Article ID: e261121198321 Pages: 11

DOI: 10.2174/2666001601666211126091737

Price: $65

Abstract

Flavaglines, a family of compounds from plants used in traditional Chinese medicine, exhibit a broad range of biological effects, including anticancer, antiviral, cardioprotective, and anti-inflammatory activities. They exert their action by targeting the scaffold proteins called prohibitin-1 and -2 and the mRNA helicases eIF4A and DDX3. Flavaglines are densely functionalized cyclopenta[b]benzofurans that have attracted the attention of some of the most eminent organic chemists. This review provides an overview of the biosynthesis, total synthesis, and pharmacological activities of flavaglines, which have recently culminated with the entrance of a synthetic derivative, Zotatifin, into clinical trials against advanced refractory solid tumors, intolerant to standard treatments.

Keywords: Natural products, traditional Chinese medicine, eIF4A, prohibitins, cancer, cardioprotection, total synthesis, medicinal chemistry.

Graphical Abstract

[1]
Harneti, D.; Supratman, U. Phytochemistry and biological activities of Aglaia species. Phytochemistry, 2021, 181, 112540.
[http://dx.doi.org/10.1016/j.phytochem.2020.112540] [PMID: 33130371]
[2]
Heyne, K. The Useful Indonesian Plants; Research and Development Agency; Ministry of Forestry: Jakarta, Indonesia, 1987, pp. 1029-1045.
[3]
Lemmens, R.H.M.J.; Soerianegara, I.; Wong, W.C. Plant Resources of South-East Asia. No. 5(2): Timber trees: Minor commercial timbers; Backhuys Publishers: Leiden, 1995.
[4]
Janaki, S.; Vijayasekaran, V.; Viswanathan, S.; Balakrishna, K. Anti-inflammatory activity of Aglaia roxburghiana var. beddomei extract and triterpenes roxburghiadiol A and B. J. Ethnopharmacol., 1999, 67(1), 45-51.
[http://dx.doi.org/10.1016/S0378-8741(99)00063-X] [PMID: 10616959]
[5]
Ayyanar, M.; Ignacimuthu, S. Traditional knowledge of Kani tribals in Kouthalai of Tirunelveli hills, Tamil Nadu, India. J. Ethnopharmacol., 2005, 102(2), 246-255.
[http://dx.doi.org/10.1016/j.jep.2005.06.020] [PMID: 16054791]
[6]
Khare, C.P. Indian Herbal Remedies; Springer-Verlag: Berlin, Heidelberg, 2004.
[http://dx.doi.org/10.1007/978-3-642-18659-2]
[7]
Division, M.R. Traditional medicine textbook (Thai drug); Office of the Permanent Secretary for Public Health, Ministry of Public Health: Bangkok, 1998.
[8]
King, M.L.; Chiang, C.C.; Ling, H.C.; Fujita, E.; Ochiai, M.; McPhail, A.T. X-ray crystal structure of rocaglamide, a novel antileukemic 1H-cyclopenta[b]benzofuran from Aglaia elliptifolia. J. Chem. Soc. Chem. Commun., 1982, (20), 1150-1151.
[http://dx.doi.org/10.1039/c39820001150]
[9]
Greger, H. Comparative phytochemistry of flavaglines (=rocaglamides), a group of highly bioactive flavolignans from Aglaia species (Meliaceae). Phytochem. Rev., 2021, 1-40.
[http://dx.doi.org/10.1007/s11101-021-09761-5] [PMID: 34104125]
[10]
Yang, H.J.; Li, Y.N.; Yan, C.; Yang, J.; Zeng, Y.R.; Yi, P.; Li, Y.M.; Hao, X.J.; Yuan, C.M. Discovery and synthesis of rocaglaol derivatives inducing apoptosis in HCT116 cells via suppression of MAPK signaling pathway. Fitoterapia, 2021, 151, 104876.
[http://dx.doi.org/10.1016/j.fitote.2021.104876] [PMID: 33675885]
[11]
Schulz, G.; Victoria, C.; Kirschning, A.; Steinmann, E. Rocaglamide and silvestrol: A long story from anti-tumor to anti-coronavirus compounds. Nat. Prod. Rep., 2021, 38(1), 18-23.
[http://dx.doi.org/10.1039/D0NP00024H] [PMID: 32699874]
[12]
Pan, L.; Woodard, J.L.; Lucas, D.M.; Fuchs, J.R.; Kinghorn, A.D. Rocaglamide, silvestrol and structurally related bioactive compounds from Aglaia species. Nat. Prod. Rep., 2014, 31(7), 924-939.
[http://dx.doi.org/10.1039/C4NP00006D] [PMID: 24788392]
[13]
Hausott, B.; Greger, H.; Marian, B. Flavaglines: A group of efficient growth inhibitors block cell cycle progression and induce apoptosis in colorectal cancer cells. Int. J. Cancer, 2004, 109(6), 933-940.
[http://dx.doi.org/10.1002/ijc.20033] [PMID: 15027128]
[14]
Bordeleau, M-E.; Robert, F.; Gerard, B.; Lindqvist, L.; Chen, S.M.H.; Wendel, H-G.; Brem, B.; Greger, H.; Lowe, S.W.; Porco, J.A., Jr; Pelletier, J. Therapeutic suppression of translation initiation modulates chemosensitivity in a mouse lymphoma model. J. Clin. Invest., 2008, 118(7), 2651-2660.
[http://dx.doi.org/10.1172/JCI34753] [PMID: 18551192]
[15]
Cencic, R.; Carrier, M.; Galicia-Vázquez, G.; Bordeleau, M.E.; Sukarieh, R.; Bourdeau, A.; Brem, B.; Teodoro, J.G.; Greger, H.; Tremblay, M.L.; Porco, J.A., Jr; Pelletier, J. Antitumor activity and mechanism of action of the cyclopenta[b]benzofuran, silvestrol. PLoS One, 2009, 4(4), e5223.
[http://dx.doi.org/10.1371/journal.pone.0005223] [PMID: 19401772]
[16]
Chambers, J.M.; Lindqvist, L.M.; Webb, A.; Huang, DCS.; Savage, GP.; Rizzacasa, M.A. Synthesis of biotinylated Episilvestrol: Highly selective targeting of the translation factors eIF4AI/II. Org. Lett., 2013, 15(6), 1406-1409.
[17]
Sadlish, H.; Galicia-Vazquez, G.; Paris, C.G.; Aust, T.; Bhullar, B.; Chang, L.; Helliwell, S.B.; Hoepfner, D.; Knapp, B.; Riedl, R.; Roggo, S.; Schuierer, S.; Studer, C.; Porco, J.A., Jr; Pelletier, J.; Movva, N.R. Evidence for a functionally relevant rocaglamide binding site on the eIF4A-RNA complex. ACS Chem. Biol., 2013, 8(7), 1519-1527.
[http://dx.doi.org/10.1021/cb400158t] [PMID: 23614532]
[18]
Polier, G.; Neumann, J.; Thuaud, F.; Ribeiro, N.; Gelhaus, C.; Schmidt, H.; Giaisi, M.; Köhler, R.; Müller, W.W.; Proksch, P.; Leippe, M.; Janssen, O.; Désaubry, L.; Krammer, P.H.; Li-Weber, M. The natural anticancer compounds rocaglamides inhibit the Raf-MEK-ERK pathway by targeting prohibitin 1 and 2. Chem. Biol., 2012, 19(9), 1093-1104.
[http://dx.doi.org/10.1016/j.chembiol.2012.07.012] [PMID: 22999878]
[19]
Ernst, J.T.; Thompson, P.A.; Nilewski, C.; Sprengeler, P.A.; Sperry, S.; Packard, G.; Michels, T.; Xiang, A.; Tran, C.; Wegerski, C.J.; Eam, B.; Young, N.P.; Fish, S.; Chen, J.; Howard, H.; Staunton, J.; Molter, J.; Clarine, J.; Nevarez, A.; Chiang, G.G.; Appleman, J.R.; Webster, K.R.; Reich, S.H. Design of development candidate eFT226, a first in class inhibitor of eukaryotic initiation factor 4A RNA helicase. J. Med. Chem., 2020, 63(11), 5879-5955.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00182] [PMID: 32470302]
[20]
Chen, M.; Asanuma, M.; Takahashi, M.; Shichino, Y.; Mito, M.; Fujiwara, K.; Saito, H.; Floor, S.N.; Ingolia, N.T.; Sodeoka, M.; Dodo, K.; Ito, T.; Iwasaki, S. Dual targeting of DDX3 and eIF4A by the translation inhibitor rocaglamide A. Cell Chem. Biol., 2021, 28(4), 475-486.e8.
[http://dx.doi.org/10.1016/j.chembiol.2020.11.008] [PMID: 33296667]
[21]
Nugroho, B.W.; Edrada, R.A.; Wray, V.; Witte, L.; Bringmann, G.; Gehling, M.; Proksch, P. An insecticidal rocaglamide derivatives and related compounds from Aglaia adorata (Meliaceae). Phytochemistry, 1999, 51(3), 367-376.
[http://dx.doi.org/10.1016/S0031-9422(98)00751-1]
[22]
Ishibashi, F.; Satasook, C.; Isman, M.B.; Towers, G.H.N. Instecticidal 1H-cyclopenta[b]benzofurans from Aglaia odorata. Phytochemistry, 1993, 32(2), 307-310.
[http://dx.doi.org/10.1016/S0031-9422(00)94986-0]
[23]
Nugroho, B.W.; Edrada, R.A.; Gussregen, B.; Wray, V.; Witte, L.; Proksch, P. Insecticidal rocaglamide derivatives from Aglaia duppereana. Phytochemistry, 1997, 44(8), 1455-1461.
[http://dx.doi.org/10.1016/S0031-9422(96)00763-7]
[24]
Grege, H.; Pache, T.; Brem, B.; Bacher, M.; Hofer, O. Insecticidal flavaglines and other compounds from Fijian Aglaia species. Phytochemistry, 2001, 57(1), 57-64.
[http://dx.doi.org/10.1016/S0031-9422(00)00471-4] [PMID: 11336261]
[25]
Trost, B.M.; Greenspan, P.D.; Yang, B.V.; Saulnier, M.G. An unusual oxidative cyclization. A synthesis and absolute stereochemical assignment of (-)-rocaglamide. J. Am. Chem. Soc., 1990, 112(24), 9022-9024.
[http://dx.doi.org/10.1021/ja00180a081]
[26]
Zhao, Q.; Abou-Hamdan, H.; Désaubry, L. Recent advances in the synthesis of flavaglines, a family of potent bioactive natural compounds originating from traditional chinese medicine. Eur. J. Org. Chem., 2016, 2016(36), 5908-5916.
[http://dx.doi.org/10.1002/ejoc.201600437]
[27]
Dobler, M.R.; Bruce, I.; Cederbaum, F.; Cooke, N.G.; Diorazio, L.J.; Hall, R.G.; Irving, E. Total synthesis of (+/-)-rocaglamide and some aryl analogues. Tetrahedron Lett., 2001, 42(47), 8281-8284.
[http://dx.doi.org/10.1016/S0040-4039(01)01807-X]
[28]
Davey, A.E.; Taylor, R.J.K. A novel 1,3-dithiane-based cyclopenta-annellation procedure: Synthesis of the rocaglamide skeleton. Chem. Commun., 1987, (1), 25-27.
[http://dx.doi.org/10.1039/c39870000025]
[29]
Davey, A.E.; Schaeffer, M.J.; Taylor, R.J.K. Synthesis of the novel anti-leukaemic tetrahydrocyclopenta[b]benzofuran, rocaglamide and related synthetic studies. Chem. Commun., 1991, (16), 1137-1139.
[http://dx.doi.org/10.1039/c39910001137]
[30]
Gerard, B.; Jones Ii, G.; Porco, J.A. Jr A biomimetic approach to the rocaglamides employing photogeneration of oxidopyryliums derived from 3-hydroxyflavones. J. Am. Chem. Soc., 2004, 126(42), 13620-13621.
[http://dx.doi.org/10.1021/ja044798o] [PMID: 15493911]
[31]
Stone, S.D.; Lajkiewicz, N.J.; Whitesell, L.; Hilmy, A.; Porco, J.A. Jr Biomimetic kinetic resolution: Highly enantio- and diastereoselective transfer hydrogenation of aglain ketones to access flavagline natural products. J. Am. Chem. Soc., 2015, 137(1), 525-530.
[http://dx.doi.org/10.1021/ja511728b] [PMID: 25514979]
[32]
Wang, W.; Cencic, R.; Whitesell, L.; Pelletier, J.; Porco, J.A., Jr Synthesis of aza-rocaglates via ESIPT-Mediated [3+2] photocycloaddition. Chemistry, 2016, 22(34), 12006-12010.
[http://dx.doi.org/10.1002/chem.201602953] [PMID: 27338157]
[33]
Yueh, H.; Gao, Q.; Porco, J.A., Jr; Beeler, A.B. A photochemical flow reactor for large scale syntheses of aglain and rocaglate natural product analogues. Bioorg. Med. Chem., 2017, 25(23), 6197-6202.
[http://dx.doi.org/10.1016/j.bmc.2017.06.010] [PMID: 28666859]
[34]
Thede, K.; Diedrichs, N.; Ragot, J.P. Stereoselective synthesis of (+/-)-rocaglaol analogues. Org. Lett., 2004, 6(24), 4595-4597.
[http://dx.doi.org/10.1021/ol0479904] [PMID: 15548084]
[35]
An, S.E.; Jeong, J.; Baskar, B.; Lee, J.; Seo, J.; Rhee, Y.H. Gold(I)-catalyzed synthesis of highly substituted 2-cyclopentenones from 5-siloxypent-3-en-1-ynes. Chemistry, 2009, 15(44), 11837-11841.
[http://dx.doi.org/10.1002/chem.200901824] [PMID: 19806619]
[36]
Basmadjian, C.; Zhao, Q.; Désaubry, L. Exploratory studies toward a synthesis of flavaglines. A novel access to a highly substituted cyclopentenone intermediate. Tetrahedron Lett., 2015, 56(5), 727-730.
[http://dx.doi.org/10.1016/j.tetlet.2014.12.093]
[37]
Abou-Hamdan, H.; Désaubry, L. Unexpected inversion of configuration during the carbamoylation of 1-Azaflavaglines. Synlett, 2020, 31(20), 2023-2026.
[http://dx.doi.org/10.1055/s-0040-1707277]
[38]
Zhao, Q.; Tijeras-Raballand, A.; de Gramont, A.; Raymond, E.; Désaubry, L. Bioisosteric modification of flavaglines. Tetrahedron Lett., 2016, 57(26), 2943-2944.
[http://dx.doi.org/10.1016/j.tetlet.2016.05.089]
[39]
Chu, J.; Zhang, W.; Cencic, R.; O’Connor, P.B.F.; Robert, F.; Devine, W.G.; Selznick, A.; Henkel, T.; Merrick, W.C.; Brown, L.E.; Baranov, P.V.; Porco, J.A., Jr; Pelletier, J. Rocaglates induce gain-of-function alterations to eIF4A and eIF4F. Cell Rep., 2020, 30(8), 2481-2488.e5.
[http://dx.doi.org/10.1016/j.celrep.2020.02.002] [PMID: 32101697]
[40]
Hernando-Rodríguez, B.; Artal-Sanz, M. Mitochondrial quality control mechanisms and the PHB (Prohibitin) complex. Cells, 2018, 7(12), 238.
[http://dx.doi.org/10.3390/cells7120238] [PMID: 30501123]
[41]
Ande, S.R.; Xu, Y.X.Z.; Mishra, S. Prohibitin: A potential therapeutic target in tyrosine kinase signaling. Signal Transduct. Target. Ther., 2017, 2, 17059.
[http://dx.doi.org/10.1038/sigtrans.2017.59] [PMID: 29263933]
[42]
Zi Xu, Y.X.; Ande, S.R.; Mishra, S. Prohibitin: A new player in immunometabolism and in linking obesity and inflammation with cancer. Cancer Lett., 2018, 415, 208-216.
[http://dx.doi.org/10.1016/j.canlet.2017.12.001] [PMID: 29222040]
[43]
Mishra, S.; Nyomba, B.G. Prohibitin - At the crossroads of obesity-linked diabetes and cancer. Exp. Biol. Med. (Maywood), 2017, 242(11), 1170-1177.
[http://dx.doi.org/10.1177/1535370217703976] [PMID: 28399645]
[44]
Wang, D.; Tabti, R.; Elderwish, S.; Djehal, A.; Chouha, N.; Pinot, F.; Yu, P.; Nebigil, C.G.; Désaubry, L. SFPH proteins as therapeutic targets for a myriad of diseases. Bioorg. Med. Chem. Lett., 2020, 30(22), 127600.
[http://dx.doi.org/10.1016/j.bmcl.2020.127600] [PMID: 33035678]
[45]
Yurugi, H.; Marini, F.; Weber, C.; David, K.; Zhao, Q.; Binder, H.; Désaubry, L.; Rajalingam, K. Targeting prohibitins with chemical ligands inhibits KRAS-mediated lung tumours. Oncogene, 2017, 36(33), 4778-4789.
[http://dx.doi.org/10.1038/onc.2017.93] [PMID: 28414306]
[46]
Yurugi, H.; Zhuang, Y.; Siddiqui, F.A.; Liang, H.; Rosigkeit, S.; Zeng, Y.; Abou-Hamdan, H.; Bockamp, E.; Zhou, Y.; Abankwa, D.; Zhao, W.; Désaubry, L.; Rajalingam, K. A subset of flavaglines inhibits KRAS nanoclustering and activation. J. Cell Sci., 2020, 133(12), jcs244111.
[http://dx.doi.org/10.1242/jcs.244111] [PMID: 32501281]
[47]
Yuan, G.; Chen, X.; Liu, Z.; Wei, W.; Shu, Q.; Abou-Hamdan, H.; Jiang, L.; Li, X.; Chen, R.; Désaubry, L.; Zhou, F.; Xie, D. Flavagline analog FL3 induces cell cycle arrest in urothelial carcinoma cell of the bladder by inhibiting the Akt/PHB interaction to activate the GADD45α pathway. J. Exp. Clin. Cancer Res., 2018, 37(1), 21.
[http://dx.doi.org/10.1186/s13046-018-0695-5] [PMID: 29415747]
[48]
Jackson, D.N.; Alula, K.M.; Delgado-Deida, Y.; Tabti, R.; Turner, K.; Wang, X.; Venuprasad, K.; Souza, R.F.; Désaubry, L.; Theiss, A.L. The synthetic small molecule FL3 combats intestinal tumorigenesis via axin1-mediated inhibition of Wnt/β-Catenin Signaling. Cancer Res., 2020, 80(17), 3519-3529.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-0216] [PMID: 32665357]
[49]
Ploeger, C.; Huth, T.; Sugiyanto, R.N.; Pusch, S.; Goeppert, B.; Singer, S.; Tabti, R.; Hausser, I.; Schirmacher, P.; Désaubry, L.; Roessler, S. Prohibitin, STAT3 and SH2D4A physically and functionally interact in tumor cell mitochondria. Cell Death Dis., 2020, 11(11), 1023.
[http://dx.doi.org/10.1038/s41419-020-03220-3] [PMID: 33257655]
[50]
Ribeiro, N.; Thuaud, F.; Bernard, Y.; Gaiddon, C.; Cresteil, T.; Hild, A.; Hirsch, E.C.; Michel, P.P.; Nebigil, C.G.; Désaubry, L. Flavaglines as potent anticancer and cytoprotective agents. J. Med. Chem., 2012, 55(22), 10064-10073.
[http://dx.doi.org/10.1021/jm301201z] [PMID: 23072299]
[51]
Qureshi, R.; Yildirim, O.; Gasser, A.; Basmadjian, C.; Zhao, Q.; Wilmet, J.P.; Désaubry, L.; Nebigil, C.G. FL3, a synthetic flavagline and ligand of prohibitins, protects cardiomyocytes via STAT3 from Doxorubicin toxicity. PLoS One, 2015, 10(11), e0141826.
[http://dx.doi.org/10.1371/journal.pone.0141826] [PMID: 26536361]
[52]
Han, J.; Zhao, Q.; Basmadjian, C.; Désaubry, L.; Theiss, A.L. Flavaglines ameliorate experimental colitis and protect against intestinal epithelial cell apoptosis and mitochondrial dysfunction. Inflamm. Bowel Dis., 2016, 22(1), 55-67.
[http://dx.doi.org/10.1097/MIB.0000000000000592] [PMID: 26398710]
[53]
Taroncher-Oldenburg, G.; Müller, C.; Obermann, W.; Ziebuhr, J.; Hartmann, R.K.; Grünweller, A. Targeting the DEAD-Box RNA helicase eIF4A with rocaglates-A pan-antiviral strategy for minimizing the impact of future RNA virus pandemics. Microorganisms, 2021, 9(3), 540.
[http://dx.doi.org/10.3390/microorganisms9030540] [PMID: 33807988]
[54]
Müller, C.; Obermann, W.; Karl, N.; Wendel, H.G.; Taroncher-Oldenburg, G.; Pleschka, S.; Hartmann, R.K.; Grünweller, A.; Ziebuhr, J. The rocaglate CR-31-B (-) inhibits SARS-CoV-2 replication at non-cytotoxic, low nanomolar concentrations in vitro and ex vivo. Antiviral Res., 2021, 186, 105012.
[http://dx.doi.org/10.1016/j.antiviral.2021.105012] [PMID: 33422611]
[55]
Müller, C.; Obermann, W.; Schulte, F.W.; Lange-Grünweller, K.; Oestereich, L.; Elgner, F.; Glitscher, M.; Hildt, E.; Singh, K.; Wendel, H-G.; Hartmann, R.K.; Ziebuhr, J.; Grünweller, A. Comparison of broad-spectrum antiviral activities of the synthetic rocaglate CR-31-B (-) and the eIF4A-inhibitor Silvestrol. Antiviral Res., 2020, 175, 104706.
[http://dx.doi.org/10.1016/j.antiviral.2020.104706] [PMID: 31931103]
[56]
Liu, S.; Wang, W.; Brown, L.E.; Qiu, C.; Lajkiewicz, N.; Zhao, T.; Zhou, J.; Porco, J.A., Jr; Wang, T.T. A novel class of small molecule compounds that inhibit hepatitis C virus infection by targeting the prohibitin-CRaf pathway. EBioMedicine, 2015, 2(11), 1600-1606.
[http://dx.doi.org/10.1016/j.ebiom.2015.09.018] [PMID: 26870784]
[57]
Zhang, W.; Liu, S.; Maiga, R.I.; Pelletier, J.; Brown, L.E.; Wang, T.T.; Porco, J.A., Jr Chemical synthesis enables structural reengineering of aglaroxin c leading to inhibition bias for hepatitis C viral infection. J. Am. Chem. Soc., 2019, 141(3), 1312-1323.
[http://dx.doi.org/10.1021/jacs.8b11477] [PMID: 30590924]
[58]
Zhou, X.; Xu, L.; Wang, Y.; Wang, W.; Sprengers, D.; Metselaar, H.J.; Peppelenbosch, M.P.; Pan, Q. Requirement of the eukaryotic translation initiation factor 4F complex in hepatitis E virus replication. Antiviral Res., 2015, 124, 11-19.
[http://dx.doi.org/10.1016/j.antiviral.2015.10.016] [PMID: 26526587]
[59]
Fahrig, T.; Gerlach, I.; Horváth, E. A synthetic derivative of the natural product rocaglaol is a potent inhibitor of cytokine-mediated signaling and shows neuroprotective activity in vitro and in animal models of Parkinson’s disease and traumatic brain injury. Mol. Pharmacol., 2005, 67(5), 1544-1555.
[http://dx.doi.org/10.1124/mol.104.008177] [PMID: 15716464]
[60]
The Michael J. Fox Foundation for Parkinson’s Research. IMD-026259: An innovative drug for diseasemodifying treatment of Parkinson’s disease. Available from: https://www.michaeljfox.org/grant/imd-026259-innovative-drug-disease-modifying-treatment-parkinsons-disease
[61]
Liu, T.; Nair, S.J.; Lescarbeau, A.; Belani, J.; Peluso, S.; Conley, J.; Tillotson, B.; O’Hearn, P.; Smith, S.; Slocum, K.; West, K.; Helble, J.; Douglas, M.; Bahadoor, A.; Ali, J.; McGovern, K.; Fritz, C.; Palombella, V.J.; Wylie, A.; Castro, A.C.; Tremblay, M.R. Synthetic silvestrol analogues as potent and selective protein synthesis inhibitors. J. Med. Chem., 2012, 55(20), 8859-8878.
[http://dx.doi.org/10.1021/jm3011542] [PMID: 23025805]
[62]
Marion, F.; Kaloun, E.B; Lieby-Muller, F.; Perez, M.; Annereau, J.P.; Créancier, L. Flavagline derivatives EP3164393A1, 2018.
[63]
Thompson, P.A.; Eam, B.; Young, N.P.; Fish, S.; Chen, J.; Barrera, M.; Howard, H.; Sung, E.; Parra, A.; Staunton, J.; Chiang, G.G.; Gerson-Gurwitz, A.; Wegerski, C.J.; Nevarez, A.; Clarine, J.; Sperry, S.; Xiang, A.; Nilewski, C.; Packard, G.K.; Michels, T.; Tran, C.; Sprengeler, P.A.; Ernst, J.T.; Reich, S.H.; Webster, K.R. Targeting oncogene mRNA translation in B-Cell malignancies with eFT226, a potent and selective inhibitor of eIF4A. Mol. Cancer Ther., 2021, 20(1), 26-36.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0973] [PMID: 33037136]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy