Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Protective Effect of Algerian Genista vepres Pomel Plant Against Isoniazid and Rifampicin Induced Liver Injury in Wistar Albino Rats

Author(s): Lamia Zehani, Wafa Kerkatou, Souad Hamdouche, Somia Lassed, Ouahiba Boumaza, Fadila Benayache, Samir Benayache and Djamila Zama*

Volume 18, Issue 4, 2022

Published on: 08 December, 2021

Article ID: e161221196723 Pages: 9

DOI: 10.2174/1573407217666210922113300

Price: $65

Abstract

Background: The aim of the present study is to evaluate the protective effect of n- BuOH fraction of Genista vepres Pomel and Vitamin E against Isoniazid and Rifampicin (INH- RIF)-induced liver injury.

Methods: Male Wistar Albino rats were divided into eight equal groups treated with plant fraction (50 mg/kg, 100 mg/kg), vitamin E (100 mg/kg) and INH-RIF (100 mg/kg body weight /day each). At the end of the experiment, animals were dissected and samples (blood, liver tissue) were removed and isolated for biochemical and histological studies.

Results: Administration of INH-RIF for 21 days resulted in hepatic failure as evidenced by the elevation of biochemical parameters levels and hepatic oxidative stress, which was associated with extensive hepatic parenchyma alteration. The pretreatment of the rat with G. vepres Pomel attenuated the increase of hepatic dysfunction markers, significantly decreased the level of malondialdehyde (MDA), and increased GSH level, GPx and catalase activities compared to INH-RIF treated group. However, the Vitamin E co-treatment decreased MDA level and increased GPx activity but did not show any effect on catalase or GSH parameters. The histopathological studies on the liver of rats also supported that both plant fraction and vitamin E markedly reduced the toxicity of INH-RIF and preserved the histoarchitecture of liver tissue.

Conclusion: The results suggested that the n-BuOH fraction of G. vepres Pomel acts as a potent hepatoprotective agent against INH-RIF-induced Hepatic dysfunction in rats.

Keywords: Genista vepres Pomel, isoniazid, rifampicin, liver injury, lipid peroxidation, hepatoprotective effect.

Graphical Abstract

[1]
Rao, A.; Nayak, G.; Kumari, S.; Kalthur, S.G.; Mutalik, S.P.; Mutalik, S.; Adiga, S.K.; Kalthur, G. Exposure to first line anti-tuberculosis drugs in prepubertal age reduces the quality and functional competence of spermatozoa and oocytes in Swiss albino mice. Environ. Toxicol. Pharmacol., 2020, 73, 103292.
[http://dx.doi.org/10.1016/j.etap.2019.103292] [PMID: 31765964]
[2]
Shi, R.; Itagaki, N.; Sugawara, I. Overview of anti-tuberculosis (TB) drugs and their resistance mechanisms. Mini Rev. Med. Chem., 2007, 7(11), 1177-1185.
[http://dx.doi.org/10.2174/138955707782331740] [PMID: 18045221]
[3]
Ramappa, V.; Aithal, G.P. Hepatotoxicity related to anti-tuberculosis drugs: Mechanisms and management. J. Clin. Exp. Hepatol., 2013, 3(1), 37e49.
[http://dx.doi.org/10.1016/j.jceh.2012.12.001]
[4]
Sahu, N.; Mishra, G.; Chandra, H.K.; Nirala, S.K.; Bhadauria, M. Naringenin mitigates antituberculosis drugs induced hepatic and renal injury in rats. J. Tradit. Complement. Med., 2019, 10(1), 26-35.
[http://dx.doi.org/10.1016/j.jtcme.2019.01.001] [PMID: 31956555]
[5]
Kasote, D.M.; Katyare, S.S.; Hegde, M.V.; Bae, H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int. J. Biol. Sci., 2015, 11(8), 982-991.
[http://dx.doi.org/10.7150/ijbs.12096] [PMID: 26157352]
[6]
Noccioli, C.; Meini, L.; Loi, M.C.; Potenza, D.; Pistelli, L. A new alpinum isoflavone derivative from Genista pichisermolliana. Phytochem. Lett., 2011, 4, 342-344.
[http://dx.doi.org/10.1016/j.phytol.2011.07.005]
[7]
Benayache, F.; D’Ambola, M.; Cotugno, R.; Chaouche, M.; Benayache, S.; Benayache, F.; Braca, A.; De Tommasi, N. A new triterpene glucoside from Genista numidica. Nat. Prod. Commun., 2018, 13(9), 1934578X1801300902.
[http://dx.doi.org/10.1177/1934578X1801300902]
[8]
Fokialakis, N.; Alexi, X.; Aligiannis, N.; Boulaka, A.; Meligova, A.K.; Lambrinidis, G.; Kalpoutzakis, E.; Pratsinis, H.; Cheilari, A.; Mitsiou, D.J.; Mitakou, S.; Alexis, M.N. Biological evaluation of isoflavonoids from Genista halacsyi using estrogen-target cells: Activities of glucosides compared to aglycones. PLoS One, 2019, 14(1), e0210247.
[http://dx.doi.org/10.1371/journal.pone.0210247] [PMID: 30620769]
[9]
Meza, A.; Rojas, P.; Cely-Veloza, W.; Guerrero-Perilla, C.; Coy-Barrera, E. Variation of isoflavone content and DPPH• scavenging capacity of phytohormone-treated seedlings after in vitro germination of cape broom (Genista monspessulana). S. Afr. J. Bot., 2020, 130, 64-74.
[http://dx.doi.org/10.1016/j.sajb.2019.12.006]
[10]
Simões, M.A.M.; Pinto, D.C.G.A.; Neves, B.M.R.; Silva, A.M.S. Flavonoid profile of the Genista tridentata l., a species used traditionally to treat inflammatory processes. Molecules, 2020, 25(4), 812.
[http://dx.doi.org/10.3390/molecules25040812] [PMID: 32069907]
[11]
Bencherchar, I.; Demirtas, I.; Altun, M.; Gul, F.; Sarri, D.; Benayache, F.; Benayache, S.; Mekkiou, R. HPLC analysis, anti-oxidant activity of Genista ferox and its anti-proliferative effect in HeLa cell line. Bangladesh J. Pharmacol., 2017, 12(3), 260.
[http://dx.doi.org/10.3329/bjp.v12i3.32310]
[12]
Sebaihi-Harzoun, S.; Atmani-Kilani, D.; Debbache-Benaida, N.; Nana, F.; Evain-Bana, E.; Kirsch, G.; Tabart, J.; Kevers, C.; Atmani, D. Phytochemical composition, antioxidant and anti-proliferative properties of Genista ferox Poirret. Aerial parts. Eur. J. Integr. Med., 2018, S1876-3820(18), 30164-30171.
[http://dx.doi.org/10.1016/j.eujim.2018.08.006]
[13]
Maanani, D.; Segueni, N.; Rhouati, S.; Çakmak, Y.S.; Asan-Ozusaglam, M.; May, A.; Zellagui, A.; Akkal, S. Phenolic contents. in vitro antioxidant and antimicrobial activities of Genista microcephala coss. dur. ASN, 2018, 5(2), 8-22.
[http://dx.doi.org/10.2478/asn-2018-0016]
[14]
Barek, S.; Rahmoun, M.N.; Aissaoui, M.; El Haci, I.A.; Bensouici, C.; Choukchou-Braham, N. Phenolic contents, antioxidant, and antibacterial activities of the algerian Genista saharae solvent extracts. J. Herbs Spices Med. Plants, 2019, 26(1), 1-13.
[15]
Lograda, T.; Chaker, A.N.; Chalchat, J.C.; Ramdani, M.; Silini, H.; Figueredo, G.; Chalarde, P. Chemical composition and antimicrobial activity of essential oils of Genista ulicina and G. vepres. Nat. Prod. Commun., 2010, 5(5), 835-838.
[http://dx.doi.org/10.1177/1934578X1000500532] [PMID: 20521558]
[16]
Quezel, P.; Santa, S. Nouvelle Flore de l’Algérie et des Régions Désertiques Méridionales; Editions du C.N.R.S. Paris, 1962, Vol. I, p. 474.
[17]
Mihara, M.; Uchiyama, M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem., 1978, 86(1), 271-278.
[http://dx.doi.org/10.1016/0003-2697(78)90342-1] [PMID: 655387]
[18]
Ellman, G.L. Plasma antioxidants. Arch. Biochem. Biophyis., 1959, 82, 70-77.
[http://dx.doi.org/10.1016/0003-9861(59)90090-6]
[19]
Flohé, L.; Günzler, W.A. Assays of glutathione peroxidase. Methods Enzymol., 1984, 105, 114-121.
[http://dx.doi.org/10.1016/S0076-6879(84)05015-1] [PMID: 6727659]
[20]
Claiborne, A. Catalase activity. In: CRC Handbook of Methods for Oxygen Radical Research; Greenwald RA, 1985; pp. 283-284.
[21]
Koller, A. Total serum protein. Kaplan A et al. Clin Chem the C.V. Mosby Co. St Louis. Toronto. Princeton 1984; 1316-1324 and 418. Available at : https://www.spinreact.com/files/Inserts/MD/BIOQUIMICA/MDBSIS30_PROT_TOT_2017.pdf
[22]
Nwidu, L.L.; Oboma, Y.I. Telfairia occidentalis (Cucurbitaceae) pulp extract mitigates rifampicin-isoniazid-induced hepatotoxicity in an in vivo rat model of oxidative stress. J. Integr. Med., 2019, 17(1), 46-56.
[http://dx.doi.org/10.1016/j.joim.2018.11.008] [PMID: 30555014]
[23]
Palipoch, S.; Punsawad, C.; Koomhin, P.; Suwannalert, P. Hepatoprotective effect of curcumin and alpha-tocopherol against cisplatin-induced oxidative stress. BMC Complement. Altern. Med., 2014, 14, 111.
[http://dx.doi.org/10.1186/1472-6882-14-111] [PMID: 24674233]
[24]
Li, S.; Tan, H-Y.; Wang, N.; Zhang, Z-J.; Lao, L.; Wong, C-W.; Feng, Y. The role of oxidative stress and antioxidants in liver diseases. Int. J. Mol. Sci., 2015, 16(11), 26087-26124.
[http://dx.doi.org/10.3390/ijms161125942] [PMID: 26540040]
[25]
Yue, J.; Peng, R. Does CYP2E1 play a major role in the aggravation of isoniazid toxicity by rifampicin in human hepatocytes? Br. J. Pharmacol., 2009, 157(3), 331-333.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00173.x] [PMID: 19371336]
[26]
Ruan, L.Y.; Fan, J.T.; Hong, W.; Zhao, H.; Li, M.H.; Jiang, L.; Fu, Y.H.; Xing, Y.X.; Chen, C.; Wang, J.S. Isoniazid-induced hepatotoxicity and neurotoxicity in rats investigated by 1H NMR based metabolomics approach. Toxicol. Lett., 2018, 295, 256-269.
[http://dx.doi.org/10.1016/j.toxlet.2018.05.032] [PMID: 29936297]
[27]
Nannelli, A.; Chirulli, V.; Longo, V.; Gervasi, P.G. Expression and induction by rifampicin of CAR- and PXR-regulated CYP2B and CYP3A in liver, kidney and airways of pig. Toxicology, 2008, 252(1-3), 105-112.
[http://dx.doi.org/10.1016/j.tox.2008.08.004] [PMID: 18786598]
[28]
Shih, T.Y.; Ho, S-C.; Hsiong, C-H.; Huang, T-Y.; Hu, O.Y-P. Selected pharmaceutical excipient prevent isoniazid and rifampicin induced hepatotoxicity. Curr. Drug Metab., 2013, 14(6), 720-728.
[http://dx.doi.org/10.2174/1389200211314060008] [PMID: 23701163]
[29]
Weber, L.W.; Boll, M.; Stampfl, A. Hepatotoxicity and mechanism of action of haloalkanes: Carbon tetrachloride as a toxicological model. Crit. Rev. Toxicol., 2003, 33(2), 105-136.
[http://dx.doi.org/10.1080/713611034] [PMID: 12708612]
[30]
Zama, D.; Meraihi, Z.; Tebibel, S.; Benayssa, W.; Benayache, F.; Benayache, S.; Vlietinck, A.J. Chlorpyrifos-induced oxidative stress and tissue damage in the liver, kidney, brain and fetus in pregnant rats: The protective role of the butanolic extract of Paronychia argentea L. Indian J. Pharmacol., 2007, 39(3), 145-150.
[http://dx.doi.org/10.4103/0253-7613.33434]
[31]
Jiménez-Arellanes, M.A.; Gutiérrez-Rebolledo, G.A.; Meckes- Fischer, M.; León-Díaz, R. Medical plant extracts and natural compounds with a hepatoprotective effect against damage caused by antitubercular drugs: A review. Asian Pac. J. Trop. Med., 2016, 9(12), 1141-1149.
[http://dx.doi.org/10.1016/j.apjtm.2016.10.010] [PMID: 27955741]
[32]
Pari, L.; Kumar, N.A. Hepatoprotective activity of Moringa oleifera on antitubercular drug-induced liver damage in rats. J. Med. Food, 2002, 5(3), 171-177.
[http://dx.doi.org/10.1089/10966200260398206] [PMID: 12495589]
[33]
Wang, C.; Fan, R.Q.; Zhang, Y.X.; Nie, H.; Li, K. Naringenin protects against isoniazid- and rifampicin-induced apoptosis in hepatic injury. World J. Gastroenterol., 2016, 22(44), 9775-9783.
[http://dx.doi.org/10.3748/wjg.v22.i44.9775] [PMID: 27956801]
[34]
Thattakudian Sheik Uduman, M.S.; Sundarapandian, R.; Muthumanikkam, A.; Kalimuthu, G.; Parameswari, S.A.; Vasanthi Srinivas, T.R.; Karunakaran, G. Protective effect of methanolic extract of Annona squamosa Linn in isoniazid-rifampicin induced hepatotoxicity in rats. Pak. J. Pharm. Sci., 2011, 24(2), 129-134.
[PMID: 21454160]
[35]
Jyothi Reddy, G.; Prasanth Reddy, V.; Sreepavani, M.; Rajaram, C.; Nelson Kumar, S.; Kanhere, R.S. Evaluation of hepatoprotective potential of ethanolic extract of Ixora pavetta against isoniazid and rifampicin induced hepatotoxicity in rats. Drug Invent. Today, 2013, 5(3), 201-206.
[http://dx.doi.org/10.1016/j.dit.2013.06.007]
[36]
Obogwu, M.B.; Akindele, A.J.; Adeyemi, O.O. Hepatoprotective and in vivo antioxidant activities of the hydroethanolic leaf extract of Mucuna pruriens (Fabaceae) in antitubercular drugs and alcohol models. Chin. J. Nat. Med., 2014, 12(4), 0273-0283.
[http://dx.doi.org/10.1016/S1875-5364(14)60054-6]
[37]
Tian, L.; Cai, Q.; Wei, H. Alterations of antioxidant enzymes and oxidative damage to macromolecules in different organs of rats during aging. Free Radic. Biol. Med., 1998, 24(9), 1477-1484.
[http://dx.doi.org/10.1016/S0891-5849(98)00025-2] [PMID: 9641266]
[38]
Bebe, F.N.; Panemangalore, M. Exposure to low doses of endosulfan and chlorpyrifos modifies endogenous antioxidants in tissues of rats. J. Environ. Sci. Health B, 2003, 38(3), 349-363.
[http://dx.doi.org/10.1081/PFC-120019901] [PMID: 12716052]
[39]
Bais, B.; Saiju, P. Ameliorative effect of Leucas cephalotes extract on isoniazid and rifampicin induced hepatotoxicity. Asian Pac. J. Trop. Biomed., 2014, 4(2), S633-S638.
[http://dx.doi.org/10.12980/APJTB.4.2014APJTB-2014-0236]
[40]
Pal, R.; Rana, S.V.; Vaiphei, K.; Singh, K. Isoniazid-rifampicin induced lipid changes in rats. Clin. Chim. Acta, 2008, 389(1-2), 55-60.
[http://dx.doi.org/10.1016/j.cca.2007.11.028] [PMID: 18157944]
[41]
Kumar, R.; Bhatia, V.; Khanal, S.; Sreenivas, V.; Gupta, S.D.; Panda, S.K.; Acharya, S.K. Antituberculosis therapy-induced acute liver failure: Magnitude, profile, prognosis, and predictors of outcome. Hepatology, 2010, 51(5), 1665-1674.
[http://dx.doi.org/10.1002/hep.23534] [PMID: 20196116]
[42]
Khan, F.Y.; Rasoul, F. Rifampicin-isoniazid induced fatal fulminant hepatitis during treatment of latent tuberculosis: A case report and literature review. Indian J. Crit. Care Med., 2010, 14(2), 97-100.
[http://dx.doi.org/10.4103/0972-5229.68226] [PMID: 20859496]
[43]
Hassan, H.M.; Guo, H.; Yousef, B.A.; Ping-Ping, D.; Zhang, L.; Jiang, Z. Dexamethasone pretreatment alleviates isoniazid/lipopolysaccharide hepatotoxicity: inhibition of inflammatory and oxidative stress. Front. Pharmacol., 2017, 8(MAR), 133.
[http://dx.doi.org/10.3389/fphar.2017.00133] [PMID: 28360859]
[44]
Bhadauria, S.; Mishra, R.; Kanchan, R.; Tripathi, C.; Srivastava, A.; Tiwari, A.; Sharma, S. Isoniazid-induced apoptosis in HepG2 cells: Generation of oxidative stress and Bcl-2 down-regulation. Toxicol. Mech. Methods, 2010, 20(5), 242-251.
[http://dx.doi.org/10.3109/15376511003793325] [PMID: 20433247]
[45]
Chowdhury, A.; Santra, A.; Bhattacharjee, K.; Ghatak, S.; Saha, D.R.; Dhali, G.K. Mitochondrial oxidative stress and permeability transition in isoniazid and rifampicin induced liver injury in mice. J. Hepatol., 2006, 45(1), 117-126.
[http://dx.doi.org/10.1016/j.jhep.2006.01.027] [PMID: 16545483]
[46]
Zhou, J.; Zhang, X.; Tang, H.; Yu, J.; Zu, X.; Xie, Z.; Yang, X.; Hu, J.; Tan, F.; Li, Q.; Lei, X. Nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) in autophagy-induced hepatocellular carcinoma. Clin. Chim. Acta, 2020, 506, 1-8.
[http://dx.doi.org/10.1016/j.cca.2020.02.028] [PMID: 32109431]
[47]
Verma, A.K.; Yadav, A.; Singh, S.V.; Mishra, P.; Rath, S.K. Isoniazid induces apoptosis: Role of oxidative stress and inhibition of nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Life Sci., 2018, 199, 23-33.
[http://dx.doi.org/10.1016/j.lfs.2018.02.037] [PMID: 29499281]
[48]
Grafakou, M-E.; Barda, C.; Tomou, E-M.; Skaltsa, H. The genus Genista L.: A rich source of bioactive flavonoids. Phytochem., 2021, 181, 112574.
[http://dx.doi.org/10.1016/j.phytochem.2020.112574] [PMID: 33152578]
[49]
Dob, T. Contribution à l'étude phytochimique de quelques plantes algériennes: Huile essentielles: Artemisia Judaica L, Lavandula dentata L., Thymus fontanessi Boisst et Reut, Pinus pinea et Pinus pinaster Ait .Alcaloides et Flavonoides Genista vepres Pomel (Genista kabylica Coss). Thèse de Doctorat d’état en chimie. Université des sciences et de la technologie Houari BOUMEDIENNE. Algeria. December 2007. Available at: https://biblio.univ-annaba.dz/wp-content/uploads/2015/01/SAADOU-Nina.pdf.
[50]
John, P.; Kale, PP. Prominence of oxidative stress in the management of anti-tuberculosis drugs related Hepatotoxicity. Drug Metab Lett, 2019, 13(2), 95, 101.
[http://dx.doi.org/10.2174/1872312813666190716155930]
[51]
Aliouche, L.; Larguet, H.; Amrani, A.; Leon, F.; Brouard, I.; Benayache, S.; Zama, D.; Meraihi, Z.; Benayache, F. Isolation, antioxidant and antimicrobial activities of ecdysteroids from Serratula cichoracea. Curr. Bioact. Compd., 2018, 14, 60-66.
[http://dx.doi.org/10.2174/1573407214666171211154922]
[52]
Djemam, N.; Lassed, S.; Gül, F.; Altun, M.; Monteiro, M.; Menezes-Pinto, D.; Benayache, S.; Benayache, F.; Zama, D.; Demirtas, I.; Morato, M. Characterization of ethyl acetate and n-butanol extracts of Cymbopogon schoenanthus and Helianthemum lippii and their effect on the smooth muscle of the rat distal colon. J. Ethnopharmacol., 2020, 252, 112613.
[http://dx.doi.org/10.1016/j.jep.2020.112613] [PMID: 31981748]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy