Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

Recombinant Human Regenerating Gene 4 Attenuates the Severity of Osteoarthritis by Promoting the Proliferation of Articular Chondrocyte in an Animal Model

Author(s): Xue-jia Li, Fei Zhu, Bo Li, Dong Zhang* and Cheng-Wei Liang*

Volume 15, Issue 4, 2022

Published on: 12 January, 2022

Article ID: e010921196044 Pages: 7

DOI: 10.2174/1874467214666210901163144

Price: $65

Abstract

Introduction: Osteoarthritis (OA) is a dominant cause of morbidity and disability. As a chronic disease, its etiological risk factors and most therapies at present, are empirical and symptomatic. Regenerating gene 4 (Reg4) is involved in cell growth, survival, regeneration, adhesion, and resistance to apoptosis, which are partially thought to be the pathogenic mechanisms of OA. However, the proper role of Reg4 in OA is still unknown.

Methods: In this study, a consecutive administration of rhReg4 was applied to normal Sprague- Dawley rats or rats after OA induction. Histological changes and chondrocyte proliferation in the articular cartilage were measured.

Results: We found that RhReg4 promotes chondrocyte proliferation in normal rats, and RhReg4 attenuated the severity of OA in rats by promoting chondrocytes’ proliferation in OA rats.

Conclusion: In conclusion, recombinant human regenerating gene 4 (rhReg4) attenuates the severity of osteoarthritis in OA animal models and may be used as a new method for the treatment of osteoarthritis.

Keywords: Osteoarthritis, chondrocytes, regenerating gene 4, animal model, rats, apoptosis.

Graphical Abstract

[1]
Vina, E.R.; Kwoh, C.K. Epidemiology of osteoarthritis: Literature update. Curr. Opin. Rheumatol., 2018, 30(2), 160-167.
[http://dx.doi.org/10.1097/BOR.0000000000000479] [PMID: 29227353]
[2]
Hilibrand, A.S.; Spindler, K.; O’Keefe, R.J. Demonstrating the value of orthopaedic surgery through multicenter trials: AOA critical issues. J. Bone Joint Surg. Am., 2015, 97(7), e35.
[http://dx.doi.org/10.2106/JBJS.N.00159] [PMID: 25834087]
[3]
Phull, A.R.; Eo, S.H.; Abbas, Q.; Ahmed, M.; Kim, S.J. Applications of chondrocyte-based cartilage engineering: An overview. BioMed Res. Int., 2016, 2016, 1879837.
[http://dx.doi.org/10.1155/2016/1879837] [PMID: 27631002]
[4]
Mardones, R.; Jofré, C.M.; Minguell, J.J. Cell therapy and tissue engineering approaches for cartilage repair and/or regeneration. Int. J. Stem Cells, 2015, 8(1), 48-53.
[http://dx.doi.org/10.15283/ijsc.2015.8.1.48] [PMID: 26019754]
[5]
Wojdasiewicz, P.; Poniatowski, Ł.A.; Szukiewicz, D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm., 2014, 2014, 561459.
[http://dx.doi.org/10.1155/2014/561459] [PMID: 24876674]
[6]
Zhang, Z.H.; Li, H.X.; Qi, Y.P.; Du, L.J.; Zhu, S.Y.; Wu, M.Y.; Lu, H.L.; Yu, Y.; Han, W. Recombinant human midkine stimulates proliferation of articular chondrocytes. Cell Prolif., 2010, 43(2), 184-194.
[http://dx.doi.org/10.1111/j.1365-2184.2010.00668.x] [PMID: 20447063]
[7]
Wang, W.; Rigueur, D.; Lyons, K.M. TGFβ signaling in cartilage development and maintenance. Birth Defects Res. C Embryo Today, 2014, 102(1), 37-51.
[http://dx.doi.org/10.1002/bdrc.21058] [PMID: 24677722]
[8]
Shi, S.; Mercer, S.; Eckert, G.J.; Trippel, S.B. Growth factor transgenes interactively regulate articular chondrocytes. J. Cell. Biochem., 2013, 114(4), 908-919.
[http://dx.doi.org/10.1002/jcb.24430] [PMID: 23097312]
[9]
Clérigues, V.; Murphy, C.L.; Guillén, M.I.; Alcaraz, M.J. Haem oxygenase-1 induction reverses the actions of interleukin-1β on hypoxia-inducible transcription factors and human chondrocyte metabolism in hypoxia. Clin. Sci. (Lond.), 2013, 125(2), 99-108.
[http://dx.doi.org/10.1042/CS20120491] [PMID: 23406266]
[10]
Ismail, E.; Nofal, O.K.; Sakthiswary, R.; Shaharir, S.S.; Sridharan, R. The clinical significance of interleukin-1 receptor antagonist +2018 polymorphism in rheumatoid arthritis. PLoS One, 2016, 11(4), e0153752.
[http://dx.doi.org/10.1371/journal.pone.0153752] [PMID: 27105431]
[11]
Maldonado, M.; Nam, J. The role of changes in extracellular matrix of cartilage in the presence of inflammation on the pathology of osteoarthritis. BioMed Res. Int., 2013, 2013, 284873.
[http://dx.doi.org/10.1155/2013/284873] [PMID: 24069595]
[12]
Lee, S.G.; Lee, E.J.; Park, W.D.; Kim, J.B.; Kim, E.O.; Choi, S.W. Anti-inflammatory and anti-osteoarthritis effects of fermented Achyranthes japonica Nakai. J. Ethnopharmacol., 2012, 142(3), 634-641.
[http://dx.doi.org/10.1016/j.jep.2012.05.020] [PMID: 22668504]
[13]
Li, A.; Crimmins, D.L.; Luo, Q.; Hartupee, J.; Landt, Y.; Ladenson, J.H.; Wilson, D.; Anant, S.; Dieckgraefe, B.K. Expression of a novel regenerating gene product, Reg IV, by high density fermentation in Pichia pastoris: production, purification, and characterization. Protein Expr. Purif., 2003, 31(2), 197-206.
[http://dx.doi.org/10.1016/S1046-5928(03)00164-5] [PMID: 14550637]
[14]
Numata, M.; Oshima, T. Significance of regenerating islet-derived type IV gene expression in gastroenterological cancers. World J. Gastroenterol., 2012, 18(27), 3502-3510.
[http://dx.doi.org/10.3748/wjg.v18.i27.3502] [PMID: 22826614]
[15]
Hu, G.; Shen, J.; Cheng, L.; Xiang, D.; Zhang, Z.; He, M.; Lu, H.; Zhu, S.; Wu, M.; Yu, Y.; Wang, X.; Han, W. Purification of a bioactive recombinant human Reg IV expressed in Escherichia coli. Protein Expr. Purif., 2010, 69(2), 186-190.
[http://dx.doi.org/10.1016/j.pep.2009.07.018] [PMID: 19699332]
[16]
Mooney, R.A.; Sampson, E.R.; Lerea, J.; Rosier, R.N.; Zuscik, M.J. High-fat diet accelerates progression of osteoarthritis after meniscal/ligamentous injury. Arthritis Res. Ther., 2011, 13(6), R198.
[http://dx.doi.org/10.1186/ar3529] [PMID: 22152451]
[17]
Roseti, L.; Desando, G.; Cavallo, C.; Petretta, M.; Grigolo, B. Articular cartilage regeneration in osteoarthritis. Cells, 2019, 8(11), 1305.
[http://dx.doi.org/10.3390/cells8111305] [PMID: 31652798]
[18]
Decker, R.S.; Koyama, E.; Pacifici, M. Articular cartilage: structural and developmental intricacies and questions. Curr. Osteoporos. Rep., 2015, 13(6), 407-414.
[http://dx.doi.org/10.1007/s11914-015-0290-z] [PMID: 26408155]
[19]
Bottini, M.; Bhattacharya, K.; Fadeel, B.; Magrini, A.; Bottini, N.; Rosato, N. Nanodrugs to target articular cartilage: An emerging platform for osteoarthritis therapy. Nanomedicine, 2016, 12(2), 255-268.
[http://dx.doi.org/10.1016/j.nano.2015.09.013] [PMID: 26707894]
[20]
Klag, K.A.; Horton, W.A. Advances in treatment of achondroplasia and osteoarthritis. Hum. Mol. Genet., 2016, 25(R1), R2-R8.
[http://dx.doi.org/10.1093/hmg/ddv419] [PMID: 26443596]
[21]
Pei, M.; Li, J.T.; Shoukry, M.; Zhang, Y. A review of decellularized stem cell matrix: a novel cell expansion system for cartilage tissue engineering. Eur. Cell. Mater., 2011, 22, 333-343.
[http://dx.doi.org/10.22203/eCM.v022a25] [PMID: 22116651]
[22]
Loeser, R.F. Integrins and chondrocyte-matrix interactions in articular cartilage. Matrix Biol., 2014, 39, 11-16.
[http://dx.doi.org/10.1016/j.matbio.2014.08.007] [PMID: 25169886]
[23]
Paiva, K.B.; Granjeiro, J.M. Bone tissue remodeling and development: focus on matrix metalloproteinase functions. Arch. Biochem. Biophys., 2014, 561, 74-87.
[http://dx.doi.org/10.1016/j.abb.2014.07.034] [PMID: 25157440]
[24]
Adams, S.L.; Cohen, A.J.; Lassová, L. Integration of signaling pathways regulating chondrocyte differentiation during endochondral bone formation. J. Cell. Physiol., 2007, 213(3), 635-641.
[http://dx.doi.org/10.1002/jcp.21262] [PMID: 17886256]
[25]
Guan, P.P.; Guo, J.W.; Yu, X.; Wang, Y.; Wang, T.; Konstantopoulos, K.; Wang, Z.Y.; Wang, P. The role of cyclooxygenase-2, interleukin-1β and fibroblast growth factor-2 in the activation of matrix metalloproteinase-1 in sheared-chondrocytes and articular cartilage. Sci. Rep., 2015, 5, 10412.
[http://dx.doi.org/10.1038/srep10412] [PMID: 25992485]
[26]
Chong, K.W.; Chanalaris, A.; Burleigh, A.; Jin, H.; Watt, F.E.; Saklatvala, J.; Vincent, T.L. Fibroblast growth factor 2 drives changes in gene expression following injury to murine cartilage in vitro and in vivo. Arthritis Rheum., 2013, 65(9), 2346-2355.
[http://dx.doi.org/10.1002/art.38039] [PMID: 23740825]
[27]
Arner, J.W.; Irvine, J.N.; Zheng, L.; Gale, T.; Thorhauer, E.; Hankins, M.; Abebe, E.; Tashman, S.; Zhang, X.; Harner, C.D. The effects of anterior cruciate ligament deficiency on the meniscus and articular cartilage: A novel dynamic in vitro pilot study. Orthop. J. Sports Med., 2016, 4(4), 2325967116639895.
[http://dx.doi.org/10.1177/2325967116639895] [PMID: 27104208]
[28]
Chan, D.D.; Xiao, W.F.; Li, J.; de la Motte, C.A.; Sandy, J.D.; Plaas, A. Deficiency of hyaluronan synthase 1 (Has1) results in chronic joint inflammation and widespread intra-articular fibrosis in a murine model of knee joint cartilage damage. Osteoarthritis Cartilage, 2015, 23(11), 1879-1889.
[http://dx.doi.org/10.1016/j.joca.2015.06.021] [PMID: 26521733]
[29]
Chen, D.; Shen, J.; Zhao, W.; Wang, T.; Han, L.; Hamilton, J.L.; Im, H.J. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res., 2017, 5, 16044.
[http://dx.doi.org/10.1038/boneres.2016.44] [PMID: 28149655]
[30]
Ryu, J.S.; Jung, Y.H.; Cho, M.Y.; Yeo, J.E.; Choi, Y.J.; Kim, Y.I.; Koh, Y.G. Co-culture with human synovium-derived mesenchymal stem cells inhibits inflammatory activity and increases cell proliferation of sodium nitroprusside-stimulated chondrocytes. Biochem. Biophys. Res. Commun., 2014, 447(4), 715-720.
[http://dx.doi.org/10.1016/j.bbrc.2014.04.077] [PMID: 24769201]
[31]
Richter, D.L.; Schenck, Jr, R.C.; Wascher, D.C.; Treme, G. Knee Articular cartilage repair and restoration techniques: a review of the literature. Sports Health, 2016, 8(2), 153-160.
[http://dx.doi.org/10.1177/1941738115611350] [PMID: 26502188]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy