Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

MiR-129-5p 通过靶向 SOX4 和 RUNX1 提高 NSCLC 细胞的放射敏感性

卷 21, 期 8, 2021

发表于: 15 April, 2021

页: [702 - 712] 页: 11

弟呕挨: 10.2174/1568009621666210415094350

价格: $65

摘要

背景:microRNA (miRNA) 的失调在非小细胞肺癌 (NSCLC) 的放射敏感性中占有突出地位。 MiR-129-5p 可以阻断多种肿瘤的发展。然而,miR-129-5p 是否调节 NSCLC 细胞的放射敏感性仍然未知。 目的:本研究旨在探讨miR-129-5p在NSCLC放射敏感性中的作用及其机制。 方法:使用 A549 和 H1299 细胞构建抗辐射 NSCLC 细胞系(A549-R 和 H1299-R)。采用定量实时聚合酶链反应 (qRT-PCR) 来量化 miR-129-5p、SRY-box 转录因子 4 (SOX4) mRNA 和 RUNX 家族转录因子 1 (RUNX1) mRNA 的表达水平。流式细胞术检测细胞凋亡和细胞周期。使用细胞计数试剂盒-8 (CCK-8) 测定和集落形成实验来测量细胞增殖。通过蛋白质印迹检查γ-H2AX以确认DNA损伤。应用双荧光素酶报告基因实验来分析 miR-129-5p、RUNX1 和 SOX4 之间的相互作用。结果:在 A549-R 和 H1299-R 细胞中,与野生型细胞系相比,miR-129-5p 表达显着降低,而 SOX4 和 RUNX1 表达增加。将 miR-129-5p 转染到 NSCLC 细胞系中可显着诱导细胞凋亡、DNA 损伤、细胞周期停滞,并抑制细胞增殖和集落形成。 RUNX1和SOX4被证实为miR-129-5p的靶基因,RUNX1或SOX4的恢复可以抵消miR-129-5p对A549-R细胞的影响。 结论:MiR-129-5p 通过靶向 RUNX1 和 SOX4 使 A549-R 和 H1299-R 细胞对辐射敏感。

关键词: NSCLC、miR-129-5p、RUNX1、SOX4、放射敏感性、qTR-PCR。

图形摘要

[1]
Hirsch, F.R.; Scagliotti, G.V.; Mulshine, J.L.; Kwon, R.; Curran, W.J., Jr; Wu, Y.L.; Paz-Ares, L. Lung cancer: current therapies and new targeted treatments. Lancet, 2017, 389(10066), 299-311.
[http://dx.doi.org/10.1016/S0140-6736(16)30958-8] [PMID: 27574741]
[2]
Duma, N.; Santana-Davila, R.; Molina, J.R. Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment. Mayo Clin. Proc., 2019, 94(8), 1623-1640.
[http://dx.doi.org/10.1016/j.mayocp.2019.01.013] [PMID: 31378236]
[3]
Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature, 2018, 553(7689), 446-454.
[http://dx.doi.org/10.1038/nature25183] [PMID: 29364287]
[4]
Ko, E.C.; Raben, D.; Formenti, S.C. The Integration of Radiotherapy with immunotherapy for the treatment of non-small cell lung cancer. Clin. Cancer Res., 2018, 24(23), 5792-5806.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-3620] [PMID: 29945993]
[5]
Jin, Z.; Guan, L.; Xiang, G.M.; Gao, B.A. Radiation resistance of the lung adenocarcinoma is related to the AKT-Onzin-POU5F1 axis. Biochem. Biophys. Res. Commun., 2018, 499(3), 538-543.
[http://dx.doi.org/10.1016/j.bbrc.2018.03.185] [PMID: 29596836]
[6]
Xue, Y.; Ni, T.; Jiang, Y.; Li, Y. Long noncoding RNA GAS5 inhibits tumorigenesis and enhances radiosensitivity by suppressing miR-135b expression in non-small cell lung cancer. Oncol. Res., 2017, 25(8), 1305-1316.
[http://dx.doi.org/10.3727/096504017X14850182723737] [PMID: 28117028]
[7]
Li, G.; Xie, J.; Wang, J. Tumor suppressor function of miR-129-5p in lung cancer. Oncol. Lett., 2019, 17(6), 5777-5783.
[http://dx.doi.org/10.3892/ol.2019.10241] [PMID: 31186804]
[8]
Ma, Z.; Cai, H.; Zhang, Y.; Chang, L.; Cui, Y. MiR-129-5p inhibits non-small cell lung cancer cell stemness and chemoresistance through targeting DLK1. Biochem. Biophys. Res. Commun., 2017, 490(2), 309-316.
[http://dx.doi.org/10.1016/j.bbrc.2017.06.041] [PMID: 28619508]
[9]
Stewart, D.J. Wnt signaling pathway in non-small cell lung cancer. J. Natl. Cancer Inst., 2014, 106(1), djt356.
[http://dx.doi.org/10.1093/jnci/djt356] [PMID: 24309006]
[10]
Wu, D.; Li, L.; Yan, W. Knockdown of TC-1 enhances radiosensitivity of non-small cell lung cancer via the Wnt/β-catenin pathway. Biol. Open, 2016, 5(4), 492-498.
[http://dx.doi.org/10.1242/bio.017608] [PMID: 27029901]
[11]
Stewart, D.J.; Chang, D.W.; Ye, Y.; Spitz, M.; Lu, C.; Shu, X.; Wampfler, J.A.; Marks, R.S.; Garces, Y.I.; Yang, P.; Wu, X. Wnt signaling pathway pharmacogenetics in non-small cell lung cancer. Pharmacogenomics J., 2014, 14(6), 509-522.
[http://dx.doi.org/10.1038/tpj.2014.21] [PMID: 24980784]
[12]
Chang, J.; Gao, F.; Chu, H.; Lou, L.; Wang, H.; Chen, Y. miR-363-3p inhibits migration, invasion, and epithelial-mesenchymal transition by targeting NEDD9 and SOX4 in non-small-cell lung cancer. J. Cell. Physiol., 2020, 235(2), 1808-1820.
[http://dx.doi.org/10.1002/jcp.29099] [PMID: 31332786]
[13]
Chen, Y.; Zhang, L.; Liu, L.; Sun, S.; Zhao, X.; Wang, Y.; Zhang, Y.; Du, J.; Gu, L. Rasip1 is a RUNX1 target gene and promotes migration of NSCLC cells. Cancer Manag. Res., 2018, 10, 4537-4552.
[http://dx.doi.org/10.2147/CMAR.S168438] [PMID: 30349386]
[14]
Zhu, R.; Yang, X.; Xue, X.; Shen, M.; Chen, F.; Chen, X.; Tsai, Y.; Keng, P.C.; Chen, Y.; Lee, S.O.; Chen, Y. Neuroendocrine differentiation contributes to radioresistance development and metastatic potential increase in non-small cell lung cancer. Biochim. Biophys. Acta Mol. Cell Res., 2018, 1865(12), 1878-1890.
[http://dx.doi.org/10.1016/j.bbamcr.2018.09.005] [PMID: 30262435]
[15]
Luo, J.; Chen, J.; He, L. mir-129-5p Attenuates irradiation-induced autophagy and decreases radioresistance of breast cancer cells by targeting HMGB1. Med. Sci. Monit., 2015, 21, 4122-4129.
[http://dx.doi.org/10.12659/MSM.896661] [PMID: 26720492]
[16]
Shen, Q.; Jiang, Y. LncRNA NNT-AS1 promotes the proliferation, and invasion of lung cancer cells via regulating miR-129-5p expression. Biomed. Pharmacother., 2018, 105, 176-181.
[http://dx.doi.org/10.1016/j.biopha.2018.05.123] [PMID: 29857296]
[17]
Xu, C.; Du, Z.; Ren, S.; Liang, X.; Li, H. MiR-129-5p sensitization of lung cancer cells to etoposide-induced apoptosis by reducing YWHAB. J. Cancer, 2020, 11(4), 858-866.
[http://dx.doi.org/10.7150/jca.35410] [PMID: 31949489]
[18]
Jiang, Z.; Zhang, Y.; Chen, X.; Wu, P.; Chen, D. Inactivation of the Wnt/β-catenin signaling pathway underlies inhibitory role of microRNA-129-5p in epithelial-mesenchymal transition and angiogenesis of prostate cancer by targeting ZIC2. Cancer Cell Int., 2019, 19, 271.
[http://dx.doi.org/10.1186/s12935-019-0977-9] [PMID: 31649488]
[19]
Cao, J.; Wang, Q.; Wu, G.; Li, S.; Wang, Q. miR-129-5p inhibits gemcitabine resistance and promotes cell apoptosis of bladder cancer cells by targeting Wnt5a. Int. Urol. Nephrol., 2018, 50(10), 1811-1819.
[http://dx.doi.org/10.1007/s11255-018-1959-x] [PMID: 30117016]
[20]
Zeng, A.; Yin, J.; Li, Y.; Li, R.; Wang, Z.; Zhou, X.; Jin, X.; Shen, F.; Yan, W.; You, Y. miR-129-5p targets Wnt5a to block PKC/ERK/NF-κB and JNK pathways in glioblastoma. Cell Death Dis., 2018, 9(3), 394.
[http://dx.doi.org/10.1038/s41419-018-0343-1] [PMID: 29531296]
[21]
Hong, D.; Fritz, A.J.; Gordon, J.A.; Tye, C.E.; Boyd, J.R.; Tracy, K.M.; Frietze, S.E.; Carr, F.E.; Nickerson, J.A.; Van Wijnen, A.J.; Imbalzano, A.N.; Zaidi, S.K.; Lian, J.B.; Stein, J.L.; Stein, G.S. RUNX1-dependent mechanisms in biological control and dysregulation in cancer. J. Cell. Physiol., 2019, 234(6), 8597-8609.
[http://dx.doi.org/10.1002/jcp.27841] [PMID: 30515788]
[22]
Xu, S.; Ge, J.; Zhang, Z.; Zhou, W. miR-141 inhibits prostatic cancer cell proliferation and migration, and induces cell apoptosis via targeting of RUNX1. Oncol. Rep., 2018, 39(3), 1454-1460.
[http://dx.doi.org/10.3892/or.2018.6209] [PMID: 29328406]
[23]
Cheng, Y.; Yang, H.; Sun, Y.; Zhang, H.; Yu, S.; Lu, Z.; Chen, J. RUNX1 promote invasiveness in pancreatic ductal adenocarcinoma through regulating miR-93. Oncotarget, 2017, 8(59), 99567-99579.
[http://dx.doi.org/10.18632/oncotarget.20433] [PMID: 29245924]
[24]
Sweeney, K.; Cameron, E.R.; Blyth, K. Complex interplay between the RUNX transcription factors and Wnt/β-catenin pathway in cancer: A tango in the night. Mol. Cells, 2020, 43(2), 188-197.
[PMID: 32041394]
[25]
Li, Q.; Lai, Q.; He, C.; Fang, Y.; Yan, Q.; Zhang, Y.; Wang, X.; Gu, C.; Wang, Y.; Ye, L.; Han, L.; Lin, X.; Chen, J.; Cai, J.; Li, A.; Liu, S. RUNX1 promotes tumour metastasis by activating the Wnt/β-catenin signalling pathway and EMT in colorectal cancer. J. Exp. Clin. Cancer Res., 2019, 38(1), 334.
[http://dx.doi.org/10.1186/s13046-019-1330-9] [PMID: 31370857]
[26]
Moreno, C.S. The unappreciated oncogene. Semin. Cancer Biol., 2020, 67(1), 57-64.
[27]
Li, D.; He, C.; Wang, J.; Wang, Y.; Bu, J.; Kong, X.; Sun, D. MicroRNA-138 inhibits cell growth, invasion, and EMT of non-small cell lung cancer via SOX4/p53 feedback loop. Oncol. Res., 2018, 26(3), 385-400.
[http://dx.doi.org/10.3727/096504017X14973124850905] [PMID: 28653608]
[28]
Zhao, G.; Yin, Y.; Zhao, B. miR-140-5p is negatively correlated with proliferation, invasion, and tumorigenesis in malignant melanoma by targeting SOX4 via the Wnt/β-catenin and NF-κB cascades. J. Cell. Physiol., 2020, 235(3), 2161-2170.
[http://dx.doi.org/10.1002/jcp.29122] [PMID: 31385607]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy