Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

New Insights Toward Nanostructured Drug Delivery of Plant-Derived Polyphenol Compounds: Cancer Treatment and Gene Expression Profiles

Author(s): Keyvan Khazei, Nasrin Mohajeri, Esat Bonabi, Zeynep Turk and Nosratollah Zarghami *

Volume 21, Issue 8, 2021

Published on: 25 May, 2021

Page: [689 - 701] Pages: 13

DOI: 10.2174/1568009621666210525152802

Price: $65

Abstract

The increasing prevalence of cancer has led to expanding traditional medicine objectives for developing novel drug delivery systems. A wide range of plant-derived polyphenol bioactive substances have been investigated in order to explore the anti-cancer effects of these natural compounds and to promote the effective treatment of cancer through apoptosis induction. In this regard, plant-derived polyphenol compounds, including curcumin, silibinin, quercetin, and resveratrol, have been the subject of intense interest for anti-cancer applications due to their ability to regulate apoptotic genes. However, some limitations of pure polyphenol compounds, such as poor bioavailability, short-term stability, low-cellular uptake, and insufficient solubility, have restricted their efficiency. Nanoscale formulations of bioactive agents have provided a novel platform to address these limitations. This paper reviews recent advances in nanoformulation approaches of polyphenolic drugs and their effects on improving the delivery of chemotherapy agents to cancer cells.

Keywords: Bioactive drugs, cancer, drug delivery, nanoformulation, polyphenol compounds, nanocapsulation.

Graphical Abstract

[1]
GLOBOCAN 2018: Counting the toll of cancer. Lancet, 2018, 392(10152), 985.
[http://dx.doi.org/10.1016/S0140-6736(18)32252-9] [PMID: 30264708]
[2]
Senapati, S. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther., 2017, 3(1), 1-19.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[3]
Subramaniam, S.; Selvaduray, K.R.; Radhakrishnan, A.K. Bioactive compounds: Natural defense against cancer? Biomolecules, 2019, 9(12), 12.
[http://dx.doi.org/10.3390/biom9120758] [PMID: 31766399]
[4]
Pistollato, F.; Giampieri, F.; Battino, M. The use of plant-derived bioactive compounds to target cancer stem cells and modulate tumor microenvironment. Food Chem. Toxicol., 2015, 75, 58-70.
[http://dx.doi.org/10.1016/j.fct.2014.11.004] [PMID: 25445513]
[5]
Sánchez-Velázquez, O.A.; Cortés-Rodríguez, M.; Milán-Carrillo, J.; Montes-Ávila, J.; Robles-Bañuelos, B.; Del Ángel, A.S.; Cuevas-Rodríguez, E.O.; Rangel-López, E. Anti-Oxidant and anti-proliferative effect of anthocyanin enriched fractions from two mexican wild blackberries (Rubus Spp.) on HepG2 and glioma cell lines. J. Berry Res., 2020, 10(3), 513-529.
[http://dx.doi.org/10.3233/JBR-200566]
[6]
Ribera-Fonseca, A.; Jiménez, D.; Leal, P.; Riquelme, I.; Roa, J.C.; Alberdi, M.; Peek, R.M.; Reyes-Díaz, M. The anti-proliferative and anti-invasive effect of leaf extracts of blueberry plants treated with methyl jasmonate on human gastric cancer in vitro is related to their antioxidant properties. Antioxidants, 2020, 9(1), E45.
[http://dx.doi.org/10.3390/antiox9010045] [PMID: 31948009]
[7]
Zhang, Q.; Polyakov, N.E.; Chistyachenko, Y.S.; Khvostov, M.V.; Frolova, T.S.; Tolstikova, T.G.; Dushkin, A.V.; Su, W. Preparation of curcumin self-micelle solid dispersion with enhanced bioavailability and cytotoxic activity by mechanochemistry. Drug Deliv., 2018, 25(1), 198-209.
[http://dx.doi.org/10.1080/10717544.2017.1422298] [PMID: 29302995]
[8]
Patel, S.; Waghela, B.; Shah, K.; Vaidya, F.; Mirza, S.; Patel, S.; Pathak, C.; Rawal, R. Silibinin, A natural blend in polytherapy formulation for targeting Cd44v6 expressing colon cancer stem cells. Sci. Rep., 2018, 8(1), 1-13.
[http://dx.doi.org/10.1038/s41598-018-35069-0] [PMID: 29311619]
[9]
Singh, C.K.; Ndiaye, M.A.; Ahmad, N. Resveratrol and cancer: Challenges for clinical translation. Biochim. Biophys. Acta, 2015, 1852(6), 1178-1185.
[http://dx.doi.org/10.1016/j.bbadis.2014.11.004] [PMID: 25446990]
[10]
Samaniego, I.; Brito, B.; Viera, W.; Cabrera, A.; Llerena, W.; Kannangara, T.; Vilcacundo, R.; Angós, I.; Carrillo, W. Influence of the maturity stage on the phytochemical composition and the antioxidant activity of four andean blackberry cultivars (Rubus glaucus Benth) from Ecuador. Plants (Basel), 2020, 9(8), 1-15.
[http://dx.doi.org/10.3390/plants9081027] [PMID: 32823664]
[11]
Qin, M.; Chen, W.; Cui, J.; Li, W.; Liu, D.; Zhang, W. Protective efficacy of inhaled quercetin for radiation pneumonitis. Exp. Ther. Med., 2017, 14(6), 5773-5778.
[http://dx.doi.org/10.3892/etm.2017.5290] [PMID: 29285120]
[12]
Tao, F.; Zhang, Y.; Zhang, Z. The role of herbal bioactive components in mitochondria function and cancer therapy. Evidence-Based Complement. Altern. Med., 2019.
[13]
Sabet, S.; Seal, C.K.; Akbarinejad, A.; Rashidinejad, A.; McGillivray, D.J. “Positive-negative-negative”: A colloidal delivery system for bioactive compounds. Food Hydrocoll., 2020, 107, 105922.
[http://dx.doi.org/10.1016/j.foodhyd.2020.105922]
[14]
Liu, Y.; Xie, X.; Hou, X.; Shen, J.; Shi, J.; Chen, H.; He, Y.; Wang, Z.; Feng, N. Functional oral nanoparticles for delivering silibinin and cryptotanshinone against breast cancer lung metastasis. J. Nanobiotechnology, 2020, 18(1), 83.
[http://dx.doi.org/10.1186/s12951-020-00638-x] [PMID: 32473632]
[15]
Dadwal, A.; Baldi, A.; Kumar Narang, R. Nanoparticles as carriers for drug delivery in cancer. Artif. Cells, Nanomed. Biotechnol., 2018, 46(sup2), 295-305.
[http://dx.doi.org/10.1080/21691401.2018.1457039]
[16]
Wang, Y.; Yu, H.; Wang, S.; Gai, C.; Cui, X.; Xu, Z.; Li, W.; Zhang, W. Targeted delivery of quercetin by nanoparticles based on chitosan sensitizing paclitaxel-resistant lung cancer cells to paclitaxel. Mater. Sci. Eng. C, 2021, 119(119), 111442.
[http://dx.doi.org/10.1016/j.msec.2020.111442] [PMID: 33321583]
[17]
Georgilis, E.; Abdelghani, M.; Pille, J.; Aydinlioglu, E.; van Hest, J.C.M.; Lecommandoux, S.; Garanger, E. Nanoparticles based on natural, engineered or synthetic proteins and polypeptides for drug delivery applications. Int. J. Pharm., 2020, 586, 119537.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119537] [PMID: 32531450]
[18]
Hassankhani Rad, A.; Asiaee, F.; Jafari, S.; Shayanfar, A.; Lavasanifar, A.; Molavi, O. Poly(ethylene glycol)-poly(ε-caprolactone)-based micelles for solubilization and tumor-targeted delivery of silibinin. Bioimpacts, 2020, 10(2), 87-95.
[http://dx.doi.org/10.34172/bi.2020.11] [PMID: 32363152]
[19]
Maleki, A.A.; Fotouhi, A. Nanoparticles and cancer therapy : Perspectives for application of nanoparticles in the treatment of cancers. J. Cell. Physiol., 2019, 235(3), 1962-1972.
[http://dx.doi.org/10.1002/jcp.29126] [PMID: 31441032]
[20]
Poon, W.; Kingston, B.R.; Ouyang, B.; Ngo, W.; Chan, W.C.W. A framework for designing delivery systems. Nat. Nanotechnol., 2020, 15(10), 819-829.
[http://dx.doi.org/10.1038/s41565-020-0759-5] [PMID: 32895522]
[21]
Hu, X.; Ning, P.; Zhang, R.; Yang, Y.; Li, L.; Xiao, X. Anticancer effect of folic acid modified tumor-targeting quercetin lipid nanoparticle. Int. J. Clin. Exp. Med., 2016, 9(9), 17195-17202.
[22]
Senthil Kumar, C.; Thangam, R.; Mary, S.A.; Kannan, P.R.; Arun, G.; Madhan, B. Targeted delivery and apoptosis induction of trans-resveratrol-ferulic acid loaded chitosan coated folic acid conjugate solid lipid nanoparticles in colon cancer cells. Carbohydr. Polym., 2020, 231, 115682.
[http://dx.doi.org/10.1016/j.carbpol.2019.115682] [PMID: 31888816]
[23]
Panahi, Y.; Badeli, R.; Karami, G.R.; Sahebkar, A. Investigation of the efficacy of adjunctive therapy with bioavailability-boosted curcuminoids in major depressive disorder. Phytother. Res., 2015, 29(1), 17-21.
[http://dx.doi.org/10.1002/ptr.5211] [PMID: 25091591]
[24]
Wang, M.; Jiang, S.; Zhou, L.; Yu, F.; Ding, H.; Li, P.; Zhou, M.; Wang, K. Potential mechanisms of action of curcumin for cancer prevention: focus on cellular signaling pathways and miRNAs. Int. J. Biol. Sci., 2019, 15(6), 1200-1214.
[http://dx.doi.org/10.7150/ijbs.33710] [PMID: 31223280]
[25]
Panda, A.K.; Chakraborty, D.; Sarkar, I.; Khan, T.; Sa, G. New insights into therapeutic activity and anticancer properties of curcumin. J. Exp. Pharmacol., 2017, 9, 31-45.
[http://dx.doi.org/10.2147/JEP.S70568] [PMID: 28435333]
[26]
Topacio, B.R.; Zatulovskiy, E.; Cristea, S.; Xie, S.; Tambo, C.S.; Rubin, S.M.; Sage, J.; Kõivomägi, M.; Skotheim, J.M. Cyclin D-Cdk4,6 drives cell-cycle progression via the retinoblastoma protein’s C-terminal helix. Mol. Cell, 2019, 74(4), 758-770.e4.
[http://dx.doi.org/10.1016/j.molcel.2019.03.020] [PMID: 30982746]
[27]
Quispe-Soto, E.T.; Calaf, G.M. Effect of curcumin and paclitaxel on breast carcinogenesis. Int. J. Oncol., 2016, 49(6), 2569-2577.
[http://dx.doi.org/10.3892/ijo.2016.3741] [PMID: 27779649]
[28]
Lin, S.; Zhang, L.; Zhang, X.; Yu, Z.; Huang, X.; Xu, J.; Liu, Y.; Chen, L.; Wu, L. Synthesis of novel dual target inhibitors of PARP and HSP90 and their antitumor activities. Bioorg. Med. Chem., 2020, 28(9), 115434.
[http://dx.doi.org/10.1016/j.bmc.2020.115434] [PMID: 32222339]
[29]
Aggarwal, B.B.; Kumar, A.; Bharti, A.C. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res., 2003, 23(1/A), 363-398.
[PMID: 12680238]
[30]
Naksuriya, O.; Okonogi, S.; Schiffelers, R.M.; Hennink, W.E. Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials, 2014, 35(10), 3365-3383.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.090] [PMID: 24439402]
[31]
Rahaman, M.S.; Banik, S.; Akter, M.; Rahman, M.M.; Sikder, M.T.; Hosokawa, T.; Saito, T.; Kurasaki, M. Curcumin alleviates arsenic-induced toxicity in PC12 cells via modulating autophagy/apoptosis. Ecotoxicol. Environ. Saf., 2020, 200, 110756.
[http://dx.doi.org/10.1016/j.ecoenv.2020.110756] [PMID: 32464442]
[32]
Chen, S.; Yang, S.; Wang, M.; Chen, J.; Huang, S.; Wei, Z.; Cheng, Z.; Wang, H.; Long, M.; Li, P. Curcumin inhibits zearalenone-induced apoptosis and oxidative stress in Leydig cells via modulation of the PTEN/Nrf2/Bip signaling pathway. Food Chem. Toxicol., 2020, 141, 111385.
[http://dx.doi.org/10.1016/j.fct.2020.111385] [PMID: 32348814]
[33]
Wong, K.E.; Ngai, S.C.; Chan, K.G.; Lee, L.H.; Goh, B.H.; Chuah, L.H. Curcumin nanoformulations for colorectal cancer: A review. Front. Pharmacol., 2019, 10, 152.
[http://dx.doi.org/10.3389/fphar.2019.00152] [PMID: 30890933]
[34]
Gupta, A.; Costa, A.P.; Xu, X.; Lee, S.L.; Cruz, C.N.; Bao, Q.; Burgess, D.J. Formulation and characterization of curcumin loaded polymeric micelles produced via continuous processing. Int. J. Pharm., 2020, 583, 119340.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119340] [PMID: 32305363]
[35]
Feng, T.; Wei, Y.; Lee, R.J.; Zhao, L. Liposomal curcumin and its application in cancer. Int. J. Nanomedicine, 2017, 12, 6027-6044.
[http://dx.doi.org/10.2147/IJN.S132434] [PMID: 28860764]
[36]
Ganesh, G.; Singh, M.K.; Datri, S.; Venkata, V.; Reddy, S. Design and development of curcumin nanogel for squamous cell carcinoma. J. Pharm. Sci. Res., 2019, 11(4), 1638-1645.
[37]
Ban, C.; Jo, M.; Park, Y.H.; Kim, J.H.; Han, J.Y.; Lee, K.W.; Kweon, D.H.; Choi, Y.J. Enhancing the oral bioavailability of curcumin using solid lipid nanoparticles. Food Chem., 2020, 302(302), 125328.
[http://dx.doi.org/10.1016/j.foodchem.2019.125328] [PMID: 31404868]
[38]
Ahmad, N.; Ahmad, R.; Al-Qudaihi, A.; Alaseel, S.E.; Fita, I.Z.; Khalid, M.S.; Pottoo, F.H. Preparation of a novel curcumin nanoemulsion by ultrasonication and its comparative effects in wound healing and the treatment of inflammation. RSC Adv., 2019, 9(35), 20192-20206.
[http://dx.doi.org/10.1039/C9RA03102B]
[39]
Prasad, C.; Bhatia, E.; Banerjee, R. Curcumin encapsulated lecithin nanoemulsions: An oral platform for ultrasound mediated spatiotemporal delivery of curcumin to the tumor. Sci. Rep., 2020, 10(1), 8587.
[http://dx.doi.org/10.1038/s41598-020-65468-1] [PMID: 32444829]
[40]
Wang, Y.; Wang, C.; Zhao, J.; Ding, Y.; Li, L. A cost-effective method to prepare curcumin nanosuspensions with enhanced oral bioavailability. J. Colloid Interface Sci., 2017, 485, 91-98.
[http://dx.doi.org/10.1016/j.jcis.2016.09.003] [PMID: 27657837]
[41]
Jin, H.; Pi, J.; Zhao, Y.; Jiang, J.; Li, T.; Zeng, X.; Yang, P.; Evans, C.E.; Cai, J. EGFR-targeting PLGA-PEG nanoparticles as a curcumin delivery system for breast cancer therapy. Nanoscale, 2017, 9(42), 16365-16374.
[http://dx.doi.org/10.1039/C7NR06898K] [PMID: 29052674]
[42]
Goel, A.; Jhurani, S.; Aggarwal, B.B. Multi-targeted therapy by curcumin: How spicy is it? Mol. Nutr. Food Res., 2008, 52(9), 1010-1030.
[http://dx.doi.org/10.1002/mnfr.200700354] [PMID: 18384098]
[43]
Zaman, M.S.; Chauhan, N.; Yallapu, M.M.; Gara, R.K.; Maher, D.M.; Kumari, S.; Sikander, M.; Khan, S.; Zafar, N.; Jaggi, M.; Chauhan, S.C. Curcumin nanoformulation for cervical cancer treatment. Sci. Rep., 2016, 6, 20051.
[http://dx.doi.org/10.1038/srep20051] [PMID: 26837852]
[44]
Wu, G.; Huang, H.; Garcia Abreu, J.; He, X. Inhibition of GSK3 phosphorylation of β-catenin via phosphorylated PPPSPXS motifs of Wnt coreceptor LRP6. PLoS One, 2009, 4(3), e4926.
[http://dx.doi.org/10.1371/journal.pone.0004926] [PMID: 19293931]
[45]
Mitra, R.; Adams, C.M.; Jiang, W.; Greenawalt, E.; Eischen, C.M. Pan-cancer analysis reveals cooperativity of both strands of microRNA that regulate tumorigenesis and patient survival. Nat. Commun., 2020, 11(1), 968.
[http://dx.doi.org/10.1038/s41467-020-14713-2] [PMID: 32080184]
[46]
Joshi, D.; Gosh, K.; Vundinti, B.R. MicroRNAs in hematological malignancies: A novel approach to targeted therapy. Hematology, 2012, 17(3), 170-175.
[http://dx.doi.org/10.1179/102453312X13376952196656] [PMID: 22664117]
[47]
Rushworth, S.A. Targeting the oncogenic role of miRNA in human cancer using naturally occurring compounds. Br. J. Pharmacol., 2011, 162(2), 346-348.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01075.x] [PMID: 21192341]
[48]
Pandelidou, M.; Dimas, K.; Georgopoulos, A.; Hatziantoniou, S.; Demetzos, C. Preparation and characterization of lyophilised egg PC liposomes incorporating curcumin and evaluation of its activity against colorectal cancer cell lines. J. Nanosci. Nanotechnol., 2011, 11(2), 1259-1266.
[http://dx.doi.org/10.1166/jnn.2011.3093] [PMID: 21456169]
[49]
Ranjan, A.P.; Mukerjee, A.; Helson, L.; Gupta, R.; Vishwanatha, J.K. Efficacy of liposomal curcumin in a human pancreatic tumor xenograft model: inhibition of tumor growth and angiogenesis. Anticancer Res., 2013, 33(9), 3603-3609.
[PMID: 24023285]
[50]
Yan, Y-D.; Marasini, N.; Choi, Y.K.; Kim, J.O.; Woo, J.S.; Yong, C.S.; Choi, H.G. Effect of dose and dosage interval on the oral bioavailability of docetaxel in combination with a curcumin self-emulsifying drug delivery system (SEDDS). Eur. J. Drug Metab. Pharmacokinet., 2012, 37(3), 217-224.
[http://dx.doi.org/10.1007/s13318-011-0078-1] [PMID: 22201019]
[51]
Reeves, A.; Vinogradov, S.V.; Morrissey, P.; Chernin, M.; Mansoor, M.; Corporation, A. Curcumin-encapsulating nanogels as an effective anticancer formulation for intracellular uptake. Mol. Cell. Pharmacol., 2015, 7(3), 25-40.
[http://dx.doi.org/10.4255/mcpharmacol.15.04.Curcumin-encapsulating] [PMID: 26937266]
[52]
Grill, A.E.; Koniar, B.; Panyam, J. Co-delivery of natural metabolic inhibitors in a self-microemulsifying drug delivery system for improved oral bioavailability of curcumin. Drug Deliv. Transl. Res., 2014, 4(4), 344-352.
[http://dx.doi.org/10.1007/s13346-014-0199-6] [PMID: 25422796]
[53]
Anuchapreeda, S.; Fukumori, Y.; Okonogi, S.; Ichikawa, H. Preparation of lipid nanoemulsions incorporating curcumin for cancer therapy. . J. Nanotechnol., 2012.
[http://dx.doi.org/10.1155/2012/270383]
[54]
Bai, D.; Jin, G.; Zhang, D.; Zhao, L.; Wang, M.; Zhu, Q.; Zhu, L.; Sun, Y.; Liu, X.; Chen, X.; Zhang, L.; Li, W.; Cui, Y. Natural silibinin modulates amyloid precursor protein processing and amyloid-β protein clearance in APP/PS1 mice. J. Physiol. Sci., 2019, 69(4), 643-652.
[http://dx.doi.org/10.1007/s12576-019-00682-9] [PMID: 31087219]
[55]
Feldman, N.B.; Gromovykh, T.I.; Sedyakina, N.E.; Krasnyuk, I.I.; Lutsenko, S.V. Cytotoxic and antitumor activity of liposomal silibinin. Bionanoscience, 2018, 8(4), 971-976.
[http://dx.doi.org/10.1007/s12668-018-0556-x]
[56]
Matias, M.L.; Gomes, V.J.; Romao-Veiga, M.; Ribeiro, V.R.; Nunes, P.R.; Romagnoli, G.G.; Peracoli, J.C.; Peracoli, M.T.S. Silibinin downregulates the NF-κB pathway and NLRP1/NLRP3 inflammasomes in monocytes from pregnant women with preeclampsia. Molecules, 2019, 24(8), 1548.
[http://dx.doi.org/10.3390/molecules24081548] [PMID: 31010153]
[57]
Li, Y.; Ren, L.; Song, G.; Zhang, P.; Yang, L.; Chen, X.; Yu, X.; Chen, S. Silibinin ameliorates fructose-induced lipid accumulation and activates autophagy in hepg2 cells. Endocr. Metab. Disord., 2019, 19(5), 632-642.
[58]
Muthumani, M.; Prabu, S.M. Silibinin potentially attenuates arsenic-induced oxidative stress mediated cardiotoxicity and dyslipidemia in rats. Cardiovasc. Toxicol., 2014, 14(1), 83-97.
[http://dx.doi.org/10.1007/s12012-013-9227-x] [PMID: 24062023]
[59]
Liang, Z.; Yang, Y.; Wang, H.; Yi, W.; Yan, X.; Yan, J.; Li, Y.; Feng, Y.; Yu, S.; Yang, J.; Jin, Z.; Duan, W.; Chen, W. Inhibition of SIRT1 signaling sensitizes the antitumor activity of silybin against human lung adenocarcinoma cells in vitro and in vivo. Mol. Cancer Ther., 2014, 13(7), 1860-1872.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0942] [PMID: 24798868]
[60]
Sun, Y.; Guan, Z.; Zhao, W.; Jiang, Y.; Li, Q.; Cheng, Y.; Xu, Y. Silibinin suppresses bladder cancer cell malignancy and chemoresistance in an NF-κB signal-dependent and signal-independent manner. Int. J. Oncol., 2017, 51(4), 1219-1226.
[http://dx.doi.org/10.3892/ijo.2017.4089] [PMID: 28791405]
[61]
Hossainzadeh, S.; Ranji, N.; Naderi Sohi, A.; Najafi, F. Silibinin encapsulation in polymersome: A promising anticancer nanoparticle for inducing apoptosis and decreasing the expression level of miR-125b/miR-182 in human breast cancer cells. J. Cell. Physiol., 2019, 234(12), 22285-22298.
[http://dx.doi.org/10.1002/jcp.28795] [PMID: 31073992]
[62]
Jiang, M.; He, K.; Qiu, T.; Sun, J.; Liu, Q.; Zhang, X.; Zheng, H. Tumor-targeted delivery of silibinin and IPI-549 synergistically inhibit breast cancer by remodeling the microenvironment. Int. J. Pharm., 2020, 581, 119239.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119239] [PMID: 32194211]
[63]
Mateen, S.; Tyagi, A.; Agarwal, C.; Singh, R.P.; Agarwal, R. Silibinin inhibits human nonsmall cell lung cancer cell growth through cell-cycle arrest by modulating expression and function of key cell-cycle regulators. Mol. Carcinog., 2010, 49(3), 247-258.
[http://dx.doi.org/10.1002/mc.20595] [PMID: 19908243]
[64]
Tiwari, P.; Mishra, K.; Atomic, B. Silibinin in cancer therapy : A promising prospect. Cancer Res. Front., 2016, 1(3), 303-318.
[http://dx.doi.org/10.17980/2015.303]
[65]
Mashhadi Akbar Boojar, M.; Mashhadi Akbar Boojar, M.; Golmohammad, S. Overview of silibinin anti-tumor effects. J. Herb. Med., 2019, 2020, 23.
[http://dx.doi.org/10.1016/j.hermed.2020.100375]
[66]
Takke, A.; Shende, P. Nanotherapeutic silibinin: An insight of phytomedicine in healthcare reformation. Nanomedicine (Lond.), 2019, 21, 102057.
[http://dx.doi.org/10.1016/j.nano.2019.102057] [PMID: 31340181]
[67]
Sahibzada, M.U.K.; Sadiq, A.; Zahoor, M.; Naz, S.; Shahid, M.; Qureshi, N.A. Enhancement of bioavailability and hepatoprotection by silibinin through conversion to nanoparticles prepared by liquid antisolvent method. Arab. J. Chem., 2020, 13(2), 3682-3689.
[http://dx.doi.org/10.1016/j.arabjc.2020.01.002]
[68]
Alipour, M.; Reza Bigdeli, M.; Aligholi, H.; Rasoulian, B.; Khaksarian, M. Sustained release of silibinin-loaded chitosan nanoparticle induced apoptosis in glioma cells. J. Biomed. Mater. Res. A, 2020, 108(3), 458-469.
[http://dx.doi.org/10.1002/jbm.a.36827] [PMID: 31657514]
[69]
Khakinezhad Tehrani, F.; Ranji, N.; Kouhkan, F.; Hosseinzadeh, S. Apoptosis induction and proliferation inhibition by silibinin encapsulated in nanoparticles in MIA PaCa-2 cancer cells and deregulation of some miRNAs. Iran. J. Basic Med. Sci., 2020, 23(4), 469-482.
[http://dx.doi.org/10.22038/ijbms.2020.39427.9349] [PMID: 32489562]
[70]
Mahira, S.; Kommineni, N.; Husain, G.M.; Khan, W. Cabazitaxel and silibinin co-encapsulated cationic liposomes for CD44 targeted delivery: A new insight into nanomedicine based combinational chemotherapy for prostate cancer. Biomed. Pharmacother., 2019, 110, 803-817.
[http://dx.doi.org/10.1016/j.biopha.2018.11.145] [PMID: 30554119]
[71]
Tannous, M.; Trotta, F.; Cavalli, R. Nanosponges for combination drug therapy: State-of-the-art and future directions. Nanomedicine (Lond.), 2020, 15(7), 643-646.
[http://dx.doi.org/10.2217/nnm-2020-0007] [PMID: 32077373]
[72]
Massaro, M.; Cinà, V.; Labbozzetta, M.; Lazzara, G.; Lo Meo, P.; Poma, P.; Riela, S.; Noto, R. Chemical and pharmaceutical evaluation of the relationship between triazole linkers and pore size on cyclodextrin-calixarene nanosponges used as carriers for natural drugs. RSC Adv., 2016, 6(56), 50858-50866.
[http://dx.doi.org/10.1039/C6RA06143E]
[73]
Dong, X.Y.; Lang, T.Q.; Yin, Q.; Zhang, P.C.; Li, Y.P. Co-delivery of docetaxel and silibinin using pH-sensitive micelles improves therapy of metastatic breast cancer. Acta Pharmacol. Sin., 2017, 38(12), 1655-1662.
[http://dx.doi.org/10.1038/aps.2017.74] [PMID: 28713159]
[74]
Sun, H.P.; Su, J.H.; Meng, Q.S.; Yin, Q.; Zhang, Z.W.; Yu, H.J.; Zhang, P.C.; Wang, S.L.; Li, Y.P. Silibinin and indocyanine green-loaded nanoparticles inhibit the growth and metastasis of mammalian breast cancer cells in vitro. Acta Pharmacol. Sin., 2016, 37(7), 941-949.
[http://dx.doi.org/10.1038/aps.2016.20] [PMID: 27133295]
[75]
Grande, F.; Parisi, O.I.; Mordocco, R.A.; Rocca, C.; Puoci, F.; Scrivano, L.; Quintieri, A.M.; Cantafio, P.; Ferla, S.; Brancale, A.; Saturnino, C.; Cerra, M.C.; Sinicropi, M.S.; Angelone, T. Quercetin derivatives as novel antihypertensive agents: Synthesis and physiological characterization. Eur. J. Pharm. Sci., 2016, 82, 161-170.
[http://dx.doi.org/10.1016/j.ejps.2015.11.021] [PMID: 26631584]
[76]
Harris, Z.; Donovan, M.G.; Branco, G.M.; Limesand, K.H.; Burd, R. Quercetin as an emerging anti-melanoma agent: A four-focus area therapeutic development strategy. Front. Nutr., 2016, 3, 48.
[http://dx.doi.org/10.3389/fnut.2016.00048] [PMID: 27843913]
[77]
Brito, T.B.N.; R S Lima, L.; B Santos, M.C.; A Moreira, R.F.; Cameron, L.C.; Fai, A.E.C.; Ferreira, M.S.L. Antimicrobial, antioxidant, volatile and phenolic profiles of cabbage-stalk and pineapple-crown flour revealed by GC-MS and UPLC-MSE. Food Chem., 2021, 339(339), 127882.
[http://dx.doi.org/10.1016/j.foodchem.2020.127882] [PMID: 32889131]
[78]
Becker Pertuzatti, P.; Teixeira Barcia, M.; Gómez-Alonso, S.; Teixeira Godoy, H.; Hermosin-Gutierrez, I. Phenolics profiling by HPLC-DAD-ESI-MSn aided by principal component analysis to classify Rabbiteye and Highbush blueberries. Food Chem., 2021, 340(340), 127958.
[http://dx.doi.org/10.1016/j.foodchem.2020.127958] [PMID: 32916406]
[79]
Cipolletti, M.; Solar Fernandez, V.; Montalesi, E.; Marino, M.; Fiocchetti, M. Beyond the antioxidant activity of dietary polyphenols in cancer: The modulation of estrogen receptors (ers) signaling. Int. J. Mol. Sci., 2018, 19(9), E2624.
[http://dx.doi.org/10.3390/ijms19092624] [PMID: 30189583]
[80]
Hashemzaei, M.; Delarami Far, A.; Yari, A.; Heravi, R.E.; Tabrizian, K.; Taghdisi, S.M.; Sadegh, S.E.; Tsarouhas, K.; Kouretas, D.; Tzanakakis, G.; Nikitovic, D.; Anisimov, N.Y.; Spandidos, D.A.; Tsatsakis, A.M.; Rezaee, R. Anticancer and apoptosis‑inducing effects of quercetin in vitro and in vivo. Oncol. Rep., 2017, 38(2), 819-828.
[http://dx.doi.org/10.3892/or.2017.5766] [PMID: 28677813]
[81]
Pereira, S.C.; Parente, J.M.; Belo, V.A.; Mendes, A.S.; Gonzaga, N.A.; do Vale, G.T.; Ceron, C.S.; Tanus-Santos, J.E.; Tirapelli, C.R.; Castro, M.M. Quercetin decreases the activity of matrix metalloproteinase-2 and ameliorates vascular remodeling in renovascular hypertension. Atherosclerosis, 2018, 270, 146-153.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.01.031] [PMID: 29425960]
[82]
Kim, S-H.; Yoo, E-S.; Woo, J-S.; Han, S-H.; Lee, J-H.; Jung, S-H.; Kim, H-J.; Jung, J-Y. Antitumor and apoptotic effects of quercetin on human melanoma cells involving JNK/P38 MAPK signaling activation. Eur. J. Pharmacol., 2019, 860, 172568.
[http://dx.doi.org/10.1016/j.ejphar.2019.172568] [PMID: 31348906]
[83]
Catanzaro, D.; Ragazzi, E.; Vianello, C.; Caparrotta, L.; Montopoli, M. Effect of quercetin on cell cycle and cyclin expression in ovarian carcinoma and osteosarcoma cell lines. Nat. Prod. Commun., 2015, 10(8), 1934578X1501000813.
[http://dx.doi.org/10.1177/1934578X1501000813]
[84]
Hamidullah, ; Kumar, R.; Saini, K.S.; Kumar, A.; Kumar, S.; Ramakrishna, E.; Maurya, R.; Konwar, R.; Chattopadhyay, N. Quercetin-6-C-β-D-glucopyranoside, natural analog of quercetin exhibits anti-prostate cancer activity by inhibiting Akt-mTOR pathway via aryl hydrocarbon receptor. Biochimie, 2015, 119, 68-79.
[http://dx.doi.org/10.1016/j.biochi.2015.10.012] [PMID: 26476001]
[85]
Zhu, Y.; Jiang, Y.; Shi, L.; Du, L.; Xu, X.; Wang, E.; Sun, Y.; Guo, X.; Zou, B.; Wang, H.; Wang, C.; Sun, L.; Zhen, Y. 7-O-Geranylquercetin induces apoptosis in gastric cancer cells via ROS-MAPK mediated mitochondrial signaling pathway activation. Biomed. Pharmacother., 2017, 87, 527-538.
[http://dx.doi.org/10.1016/j.biopha.2016.12.095] [PMID: 28076833]
[86]
Catauro, M.; Papale, F.; Bollino, F.; Piccolella, S.; Marciano, S.; Nocera, P.; Pacifico, S. Silica/quercetin sol-gel hybrids as antioxidant dental implant materials. Sci. Technol. Adv. Mater., 2015, 16(3), 035001.
[http://dx.doi.org/10.1088/1468-6996/16/3/035001] [PMID: 27877802]
[87]
Pandey, S.K.; Patel, D.K.; Thakur, R.; Mishra, D.P.; Maiti, P.; Haldar, C. Anti-cancer evaluation of quercetin embedded PLA nanoparticles synthesized by emulsified nanoprecipitation. Int. J. Biol. Macromol., 2015, 75, 521-529.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.02.011] [PMID: 25701491]
[88]
Hao, J.; Guo, B.; Yu, S.; Zhang, W.; Zhang, D.; Wang, J.; Wang, Y. Encapsulation of the flavonoid quercetin with chitosan-coated nano-liposomes. Lebensm. Wiss. Technol., 2017, 85, 37-44.
[http://dx.doi.org/10.1016/j.lwt.2017.06.048]
[89]
Bishayee, K.; Khuda-Bukhsh, A.R.; Huh, S-O. PLGA-loaded gold-nanoparticles precipitated with quercetin downregulate hdac-akt activities controlling proliferation and activate p53-ROS crosstalk to induce apoptosis in hepatocarcinoma cells. Mol. Cells, 2015, 38(6), 518-527.
[http://dx.doi.org/10.14348/molcells.2015.2339] [PMID: 25947292]
[90]
Kumari, A.; Kumar, V.; Yadav, S.K. Plant extract synthesized PLA nanoparticles for controlled and sustained release of quercetin: A green approach. PLoS One, 2012, 7(7), e41230.
[http://dx.doi.org/10.1371/journal.pone.0041230] [PMID: 22844443]
[91]
Sahu, S.; Saraf, S.; Kaur, C.D.; Saraf, S. Biocompatible nanoparticles for sustained topical delivery of anticancer phytoconstituent quercetin. Pak. J. Biol. Sci., 2013, 16(13), 601-609.
[http://dx.doi.org/10.3923/pjbs.2013.601.609] [PMID: 24505982]
[92]
Devendiran, R.M.; kumar Chinnaiyan, S.; Yadav, N. K.; Ramanathan, G.; Singaravelu, S.; Perumal, P. T.; Sivagnanam, U. T. Facile synthesis and evaluation of quercetin reduced and dextran sulphate stabilized gold nanoparticles decorated with folic acid for active targeting against breast cancer. RSC Adv., 2016, 6(39), 32560-32571.
[http://dx.doi.org/10.1039/C6RA01756H]
[93]
Abdulridha, M.K.; Al-Marzoqi, A.H.; Al-Awsi, G.R.L.; Mubarak, S.M.H.; Heidarifard, M.; Ghasemian, A. Anticancer effects of herbal medicine compounds and novel formulations: A literature review. J. Gastrointest. Cancer, 2020, 51(3), 765-773.
[http://dx.doi.org/10.1007/s12029-020-00385-0] [PMID: 32140897]
[94]
Venditti, I.; Iucci, G.; Fratoddi, I.; Cipolletti, M.; Montalesi, E.; Marino, M.; Secchi, V.; Battocchio, C. Direct conjugation of resveratrol on hydrophilic gold nanoparticles: Structural and cytotoxic studies for biomedical applications. Nanomaterials (Basel), 2020, 10(10), 1-19.
[http://dx.doi.org/10.3390/nano10101898] [PMID: 32977463]
[95]
Jo, M.; Ban, C.; Goh, K.K.T.; Choi, Y.J. Enhancement of the gut-retention time of resveratrol using waxy maize starch nanocrystal-stabilized and chitosan-coated pickering emulsions. Food Hydrocoll., 2020, 2021(112), 106291.
[http://dx.doi.org/10.1016/j.foodhyd.2020.106291]
[96]
Saqib, U.; Faisal, S.M.; Saluja, R.; Baig, M.S. Structural insights of resveratrol with its binding partners in the toll-like receptor 4 pathway. J. Cell. Biochem., 2019, 120(1), 452-460.
[http://dx.doi.org/10.1002/jcb.27401] [PMID: 30191609]
[97]
Imran, M.; Iqubal, M.K.; Imtiyaz, K.; Saleem, S.; Mittal, S.; Rizvi, M.M.A.; Ali, J.; Baboota, S. Topical nanostructured lipid carrier gel of quercetin and resveratrol: Formulation, optimization, in vitro and ex vivo study for the treatment of skin cancer. Int. J. Pharm., 2020, 587, 119705.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119705] [PMID: 32738456]
[98]
Huang, X.; Dai, Y.; Cai, J.; Zhong, N.; Xiao, H.; McClements, D.J.; Hu, K. Resveratrol encapsulation in core-shell biopolymer nanoparticles: Impact on antioxidant and anticancer activities. Food Hydrocoll., 2017, 64, 157-165.
[http://dx.doi.org/10.1016/j.foodhyd.2016.10.029]
[99]
Summerlin, N.; Qu, Z.; Pujara, N.; Sheng, Y.; Jambhrunkar, S.; McGuckin, M.; Popat, A. Colloidal mesoporous silica nanoparticles enhance the biological activity of resveratrol. Colloids Surf. B Biointerfaces, 2016, 144, 1-7.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.076] [PMID: 27060664]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy