Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

MiR-129-5p Promotes Radio-sensitivity of NSCLC Cells by Targeting SOX4 and RUNX1

Author(s): Tongqing Xue, Gang Yin, Weixuan Yang, Xiaoyu Chen, Cheng Liu, Weixi Yang* and Jun Zhu*

Volume 21, Issue 8, 2021

Published on: 15 April, 2021

Page: [702 - 712] Pages: 11

DOI: 10.2174/1568009621666210415094350

Price: $65

Abstract

Background: Dysregulation of microRNAs (miRNAs) figures prominently in the radio- sensitivity of non-small cell lung cancer (NSCLC). MiR-129-5p can block the development of a variety of tumors. However, whether miR-129-5p modulates radio-sensitivity of NSCLC cells remains unknown.

Objective: This study was aimed to explore the role and the underlying mechanism of miR-129-5p in the radiosensitivity of NSCLC.

Methods: Radio-resistant NSCLC cell lines (A549-R and H1299-R) were constructed using A549 and H1299 cells. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to quantify miR-129-5p, SRY-box transcription factor 4 (SOX4) mRNA, and RUNX family transcription factor 1 (RUNX1) mRNA expression levels. Cell apoptosis and cell cycle were detected by flow cytometry. Cell counting kit-8 (CCK-8) assay and colony formation experiments were used to measure cell proliferation. γ-H2AX was examined by Western blot to confirm DNA injury. Dual- luciferase reporter experiments were applied to analyze the interactions among miR-129-5p, RUNX1, and SOX4.

Results: In A549-R and H1299-R cells, compared with the wild-type cell lines, miR-129-5p expression was remarkably reduced while SOX4 and RUNX1 expressions were increased. The transfection of miR-129-5p into NSCLC cell lines markedly induced cell apoptosis, DNA injury, cell cycle arrest, and inhibited cell proliferation and colony formation. RUNX1 and SOX4 were validated as target genes of miR-129-5p, and the restoration of RUNX1 or SOX4 could counteract the influence of miR-129-5p on A549-R cells.

Conclusions: MiR-129-5p sensitizes A549-R and H1299-R cells to radiation by targeting RUNX1 and SOX4.

Keywords: NSCLC, miR-129-5p, RUNX1, SOX4, radiosensitivity, qTR-PCR.

Graphical Abstract

[1]
Hirsch, F.R.; Scagliotti, G.V.; Mulshine, J.L.; Kwon, R.; Curran, W.J., Jr; Wu, Y.L.; Paz-Ares, L. Lung cancer: current therapies and new targeted treatments. Lancet, 2017, 389(10066), 299-311.
[http://dx.doi.org/10.1016/S0140-6736(16)30958-8] [PMID: 27574741]
[2]
Duma, N.; Santana-Davila, R.; Molina, J.R. Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment. Mayo Clin. Proc., 2019, 94(8), 1623-1640.
[http://dx.doi.org/10.1016/j.mayocp.2019.01.013] [PMID: 31378236]
[3]
Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature, 2018, 553(7689), 446-454.
[http://dx.doi.org/10.1038/nature25183] [PMID: 29364287]
[4]
Ko, E.C.; Raben, D.; Formenti, S.C. The Integration of Radiotherapy with immunotherapy for the treatment of non-small cell lung cancer. Clin. Cancer Res., 2018, 24(23), 5792-5806.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-3620] [PMID: 29945993]
[5]
Jin, Z.; Guan, L.; Xiang, G.M.; Gao, B.A. Radiation resistance of the lung adenocarcinoma is related to the AKT-Onzin-POU5F1 axis. Biochem. Biophys. Res. Commun., 2018, 499(3), 538-543.
[http://dx.doi.org/10.1016/j.bbrc.2018.03.185] [PMID: 29596836]
[6]
Xue, Y.; Ni, T.; Jiang, Y.; Li, Y. Long noncoding RNA GAS5 inhibits tumorigenesis and enhances radiosensitivity by suppressing miR-135b expression in non-small cell lung cancer. Oncol. Res., 2017, 25(8), 1305-1316.
[http://dx.doi.org/10.3727/096504017X14850182723737] [PMID: 28117028]
[7]
Li, G.; Xie, J.; Wang, J. Tumor suppressor function of miR-129-5p in lung cancer. Oncol. Lett., 2019, 17(6), 5777-5783.
[http://dx.doi.org/10.3892/ol.2019.10241] [PMID: 31186804]
[8]
Ma, Z.; Cai, H.; Zhang, Y.; Chang, L.; Cui, Y. MiR-129-5p inhibits non-small cell lung cancer cell stemness and chemoresistance through targeting DLK1. Biochem. Biophys. Res. Commun., 2017, 490(2), 309-316.
[http://dx.doi.org/10.1016/j.bbrc.2017.06.041] [PMID: 28619508]
[9]
Stewart, D.J. Wnt signaling pathway in non-small cell lung cancer. J. Natl. Cancer Inst., 2014, 106(1), djt356.
[http://dx.doi.org/10.1093/jnci/djt356] [PMID: 24309006]
[10]
Wu, D.; Li, L.; Yan, W. Knockdown of TC-1 enhances radiosensitivity of non-small cell lung cancer via the Wnt/β-catenin pathway. Biol. Open, 2016, 5(4), 492-498.
[http://dx.doi.org/10.1242/bio.017608] [PMID: 27029901]
[11]
Stewart, D.J.; Chang, D.W.; Ye, Y.; Spitz, M.; Lu, C.; Shu, X.; Wampfler, J.A.; Marks, R.S.; Garces, Y.I.; Yang, P.; Wu, X. Wnt signaling pathway pharmacogenetics in non-small cell lung cancer. Pharmacogenomics J., 2014, 14(6), 509-522.
[http://dx.doi.org/10.1038/tpj.2014.21] [PMID: 24980784]
[12]
Chang, J.; Gao, F.; Chu, H.; Lou, L.; Wang, H.; Chen, Y. miR-363-3p inhibits migration, invasion, and epithelial-mesenchymal transition by targeting NEDD9 and SOX4 in non-small-cell lung cancer. J. Cell. Physiol., 2020, 235(2), 1808-1820.
[http://dx.doi.org/10.1002/jcp.29099] [PMID: 31332786]
[13]
Chen, Y.; Zhang, L.; Liu, L.; Sun, S.; Zhao, X.; Wang, Y.; Zhang, Y.; Du, J.; Gu, L. Rasip1 is a RUNX1 target gene and promotes migration of NSCLC cells. Cancer Manag. Res., 2018, 10, 4537-4552.
[http://dx.doi.org/10.2147/CMAR.S168438] [PMID: 30349386]
[14]
Zhu, R.; Yang, X.; Xue, X.; Shen, M.; Chen, F.; Chen, X.; Tsai, Y.; Keng, P.C.; Chen, Y.; Lee, S.O.; Chen, Y. Neuroendocrine differentiation contributes to radioresistance development and metastatic potential increase in non-small cell lung cancer. Biochim. Biophys. Acta Mol. Cell Res., 2018, 1865(12), 1878-1890.
[http://dx.doi.org/10.1016/j.bbamcr.2018.09.005] [PMID: 30262435]
[15]
Luo, J.; Chen, J.; He, L. mir-129-5p Attenuates irradiation-induced autophagy and decreases radioresistance of breast cancer cells by targeting HMGB1. Med. Sci. Monit., 2015, 21, 4122-4129.
[http://dx.doi.org/10.12659/MSM.896661] [PMID: 26720492]
[16]
Shen, Q.; Jiang, Y. LncRNA NNT-AS1 promotes the proliferation, and invasion of lung cancer cells via regulating miR-129-5p expression. Biomed. Pharmacother., 2018, 105, 176-181.
[http://dx.doi.org/10.1016/j.biopha.2018.05.123] [PMID: 29857296]
[17]
Xu, C.; Du, Z.; Ren, S.; Liang, X.; Li, H. MiR-129-5p sensitization of lung cancer cells to etoposide-induced apoptosis by reducing YWHAB. J. Cancer, 2020, 11(4), 858-866.
[http://dx.doi.org/10.7150/jca.35410] [PMID: 31949489]
[18]
Jiang, Z.; Zhang, Y.; Chen, X.; Wu, P.; Chen, D. Inactivation of the Wnt/β-catenin signaling pathway underlies inhibitory role of microRNA-129-5p in epithelial-mesenchymal transition and angiogenesis of prostate cancer by targeting ZIC2. Cancer Cell Int., 2019, 19, 271.
[http://dx.doi.org/10.1186/s12935-019-0977-9] [PMID: 31649488]
[19]
Cao, J.; Wang, Q.; Wu, G.; Li, S.; Wang, Q. miR-129-5p inhibits gemcitabine resistance and promotes cell apoptosis of bladder cancer cells by targeting Wnt5a. Int. Urol. Nephrol., 2018, 50(10), 1811-1819.
[http://dx.doi.org/10.1007/s11255-018-1959-x] [PMID: 30117016]
[20]
Zeng, A.; Yin, J.; Li, Y.; Li, R.; Wang, Z.; Zhou, X.; Jin, X.; Shen, F.; Yan, W.; You, Y. miR-129-5p targets Wnt5a to block PKC/ERK/NF-κB and JNK pathways in glioblastoma. Cell Death Dis., 2018, 9(3), 394.
[http://dx.doi.org/10.1038/s41419-018-0343-1] [PMID: 29531296]
[21]
Hong, D.; Fritz, A.J.; Gordon, J.A.; Tye, C.E.; Boyd, J.R.; Tracy, K.M.; Frietze, S.E.; Carr, F.E.; Nickerson, J.A.; Van Wijnen, A.J.; Imbalzano, A.N.; Zaidi, S.K.; Lian, J.B.; Stein, J.L.; Stein, G.S. RUNX1-dependent mechanisms in biological control and dysregulation in cancer. J. Cell. Physiol., 2019, 234(6), 8597-8609.
[http://dx.doi.org/10.1002/jcp.27841] [PMID: 30515788]
[22]
Xu, S.; Ge, J.; Zhang, Z.; Zhou, W. miR-141 inhibits prostatic cancer cell proliferation and migration, and induces cell apoptosis via targeting of RUNX1. Oncol. Rep., 2018, 39(3), 1454-1460.
[http://dx.doi.org/10.3892/or.2018.6209] [PMID: 29328406]
[23]
Cheng, Y.; Yang, H.; Sun, Y.; Zhang, H.; Yu, S.; Lu, Z.; Chen, J. RUNX1 promote invasiveness in pancreatic ductal adenocarcinoma through regulating miR-93. Oncotarget, 2017, 8(59), 99567-99579.
[http://dx.doi.org/10.18632/oncotarget.20433] [PMID: 29245924]
[24]
Sweeney, K.; Cameron, E.R.; Blyth, K. Complex interplay between the RUNX transcription factors and Wnt/β-catenin pathway in cancer: A tango in the night. Mol. Cells, 2020, 43(2), 188-197.
[PMID: 32041394]
[25]
Li, Q.; Lai, Q.; He, C.; Fang, Y.; Yan, Q.; Zhang, Y.; Wang, X.; Gu, C.; Wang, Y.; Ye, L.; Han, L.; Lin, X.; Chen, J.; Cai, J.; Li, A.; Liu, S. RUNX1 promotes tumour metastasis by activating the Wnt/β-catenin signalling pathway and EMT in colorectal cancer. J. Exp. Clin. Cancer Res., 2019, 38(1), 334.
[http://dx.doi.org/10.1186/s13046-019-1330-9] [PMID: 31370857]
[26]
Moreno, C.S. The unappreciated oncogene. Semin. Cancer Biol., 2020, 67(1), 57-64.
[27]
Li, D.; He, C.; Wang, J.; Wang, Y.; Bu, J.; Kong, X.; Sun, D. MicroRNA-138 inhibits cell growth, invasion, and EMT of non-small cell lung cancer via SOX4/p53 feedback loop. Oncol. Res., 2018, 26(3), 385-400.
[http://dx.doi.org/10.3727/096504017X14973124850905] [PMID: 28653608]
[28]
Zhao, G.; Yin, Y.; Zhao, B. miR-140-5p is negatively correlated with proliferation, invasion, and tumorigenesis in malignant melanoma by targeting SOX4 via the Wnt/β-catenin and NF-κB cascades. J. Cell. Physiol., 2020, 235(3), 2161-2170.
[http://dx.doi.org/10.1002/jcp.29122] [PMID: 31385607]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy