Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Structural and Electrical Properties of Glucose Biosensors Based on ZnO and ZnO-CuO Nanostructures

Author(s): Borhan Aldeen Albiss *, Hadeel S. Abdullah and Ahmad Mohammad Alsaad

Volume 18, Issue 2, 2022

Published on: 01 March, 2021

Page: [255 - 265] Pages: 11

DOI: 10.2174/1573413717666210301111000

Abstract

Background: Nanostructured metal oxides have stimulated tremendous efforts for sightseeing glucose bio-sensing applications. They have been mostly investigated to fabricate highly sensitive, stabilized and ultrafast biosensors.

Objective: Fabrication and characterization of glucose biosensors based on zinc oxide (ZnO) nanostructured thin films modified by copper oxide (CuO) nanostructures in order to obtain stabilized ZnO:CuO biosensors with high sensitivity and fast response time.

Methods: The components of the investigated biosensors are synthesized using the hydrothermal solgel method by dip-coating the sensing layer on indium tin oxide-coated glass substrates (ITO). The structural and electrical properties of the fabricated biosensors are investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and I-V characteristics.

Results: SEM micrographs indicate that ZnO nanostructures exhibit an interconnected sheet-like patterns. These sheets are thin and distributed randomly on the ITO substrate. SEM images of ZnO:CuO reveal that the morphology of nanostructured thin films is composed of flower-like patterns. The XRD patterns of ZnO and modified ZnO:CuO thin films subjected to thermal annealing show that thin films exhibit a high degree of crystallinity with minor traces of impurity phases. The biosensors' key parameters are calculated and interpreted by measuring the I-V characteristics to elucidate the sensitivity and reproducibility of measurements performed for various glucose concentrations. Furthermore, the electric current response of ZnO and ZnO:CuO biosensors are found to be linear and quadratic as a function of glucose concentration, respectively. The introduction of CuO into ZnO thin films leads to the enhancement of the sensitivity of the synthesized glucose biosensors for a high degree of precision in measuring glucose levels.

Conclusion: Both sensors exhibit average sensitivities in the range (from 1 to 10 μA mM−1 cm−2) with quite good reproducibility. The unique property of this sensor is its ability to measure glucose concentrations at neutral pH conditions (i.e. pH = 7) using a simple, low cost and novel sensor design.

Keywords: Zinc oxide, copper oxide, glucose biosensors, SEM, XRD, I-V characteristics, sensitivity.

Graphical Abstract

[1]
Rahman, M.M.; Ahammad, A.J.; Jin, J.H.; Ahn, S.J.; Lee, J.J.; Jae-Joon, L. A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors (Basel), 2010, 10(5), 4855-4886.
[http://dx.doi.org/10.3390/s100504855] [PMID: 22399911]
[2]
Nikolova, M.P.; Chavali, M.S. Metal oxide nanoparticles as biomedical materials. Biomimetics (Basel), 2020, 5(2), 27.
[http://dx.doi.org/10.3390/biomimetics5020027] [PMID: 32521669]
[3]
Bhat, S.S.; Qurashi, A.; Khanday, F.A. ZnO nanostructures based biosensors for cancer and infectious disease applications: Perspectives, prospects and promises. Trends Analyt. Chem., 2017, 86, 1-13.
[http://dx.doi.org/10.1016/j.trac.2016.10.001]
[4]
Radha Shanmugam, N.; Muthukumar, S.; Chaudhry, S.; Anguiano, J.; Prasad, S. Ultrasensitive nanostructure sensor arrays on flexible substrates for multiplexed and simultaneous electrochemical detection of a panel of cardiac biomarkers. Biosens. Bioelectron., 2017, 89(Pt 2), 764-772.
[http://dx.doi.org/10.1016/j.bios.2016.10.046] [PMID: 27818043]
[5]
Izyumskaya, N.; Tahira, A.; Ibupoto, Z.H.; Lewinski, N.; Avrutin, V.; Özgür, Ü.; Topsakal, E.; Willander, M.; Morkoç, H. Review—Electrochemical Biosensors Based on ZnO Nanostructures. ECS J. Solid State Sci. Technol., 2017, 6, Q84-Q100.
[http://dx.doi.org/10.1149/2.0291708jss]
[6]
Sang, C.H.; Chou, S.J.; Pan, F.M.; Sheu, J.T. Fluorescence enhancement and multiple protein detection in ZnO nanostructure microfluidic devices. Biosens. Bioelectron., 2016, 75, 285-292.
[http://dx.doi.org/10.1016/j.bios.2015.08.050] [PMID: 26322591]
[7]
Moezzi, A.; McDonagh, A.M.; Cortie, M.B. Zinc oxide particles: Synthesis, properties and applications. Chem. Eng. J., 2012, 185, 1-22.
[http://dx.doi.org/10.1016/j.cej.2012.01.076]
[8]
Marie, M.; Mandal, S.; Manasreh, O. An Electrochemical Glucose Sensor Based on Zinc Oxide Nanorods. Sensors (Basel), 2015, 15(8), 18714-18723.
[http://dx.doi.org/10.3390/s150818714] [PMID: 26263988]
[9]
Hsu, C.L.; Lin, J.H.; Hsu, D.X.; Wang, S.H.; Lin, S.Y.; Hsueh, T.J. Enhanced non-enzymatic glucose biosensor of ZnO nanowires via decorated Pt nanoparticles and illuminated with UV/green light emitting diodes. Sens. Actuators B Chem., 2017, 238, 150-159.
[http://dx.doi.org/10.1016/j.snb.2016.07.060]
[10]
Zhou, F.; Jing, W.; Wu, Q.; Gao, W.; Jiang, Z.; Shi, J.; Cui, Q. Effects of the surface morphologies of ZnO nanotube arrays on the performance of amperometric glucose sensors. Mater. Sci. Semicond. Process., 2016, 56, 137-144.
[http://dx.doi.org/10.1016/j.mssp.2016.08.009]
[11]
Li, R.; Liu, X.; Wang, H.; Wu, Y.; Lu, Z. High-performance hybrid electrode decorated by well-aligned nanograss arrays for glucose sensing. Biosens. Bioelectron., 2018, 102, 288-295.
[http://dx.doi.org/10.1016/j.bios.2017.11.007] [PMID: 29153951]
[12]
Ahmad, R.; Tripathy, N.; Ahn, M-S.; Bhat, K.S.; Mahmoudi, T.; Wang, Y.; Yoo, J.Y.; Kwon, D-W.; Yang, H-Y.; Hahn, Y-B. Highly efficient non-eEnzymatic glucose sensor based on CuO modified vertically-grown ZnO nanorods on electrode. Sci. Rep., 2017, 7(1), 5715.
[http://dx.doi.org/10.1038/s41598-017-06064-8] [PMID: 28720844]
[13]
Ghanbari, K.; Hajian, A. Electrochemical characterization of Au/ZnO/PPy/RGO nanocomposite and its application for simultaneous determination of ascorbic acid, epinephrine, and uric acid. J. Electroanal. Chem. (Lausanne Switz.), 2017, 801, 466-479.
[http://dx.doi.org/10.1016/j.jelechem.2017.07.024]
[14]
Gasparotto, G.; Costa, J.P.C.; Costa, P.I.; Zaghete, M.A.; Mazon, T. Electrochemical immunosensor based on ZnO nanorods-Au nanoparticles nanohybrids for ovarian cancer antigen CA-125 detection. Mater. Sci. Eng. C, 2017, 76, 1240-1247.
[http://dx.doi.org/10.1016/j.msec.2017.02.031] [PMID: 28482492]
[15]
Wang, Z.L. Zinc oxide nanostructures: growth, properties and applications. J. Phys. Condens. Matter, 2004, 16(25), R829.
[http://dx.doi.org/10.1088/0953-8984/16/25/R01]
[16]
Daniel, M-C.; Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev., 2004, 104(1), 293-346.
[http://dx.doi.org/10.1021/cr030698+] [PMID: 14719978]
[17]
Char, M.; Kar, A. Effect of multilayer thin film on interfacial growth at the solder joint interface-An application of nanotechnology in environment friendly electronic materials. Nanotechnology Letters, 2018, 2(1)
[18]
Chang, C-T. LIN, R.C.; Chin, Y.-C.; Chiang, C-F. Resonance structure of bulk acoustic wave resonator. Google Patents, 2018.
[19]
Rozsa, B.J.; Katona, G.; Maak, P.A. Acousto-optic deflector comprising multiple electro-acoustic transducers. Google Patents, 2018.
[20]
Polla, D.; Francis, L. Ferroelectric thin films in micro-electromechanical systems applications. MRS Bull., 1996, 21(7), 59-65.
[http://dx.doi.org/10.1557/S0883769400035934]
[21]
Tricoli, A.; Righettoni, M.; Teleki, A. Semiconductor gas sensors: dry synthesis and application. Angew. Chem. Int. Ed. Engl., 2010, 49(42), 7632-7659.
[http://dx.doi.org/10.1002/anie.200903801] [PMID: 20718055]
[22]
Albiss, B.A.; Sakhaneh, W.A.; Jumah, I.M.; Obaidat, I.M. Gas sensing properties of ZnO/single-wall carbon nanotube composites. IEEE Sens. J., 2014, 10(12), 1807-1812.
[http://dx.doi.org/10.1109/JSEN.2010.2049739]
[23]
Albiss, B.A. AL-Akhras, M. A.; Obaidat I. M., Ultraviolet photodetector based on ZnO nanorods grown on a flexible PDMS substrate. Int. J. Environ. Anal. Chem., 2015, 95(4), 339-348.
[http://dx.doi.org/10.1080/03067319.2015.1016010]
[24]
Chandrasekhar, P. CNT Applications in Sensors and Actuators.Conducting Polymers, Fundamentals and Applications; Springer, 2018, pp. 53-60.
[http://dx.doi.org/10.1007/978-3-319-69378-1_9]
[25]
Alexiadou, M.; Kandyla, M.; Mousdis, G.; Kompitsas, M. Pulsed laser deposition of ZnO thin films decorated with Au and Pd nanoparticles with enhanced acetone sensing performance. Appl. Phys., A Mater. Sci. Process., 2017, 123(262), 2-6.
[http://dx.doi.org/10.1007/s00339-017-0900-y]
[26]
Nunes, P.; Costa, D.; Fortunato, E.; Martins, R. Performances presented by zinc oxide thin films deposited by rf magnetron sputtering. Vacuum, 2002, 64(3-4), 293-297.
[http://dx.doi.org/10.1016/S0042-207X(01)00323-2]
[27]
Vicente, A.T.; Araújo, A.; Mendes, M.J.; Nunes, D.; Oliveira, M.J.; Sanchez-Sobrado, O.; Ferreira, M.P.; Águas, H.; Fortunato, E.; Martins, R. Multifunctional cellulose-paper for light harvesting and smart sensing applications. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2018, 6(13), 3143-3181.
[http://dx.doi.org/10.1039/C7TC05271E]
[28]
Kraya, R.; Baskar, J.; Arceo, A.; Katz, H.; Thakor, N. Ultra-low resistivity aluminum doped ZnO thin films on flexible substrates using sol-gel solution deposition. Thin Solid Films, 2018, 664, 41-45.
[http://dx.doi.org/10.1016/j.tsf.2018.08.019]
[29]
Karimi, K.G.; Ebrahimi, M.; Mozaffari, S.A. ZnO-carbon Active Nanostructured Thin Film Fabrication by Spin Coating Technique for Enzymatic Urea Biosensing. J. New Mater. Electrochem. Syst., 2018, 21(2)
[30]
Sposito, A.J.; Kurdekar, A.; Zhao, J.; Hewlett, I. Application of nanotechnology in biosensors for enhancing pathogen detection. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2018, e1512.
[http://dx.doi.org/10.1002/wnan.1512] [PMID: 29528198]
[31]
Van Vaerenbergh, B.; Lauwaert, J.; De Clercq, J.; Vermeir, P.; Thybaut, J. In Nanotechnology in catalysis: the force awakens. 18th FEA Research Symposium, 2018.
[32]
Scognamiglio, V. Nanotechnology in glucose monitoring: advances and challenges in the last 10 years. Biosens. Bioelectron., 2013, 47, 12-25.
[http://dx.doi.org/10.1016/j.bios.2013.02.043] [PMID: 23542065]
[33]
Sarma, H.; Sarma, K. X-ray Peak Broadening Analysis of ZnO Nanoparticles Derived by Precipitation method. International Journal of Scientific and Research Publications, 2014, 4(31), 1-7.
[34]
Aboud, N.; Alkayat, W.; Hussain, D.H. Simple chemical synthesis of zinc oxide and copper oxide nanoparticles for biological protection. Sys Rev Pharm, 2020, 11(6), 1188-1195.

© 2025 Bentham Science Publishers | Privacy Policy