Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Curcumin Decorated Silver Nanoparticles as Bioinspired Corrosion Inhibitor for Carbon Steel

Author(s): Prathamesh G. Joshi, Dheeraj Singh Chauhan*, Vandana Srivastava* and Mumtaz Ahmad Quraishi

Volume 18, Issue 2, 2022

Published on: 15 December, 2020

Page: [266 - 275] Pages: 10

DOI: 10.2174/1573413716666201215170101

Price: $65

Abstract

Background: Curcumin-stabilized silver nanoparticles (Cur-AgNp) were synthesized by a facile chemical method. The synthesized AgNp was, for the first time, used as a bio-derived corrosion inhibitor for carbon steel in the 1M sulphamic acid medium.

Methods: The electrochemical studies via impedance spectroscopy, potentiodynamic polarization, and surface analysis are reported in the communication. The maximum inhibition efficiency of 92.87% was obtained at 800 mgL-1.

Results: The impedance measurements revealed an elevation in the polarization resistance with growth in the inhibitor concentration, which supports the adsorption and inhibition behavior of Cur- AgNp on the steel surface. The inhibitor functioned by adsorption on the steel surface and obeyed the Langmuir kinetic-thermodynamic isotherm with a mixed mode of physical/ chemical adsorption. The potentiodynamic polarization study revealed cathodic predominating behavior.

Conclusion: The SEM analysis depicted the development of a protective inhibitor film on the steel substrate, and FTIR-ATR analysis of the inhibited steel surface supported the adsorption of the corrosion inhibitor on the metallic surface.

Keywords: Curcumin, Silver nanoparticles, Ultrasound, Corrosion inhibitor, Impedance spectroscopy, Potentiodynamicpolarization

« Previous
Graphical Abstract

[1]
Martinez-Castanon, G.; Nino-Martinez, N.; Martinez-Gutierrez, F.; Martinez-Mendoza, J.; Ruiz, F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J. Nanopart. Res., 2008, 10, 1343-1348.
[http://dx.doi.org/10.1007/s11051-008-9428-6]
[2]
Naik, R.R.; Stringer, S.J.; Agarwal, G.; Jones, S.E.; Stone, M.O. Biomimetic synthesis and patterning of silver nanoparticles. Nat. Mater., 2002, 1(3), 169-172.
[http://dx.doi.org/10.1038/nmat758] [PMID: 12618805]
[3]
Badr, E.A.; Hefni, H.H.H.; Shafek, S.H.; Shaban, S.M. Synthesis of anionic chitosan surfactant and application in silver nanoparticles preparation and corrosion inhibition of steel. Int. J. Biol. Macromol., 2020, 157, 187-201.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.184] [PMID: 32344090]
[4]
Li, S.; Shen, Y.; Xie, A.; Yu, X.; Qiu, L.; Zhang, L.; Zhang, Q. Green synthesis of silver nanoparticles using capsicum annuum L. extract. Green Chem., 2007, 9, 852-858.
[http://dx.doi.org/10.1039/b615357g]
[5]
Bhakya, S.; Muthukrishnan, S.; Sukumaran, M.; Muthukumar, M. Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Appl. Nanosci., 2016, 6, 755-766.
[http://dx.doi.org/10.1007/s13204-015-0473-z]
[6]
Desireddy, A.; Conn, B.E.; Guo, J.; Yoon, B.; Barnett, R.N.; Monahan, B.M.; Kirschbaum, K.; Griffith, W.P.; Whetten, R.L.; Landman, U.; Bigioni, T.P. Ultrastable silver nanoparticles. Nature, 2013, 501(7467), 399-402.
[http://dx.doi.org/10.1038/nature12523] [PMID: 24005327]
[7]
Solomon, M.M.; Gerengi, H.; Kaya, T.; Umoren, S.A. Performance evaluation of a chitosan/silver nanoparticles composite on st37 steel corrosion in a 15% Hcl solution. ACS Sustain. Chem.& Eng., 2016, 5, 809-820.
[http://dx.doi.org/10.1021/acssuschemeng.6b02141]
[8]
Solomon, M.M.; Gerengi, H.; Kaya, T.; Umoren, S.A. Enhanced corrosion inhibition effect of chitosan for St37 in 15% H2SO4 environment by silver nanoparticles. Int. J. Biol. Macromol., 2017. 104(Pt A), 638-649.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.06.072] [PMID: 28625837]
[9]
Solomon, M.M.; Gerengi, H.; Umoren, S.A. Carboxymethyl cellulose/silver nanoparticles composite: synthesis, characterization and application as a benign corrosion inhibitor for St37 steel in 15% H2SO4 medium. ACS Appl. Mater. Interfaces, 2017, 9(7), 6376-6389.
[http://dx.doi.org/10.1021/acsami.6b14153] [PMID: 28112890]
[10]
Solomon, M.M.; Umoren, S.A.; Obot, I.B.; Sorour, A.A.; Gerengi, H. Exploration of dextran for application as corrosion inhibitor for steel in strong acid environment: effect of molecular weight, modification, and temperature on efficiency. ACS Appl. Mater. Interfaces, 2018, 10(33), 28112-28129.
[http://dx.doi.org/10.1021/acsami.8b09487] [PMID: 30059617]
[11]
Wang, Z.; Liu, J.; Chen, X.; Wan, J.; Qian, Y. A simple hydrothermal route to large-scale synthesis of uniform silver nanowires. Chemistry, 2004, 11(1), 160-163.
[http://dx.doi.org/10.1002/chem.200400705] [PMID: 15526314]
[12]
Pyatenko, A.; Shimokawa, K.; Yamaguchi, M.; Nishimura, O.; Suzuki, M. Synthesis of silver nanoparticles by laser ablation in pure water. Appl. Phys. Adv. Mater., 2004, 79, 803-806.
[13]
Šileikaitė, A.; Prosyčevas, I.; Puišo, J.; Juraitis, A.; Guobienė, A. Analysis of Silver Nanoparticles Produced by Chemical Reduction of Silver Salt Solution. Mater. Sci., 2006, 12, 1392-1320.
[14]
Edison, T.J.I.; Sethuraman, M. Instant green synthesis of silver nanoparticles using terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochem., 2012, 47, 1351-1357.
[http://dx.doi.org/10.1016/j.procbio.2012.04.025]
[15]
Fayaz, A.M.; Balaji, K.; Girilal, M.; Yadav, R.; Kalaichelvan, P.T.; Venketesan, R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine (Lond.), 2010, 6(1), 103-109.
[http://dx.doi.org/10.1016/j.nano.2009.04.006] [PMID: 19447203]
[16]
Banerjee, S.; Chakravarty, A.R. Metal complexes of curcumin for cellular imaging, targeting, and photoinduced anticancer activity. Acc. Chem. Res., 2015, 48(7), 2075-2083.
[http://dx.doi.org/10.1021/acs.accounts.5b00127] [PMID: 26158541]
[17]
Kundu, S.; Nithiyanantham, U. In Situ formation of curcumin stabilized shape-selective ag nanostructures in aqueous solution and their pronounced sers activity. RSC Advances, 2013, 3, 25278-25290.
[http://dx.doi.org/10.1039/c3ra44471f]
[18]
Georgiev, V.; Ananga, A.; Tsolova, V. Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients, 2014, 6(1), 391-415.
[http://dx.doi.org/10.3390/nu6010391] [PMID: 24451310]
[19]
Dwyer, K.; Hosseinian, F.; Rod, M.R. The market potential of grape waste alternatives. J. Food Res., 2014, 3, 91-91.
[http://dx.doi.org/10.5539/jfr.v3n2p91]
[20]
Huang, L.; Weng, X.; Chen, Z.; Megharaj, M.; Naidu, R. Green synthesis of iron nanoparticles by various tea extracts: comparative study of the reactivity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 130, 295-301.
[http://dx.doi.org/10.1016/j.saa.2014.04.037] [PMID: 24793479]
[21]
Iturmendi, N.; Durán, D.; Marín-Arroyo, M.R. Fining of red wines with gluten or yeast extract protein. Int. J. Food Sci. Technol., 2010, 45, 200-207.
[http://dx.doi.org/10.1111/j.1365-2621.2009.02121.x]
[22]
Okitsu, K.; Ashokkumar, M.; Grieser, F. Sonochemical synthesis of gold nanoparticles: effects of ultrasound frequency. J. Phys. Chem. B, 2005, 109(44), 20673-20675.
[http://dx.doi.org/10.1021/jp0549374] [PMID: 16853678]
[23]
Li, H-l.; Zhu, Y-c.; Chen, S-g.; Palchik, O.; Xiong, J-p.; Koltypin, Y.; Gofer, Y.; Gedanken, A. A novel ultrasound-assisted approach to the synthesis of Cdse and Cds nanoparticles. J. Solid State Chem., 2003, 172, 102-110.
[http://dx.doi.org/10.1016/S0022-4596(02)00138-X]
[24]
Chauhan, S.; Verma, P.; Mishra, A.; Srivastava, V. An expeditious ultrasound-initiated green synthesis of 1, 2, 4-thiadiazoles in water. Chem. Heterocycl. Compd., 2020, 56, 123-126.
[http://dx.doi.org/10.1007/s10593-020-02632-5]
[25]
Kimura, T. Application of Ultrasound to Organic Synthesis.Sonochemistry and the Acoustic Bubble; Elsevier, 2015, pp. 171-186.
[http://dx.doi.org/10.1016/B978-0-12-801530-8.00007-4]
[26]
Verma, A.; Jain, N.; Singha, S.; Quraishi, M.A.; Sinha, I. Green synthesis and catalytic application of curcumin stabilized silver nanoparticles. J. Chem. Sci., 2016, 128, 1871-1878.
[http://dx.doi.org/10.1007/s12039-016-1189-7]
[27]
Haque, J.; Srivastava, V.; Chauhan, D.S.; Lgaz, H.; Quraishi, M.A. Microwave-induced synthesis of chitosan schiff bases and their application as novel and green corrosion inhibitors: experimental and theoretical approach. ACS Omega, 2018, 3(5), 5654-5668.
[http://dx.doi.org/10.1021/acsomega.8b00455] [PMID: 31458765]
[28]
Srivastava, V.; Chauhan, D.S.; Joshi, P.G.; Maruthapandian, V.; Sorour, A.A.; Quraishi, M.A. PEG-functionalized chitosan: a biological macromolecule as a novel corrosion inhibitor. ChemistrySelect, 2018, 3, 1990-1998.
[http://dx.doi.org/10.1002/slct.201701949]
[29]
Chauhan, D.S.; Ansari, K.R.; Sorour, A.A.; Quraishi, M.A.; Lgaz, H.; Salghi, R. Thiosemicarbazide and thiocarbohydrazide functionalized chitosan as ecofriendly corrosion inhibitors for carbon steel in hydrochloric acid solution. Int. J. Biol. Macromol, 2018. 107(Pt B), 1747-1757.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.050] [PMID: 29030196]
[30]
Yadav, D.K.; Chauhan, D.S.; Ahamad, I.; Quraishi, M.A. electrochemical behavior of steel/acid interface: adsorption and inhibition effect of oligomeric aniline. RSC Advances, 2013, 3, 632-646.
[http://dx.doi.org/10.1039/C2RA21697C]
[31]
Kear, G.; Barker, B.; Walsh, F. Electrochemical corrosion of unalloyed copper in chloride media––a critical review. Corros. Sci., 2004, 46, 109-135.
[http://dx.doi.org/10.1016/S0010-938X(02)00257-3]
[32]
Zhang, D-q.; Gao, L-x.; Zhou, G-d. Inhibition of copper corrosion by bis-(1-benzotriazolymethylene)-(2, 5-thiadiazoly)-disulfide in chloride media. Appl. Surf. Sci., 2004, 225, 287-293.
[http://dx.doi.org/10.1016/j.apsusc.2003.10.016]
[33]
McCafferty, E. Validation of corrosion rates measured by the tafel extrapolation method. Corros. Sci., 2005, 47, 3202-3215.
[http://dx.doi.org/10.1016/j.corsci.2005.05.046]
[34]
McCafferty, E. Introduction to Corrosion Science; Springer Science & Business Media, 2010.
[http://dx.doi.org/10.1007/978-1-4419-0455-3]
[35]
Sherif, E-S.M.; El Shamy, A.; Ramla, M.M.; El Nazhawy, A.O. 5-(phenyl)-4h-1, 2, 4-triazole-3-thiol as a corrosion inhibitor for copper in 3.5% Nacl solutions. Mater. Chem. Phys., 2007, 102, 231-239.
[http://dx.doi.org/10.1016/j.matchemphys.2006.12.009]
[36]
Sherif, E-S.M.; Almajid, A.A. Surface protection of copper in aerated 3.5% sodium chloride solutions by 3-amino-5-mercapto-1, 2, 4-triazole as a copper corrosion inhibitor. J. Appl. Electrochem., 2010, 40, 1555-1562.
[http://dx.doi.org/10.1007/s10800-010-0140-8]
[37]
Sherif, S.M.; Erasmus, R.M.; Comins, J.D. Corrosion of copper in aerated synthetic sea water solutions and its inhibition by 3-amino-1,2,4-triazole. J. Colloid Interface Sci., 2007, 309(2), 470-477.
[http://dx.doi.org/10.1016/j.jcis.2007.01.003] [PMID: 17346723]
[38]
Suhasaria, A.; Murmu, M.; Satpati, S.; Banerjee, P.; Sukul, D. Bis-benzothiazoles as efficient corrosion inhibitors for mild steel in aqueous hcl: molecular structure-reactivity correlation study. J. Mol. Liq., 2020, 313.
[http://dx.doi.org/10.1016/j.molliq.2020.113537]
[39]
Satpati, S.; Saha, S.K.; Suhasaria, A.; Banerjee, P.; Sukul, D. Adsorption and anti-corrosion characteristics of vanillin schiff bases on mild steel in 1 m hcl: experimental and theoretical study. RSC Advances, 2020, 10, 9258-9273.
[http://dx.doi.org/10.1039/C9RA07982C]
[40]
Onyeachu, I.B.; Obot, I.B.; Adesina, A.Y. Green corrosion inhibitor for oilfield application ii: the time–evolution effect on the sweet corrosion of Api X60 steel in synthetic brine and the inhibition performance of 2-(2-pyridyl) benzimidazole under turbulent hydrodynamics. Corros. Sci., 2020, 68, 108589.
[http://dx.doi.org/10.1016/j.corsci.2020.108589]
[41]
Solmaz, R. Investigation of the inhibition effect of 5-((E)-4-phenylbuta-1, 3-dienylideneamino)-1, 3, 4-thiadiazole-2-thiol schiff base on mild steel corrosion in hydrochloric acid. Corros. Sci., 2010, 52, 3321-3330.
[http://dx.doi.org/10.1016/j.corsci.2010.06.001]
[42]
Solmaz, R.; Kardaş, G.; Culha, M.; Yazıcı, B.; Erbil, M. Investigation of adsorption and inhibitive effect of 2-mercaptothiazoline on corrosion of mild steel in hydrochloric acid media. Electrochim. Acta, 2008, 53, 5941-5952.
[http://dx.doi.org/10.1016/j.electacta.2008.03.055]
[43]
Özcan, M.; Dehri, I.; Erbil, M. Organic sulphur-containing compounds as corrosion inhibitors for mild steel in acidic media: correlation between inhibition efficiency and chemical structure. Appl. Surf. Sci., 2004, 236, 155-164.
[http://dx.doi.org/10.1016/j.apsusc.2004.04.017]
[44]
Singh, P.; Chauhan, D.S.; Srivastava, K.; Srivastava, V.; Quraishi, M.A. Expired atorvastatin drug as corrosion inhibitor for mild steel in hydrochloric acid solution. Int. J. Ind. Chem., 2017, 8, 363-372.
[http://dx.doi.org/10.1007/s40090-017-0120-5]
[45]
Ansari, K.R.; Quraishi, M.A. Bis-schiff bases of isatin as new and environmentally benign corrosion inhibitor for mild steel. J. Ind. Eng. Chem., 2014, 20, 2819-2829.
[http://dx.doi.org/10.1016/j.jiec.2013.11.014]
[46]
Ansari, K.R.; Quraishi, M.A.; Singh, A.; Ramkumar, S.; Obote, I.B. Corrosion inhibition of N80 steel in 15% Hcl by pyrazolone derivatives: electrochemical, surface and quantum chemical studies. RSC Advances, 2016, 6, 24130-24141.
[http://dx.doi.org/10.1039/C5RA25441H]
[47]
Verma, C.; Olasunkanmi, L.O.; Ebenso, E.E.; Quraishi, M.A.; Obot, I. Adsorption behavior of glucosamine-based, pyrimidine-fused heterocycles as green corrosion inhibitors for mild steel: experimental and theoretical studies. J. Phys. Chem. C, 2016, 120, 11598-11611.
[http://dx.doi.org/10.1021/acs.jpcc.6b04429]
[48]
Popova, A.; Christov, M.; Vasilev, A. Mono-and dicationic benzothiazolic quaternary ammonium bromides as mild steel corrosion inhibitors. part iii: influence of the temperature on the inhibition process. Corros. Sci., 2015, 94, 70-78.
[http://dx.doi.org/10.1016/j.corsci.2015.01.039]
[49]
Popova, A.; Christov, M.; Zwetanova, A. Effect of the molecular structure on the inhibitor properties of azoles on mild steel corrosion in 1 M hydrochloric Acid. Corros. Sci., 2007, 49, 2131-2143.
[http://dx.doi.org/10.1016/j.corsci.2006.10.021]
[50]
Singh, P.; Ebenso, E.E.; Olasunkanmi, L.O.; Obot, I.; Quraishi, M.A. Electrochemical, theoretical, and surface morphological studies of corrosion inhibition effect of green naphthyridine derivatives on mild steel in hydrochloric Acid. J. Phys. Chem. C, 2016, 120, 3408-3419.
[http://dx.doi.org/10.1021/acs.jpcc.5b11901]
[51]
Singh, P.; Makowska-Janusik, M.; Slovensky, P.; Quraishi, M.A. Nicotinonitriles as green corrosion inhibitors for mild steel in hydrochloric acid: electrochemical, computational and surface morphological studies. J. Mol. Liq., 2016, 220, 71-81.
[http://dx.doi.org/10.1016/j.molliq.2016.04.042]
[52]
Dohare, P.; Chauhan, D.S.; Sorour, A.A.; Quraishi, M.A. DFT and experimental studies on the inhibition potentials of expired tramadol drug on mild steel corrosion in hydrochloric acid. Materials Discovery, 2017, 9, 30-41.
[http://dx.doi.org/10.1016/j.md.2017.11.001]
[53]
Baig, N.; Chauhan, D.S.; Saleh, T.A.; Quraishi, M.A. Diethylenetriamine functionalized graphene oxide as a novel corrosion inhibitor for mild steel in hydrochloric acid solutions. New J. Chem., 2019, 43, 2328-2337.
[http://dx.doi.org/10.1039/C8NJ04771E]
[54]
ElBelghiti, M.; Karzazi, Y.; Dafali, A.; Hammouti, B.; Bentiss, F.; Obot, I.; Bahadur, I.; Ebenso, E. Experimental, quantum chemical and monte carlo simulation studies of 3, 5-disubstituted-4-amino-1, 2, 4-triazoles as corrosion inhibitors on mild steel in acidic medium. J. Mol. Liq., 2016, 218, 281-293.
[http://dx.doi.org/10.1016/j.molliq.2016.01.076]
[55]
Bentiss, F.; Lebrini, M.; Lagrenée, M. Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in mild steel/2, 5-Bis (N-thienyl)-1, 3, 4-thiadiazoles/hydrochloric acid system. Corros. Sci., 2005, 47, 2915-2931.
[http://dx.doi.org/10.1016/j.corsci.2005.05.034]
[56]
Tang, Y.; Zhang, F.; Hu, S.; Cao, Z.; Wu, Z.; Jing, W. Novel benzimidazole derivatives as corrosion inhibitors of mild steel in the acidic Media. Part I: gravimetric, electrochemical, sem and xps studies. Corros. Sci., 2013, 74, 271-282.
[http://dx.doi.org/10.1016/j.corsci.2013.04.053]
[57]
Frankel, G.S.; Rohwerder, M. Electrochemical Techniques for Corrosion. Encyclopedia of Electrochemistry. Online, 2007.
[58]
Chauhan, D.S.; Quraishi, M.A.; Sorour, A.A.; Saha, S.K.; Banerjee, P. Triazole-modified chitosan: a biomacromolecule as a new environmentally benign corrosion inhibitor for carbon steel in a hydrochloric acid solution. RSC Advances, 2019, 9, 14990-15003.
[http://dx.doi.org/10.1039/C9RA00986H]
[59]
Solmaz, R. Investigation of corrosion inhibition mechanism and stability of vitamin B1 on mild steel in 0.5 M Hcl solution. Corros. Sci., 2014, 81, 75-84.
[http://dx.doi.org/10.1016/j.corsci.2013.12.006]
[60]
Yadav, D.K.; Maiti, B.; Quraishi, M.A. Electrochemical and quantum chemical studies of 3, 4-dihydropyrimidin-2 (1h)-ones as corrosion inhibitors for mild steel in hydrochloric acid solution. Corros. Sci., 2010, 52, 3586-3598.
[http://dx.doi.org/10.1016/j.corsci.2010.06.030]
[61]
Yadav, D.K.; Quraishi, M.A. Application of some condensed uracils as corrosion inhibitors for mild steel: gravimetric, electrochemical, surface morphological, uv–visible, and theoretical investigations. Ind. Eng. Chem. Res., 2012, 51, 14966-14979.
[http://dx.doi.org/10.1021/ie301840y]
[62]
Yadav, D.K.; Quraishi, M.A. Electrochemical investigation of substituted pyranopyrazoles adsorption on mild steel in acid solution. Ind. Eng. Chem. Res., 2012, 51, 8194-8210.
[http://dx.doi.org/10.1021/ie3002155]
[63]
Chauhan, D.S.; Kumar, A.M.; Quraishi, M.A. Hexamethylenediamine functionalized glucose as a new and environmentally benign corrosion inhibitor for copper. Chem. Eng. Res. Des., 2019, 150, 99-115.
[http://dx.doi.org/10.1016/j.cherd.2019.07.020]
[64]
Flitt, H.J.; Schweinsberg, D.P. Evaluation of corrosion rate from polarisation curves not exhibiting a tafel region. Corros. Sci., 2005, 47, 3034-3052.
[http://dx.doi.org/10.1016/j.corsci.2005.06.014]
[65]
Yadav, D.K.; Quraishi, M.A.; Maiti, B. Inhibition effect of some benzylidenes on mild steel in 1 M Hcl: an experimental and theoretical correlation. Corros. Sci., 2012, 55, 254-266.
[http://dx.doi.org/10.1016/j.corsci.2011.10.030]
[66]
Stansbury, E.E.; Buchanan, R.A. Fundamentals of Electrochemical Corrosion; ASM international, 2000.
[http://dx.doi.org/10.31399/asm.tb.fec.9781627083027]
[67]
Haque, J.; Srivastava, V.; Chauhan, D.S.; Quraishi, M.A.; Kumar, A.M.; Lgaz, H. Electrochemical and surface studies on chemically modified glucose derivatives as environmentally benign corrosion inhibitors. Sustain. Chem. Pharm., 2020, 16
[http://dx.doi.org/10.1016/j.scp.2020.100260]
[68]
Haque, J.; Srivastava, V.; Quraishi, M.A.; Chauhan, D.S.; Lgaz, H.; Chung, I-M. Polar group substituted imidazolium zwitterion as eco-friendly corrosion inhibitors for mild steel in acid solution. Corros. Sci., 2020, 172.
[http://dx.doi.org/10.1016/j.corsci.2020.108665]
[69]
El-Hajjaji, F.; Messali, M.; Aljuhani, A.; Aouad, M.; Hammouti, B.; Belghiti, M.; Chauhan, D.S.; Quraishi, M.A. Pyridazinium-based ionic liquids as novel and green corrosion inhibitors of carbon steel in acid medium: electrochemical and molecular dynamics simulation studies. J. Mol. Liq., 2018, 249, 997-1008.
[http://dx.doi.org/10.1016/j.molliq.2017.11.111]
[70]
Quraishi, M.A.; Chauhan, D.S.; Saji, V.S. Heterocyclic Organic Corrosion Inhibitors: Principles and Applications; Elsevier Inc.: Amsterdam, 2020.
[71]
Fateh, A.; Aliofkhazraei, M.; Rezvanian, A. Review of corrosive environments for copper and its corrosion inhibitors. Arab. J. Chem., 2020, 13, 481-544.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.021]
[72]
Chauhan, D.S.; Mazumder, M.A.J.; Quraishi, M.A.; Ansari, K.R. Chitosan-cinnamaldehyde Schiff base: A bioinspired macromolecule as corrosion inhibitor for oil and gas industry. Int. J. Biol. Macromol., 2020, 158, 127-138.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.200] [PMID: 32348864]
[73]
Chauhan, D.S.; Mazumder, M.A.J.; Quraishi, M.A.; Ansari, K.R.; Suleiman, R.K. Microwave-assisted synthesis of a new piperonal-chitosan schiff base as a bio-inspired corrosion inhibitor for oil-well acidizing. Int. J. Biol. Macromol., 2020, 158, 231-243.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.195] [PMID: 32344086]
[74]
Ma, X.; Wang, J.; Yu, S.; Chen, X.; Li, J.; Zhu, H.; Hu, Z. Synthesis, experimental and theoretical studies of triazine derivatives with surface activity as effective corrosion inhibitors for medium carbon steel in acid medium. J. Mol. Liq., 2020, 315.
[http://dx.doi.org/10.1016/j.molliq.2020.113711]
[75]
Goyal, M.; Vashisht, H.; Kumar, A.; Kumar, S.; Bahadur, I.; Benhiba, F.; Zarrouk, A. Isopentyltriphenylphosphonium bromideionic liquid as a newly effective corrosion inhibitor on metal-electrolyte interface in acidic medium: experimental, surface morphological (Sem-Edx & Afm) and computational analysis. J. Mol. Liq., 2020.
[http://dx.doi.org/10.1016/j.molliq.2020.113838]
[76]
Shaban, S.M.; Abd Elsamad, S.; Tawfik, S.M.; Adel, A-H.; Aiad, I. Studying surface and thermodynamic behavior of a new multi-hydroxyl gemini cationic surfactant and investigating their performance as corrosion inhibitor and biocide. J. Mol. Liq., 2020, 316.
[http://dx.doi.org/10.1016/j.molliq.2020.113881]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy