Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Neuroprotector Effect of Daily 8-Minutes of High-Intensity Interval Training in Rat Aβ1-42 Alzheimer Disease Model

Author(s): Francisco S.L. Vasconcelos-Filho*, Roberta C. da Rocha-e-Silva, Jonathan E.R. Martins, Welton D.N. Godinho, Vitor V. da Costa, Jannison K.C. Ribeiro, Carlos A. da Silva, Vania M. Ceccatto, Paula M. Soares and Janaina S.A.M. Evangelista

Volume 17, Issue 14, 2020

Page: [1320 - 1333] Pages: 14

DOI: 10.2174/1567205018666210218161856

Price: $65

Abstract

Background: Alzheimer’s disease (AD) is the most common and irreversible neurodegenerative disorder, and amyloid peptide plays a central role in its pathogenesis. Physical training contributes as a beneficial adaptation to AD. However, these effects may be underestimated because much of the literature used fixed training prescription variables (intensity and volume) throughout the protocol. Moreover, researchers poorly understand whether chronic high-intensity interval training (HIIT) exerts similar effects on the brain tissue of individuals with AD.

Objective: This study evaluated the effect of 8 minutes of HIIT with incremental overload in an AD model.

Methods: Forty male Wistar rats were divided into four groups: an untrained Sham group, Sham trained group, Aβ1-42 (Alzheimer’s) untrained group, and Aβ1-42 (Alzheimer’s) trained group (n=10 rats per group). Animals underwent stereotactic surgery and received a hippocampal injection of Aβ1-42 or a saline solution. Seven days after surgery, two weeks of treadmill adaptation followed by a maximal running test (MRT) was performed. Then, animals were subjected to eight weeks of HIIT. Rats were sacrificed 24 h after the behavioral tests (open field and Morris water maze), hippocampal tissue was extracted to analyze the redox balance and BDNF/TrkB pathway, and neuritic plaques (NP) were detected by evaluating silver impregnation.

Results: The AD trained group presented a physical capacity amelioration every two weeks and locomotor, learning, and memory improvements (p<0.05). These effects were accompanied by increased CAT and SOD levels, followed by decreased lipid peroxidation (p<0.05). Furthermore, increased activation of the BDNF/TrkB (p<0.05) pathway and decreased NP was observed.

Conclusion: Based on these results, MRT was essential for an excellent chronic training protocol prescription and overload adjustment. Therefore, 8 minutes of HIIT daily for 8 weeks may reduce behavioral deficits by promoting a positive redox balance and increased activity of the BDNF/TrkB pathway that may contribute to NP attenuation.

Keywords: Neurodegenerative disorders, dementia, treatment, HIIT, periodized training, intensity exercise.

[1]
Abraham D, Feher J, Scuderi GL, et al. Exercise and probiotics attenuate the development of Alzheimer’s disease in transgenic mice: Role of microbiome. Exp Gerontol 2019; 115(115): 122-31.
[http://dx.doi.org/10.1016/j.exger.2018.12.005] [PMID: 30529024]
[2]
Patterson C. World Alzheimer Report 2018: The state of the art of dementia research. New frontiers; Alzheimer's Disease International (ADI) 2018; 1: 32-6. Available from:. https://www.alz.co.uk/research/world-report-2018
[3]
Karthick C, Nithiyanandan S, Essa MM, Guillemin GJ, Jayachandran SK, Anusuyadevi M. Time-dependent effect of oligomeric amyloid-β (1-42)-induced hippocampal neurodegeneration in rat model of Alzheimer’s disease. Neurol Res 2019; 41(2): 139-50.
[http://dx.doi.org/10.1080/01616412.2018.1544745] [PMID: 30453864]
[4]
Ballard C, Gauthier S, Corbett A, et al. Alzheimer’s disease. Lancet 2011; 37(9770): 1019-31.
[http://dx.doi.org/10.1016/S0140-6736(10)61349-9]
[5]
Querfurth HW. LaFerla FaM. Alzheimer’s disease. N Engl J Med 2010; 362(4): 329-44.
[6]
Nagahara AH, Tuszynski MH. Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat Rev Drug Discov 2011; 10(3): 209-19.
[http://dx.doi.org/10.1038/nrd3366] [PMID: 21358740]
[7]
Ginsberg SD, Alldred MJ, Counts SE, et al. Microarray analysis of hippocampal CA1 neurons implicates early endosomal dysfunction during Alzheimer’s disease progression. Biol Psychiatry 2010; 68(10): 885-93.
[http://dx.doi.org/10.1016/j.biopsych.2010.05.030] [PMID: 20655510]
[8]
Devi L, Ohno M. 7,8-dihydroxyflavone, a small-molecule TrkB agonist, reverses memory deficits and BACE1 elevation in a mouse model of Alzheimer’s disease. Neuropsychopharmacology 2012; 37(2): 434-44.
[http://dx.doi.org/10.1038/npp.2011.191] [PMID: 21900882]
[9]
Radak Z, Chung HY, Goto S. Systemic adaptation to oxidative challenge induced by regular exercise. Free Radic Biol Med 2008; 44(2): 153-9.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.01.029] [PMID: 18191751]
[10]
Souza LC, Filho CB, Goes AT, et al. Neuroprotective effect of physical exercise in a mouse model of Alzheimer’s disease induced by β-amyloid1−40 peptide. Neurotox Res 2013; 24(2): 148-63.
[http://dx.doi.org/10.1007/s12640-012-9373-0] [PMID: 23307759]
[11]
Afzalpour ME, Chadorneshin HT, Foadoddini M, Eivari HA. Comparing interval and continuous exercise training regimens on neurotrophic factors in rat brain. Physiol Behav 2015; 147: 78-83.
[http://dx.doi.org/10.1016/j.physbeh.2015.04.012] [PMID: 25868740]
[12]
Adlard PA, Perreau VM, Pop V, Cotman CW. Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease. J Neurosci 2005; 25(17): 4217-21.
[http://dx.doi.org/10.1523/JNEUROSCI.0496-05.2005] [PMID: 15858047]
[13]
Lazarov O, Robinson J, Tang YP, et al. Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice. Cell 2005; 120(5): 701-13.
[http://dx.doi.org/10.1016/j.cell.2005.01.015] [PMID: 15766532]
[14]
Um HS, Kang EB, Leem YH, et al. Exercise training acts as a therapeutic strategy for reduction of the pathogenic phenotypes for Alzheimer’s disease in an NSE/APPsw-transgenic model. Int J Mol Med 2008; 22(4): 529-39.
[http://dx.doi.org/10.3892/ijmm_00000052] [PMID: 18813861]
[15]
Yuede CM, Zimmerman SD, Dong H, et al. Effects of voluntary and forced exercise on plaque deposition, hippocampal volume, and behavior in the Tg2576 mouse model of Alzheimer’s disease. Neurobiol Dis 2009; 35(3): 426-32.https://doi.org/doi:10.1016/j.nbd.2009.06.002
[http://dx.doi.org/10.1016/j.nbd.2009.06.002] [PMID: 19524672]
[16]
Leem YH, Lee YI, Son HJ, Lee SH. Chronic exercise ameliorates the neuroinflammation in mice carrying NSE/htau23. Biochem Biophys Res Commun 2011; 406(3): 359-65.
[http://dx.doi.org/10.1016/j.bbrc.2011.02.046] [PMID: 21329662]
[17]
Liu XJ, Yuan L, Yang D, et al. Melatonin protects against amyloid-β-induced impairments of hippocampal LTP and spatial learning in rats. Synapse 2013; 67(9): 626-36.
[http://dx.doi.org/10.1002/syn.21677] [PMID: 23620224]
[18]
Wolf SL, Winstein CJ, Miller JP, et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: The EXCITE randomized clinical trial. JAMA 2006; 296(17): 2095-104.
[http://dx.doi.org/10.1001/jama.296.17.2095] [PMID: 17077374]
[19]
Cracchiolo JR, Mori T, Nazian SJ, Tan J, Potter H, Arendash GW. Enhanced cognitive activity--over and above social or physical activity--is required to protect Alzheimer’s mice against cognitive impairment, reduce Abeta deposition, and increase synaptic immunoreactivity. Neurobiol Learn Mem 2007; 88(3): 277-94.
[http://dx.doi.org/10.1016/j.nlm.2007.07.007] [PMID: 17714960]
[20]
Diederich K, Bastl A, Wersching H, et al. Effects of different exercise strategies and intensities on memory performance and neurogenesis. Front Behav Neurosci 2017; 11: 47.
[http://dx.doi.org/10.3389/fnbeh.2017.00047] [PMID: 28360847]
[21]
Montero D, Lundby C. Refuting the myth of non-response to exercise training: ‘Non-responders’ do respond to higher dose of training. J Physiol 2017; 595(11): 3377-87.
[http://dx.doi.org/10.1113/JP273480] [PMID: 28133739]
[22]
Gabriel B, Ratkevicius A, Gray P, Frenneaux MP, Gray SR. High-intensity exercise attenuates postprandial lipaemia and markers of oxidative stress. Clin Sci (Lond) 2012; 123(5): 313-21.
[http://dx.doi.org/10.1042/CS20110600] [PMID: 22435779]
[23]
Winding KM, Munch GW, Iepsen UW, Van Hall G, Pedersen BK, Mortensen SP. The effect on glycaemic control of low-volume high-intensity interval training versus endurance training in individuals with type 2 diabetes. Diabetes Obes Metab 2018; 20(5): 1131-9.
[http://dx.doi.org/10.1111/dom.13198] [PMID: 29272072]
[24]
Turner N, Cooney GJ, Kraegen EW, Bruce CR. Fatty acid metabolism, energy expenditure and insulin resistance in muscle. J Endocrinol 2014; 220(2): T61-79.
[http://dx.doi.org/10.1530/JOE-13-0397] [PMID: 24323910]
[25]
Garber CE, Blissmer B, Deschenes MR, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med Sci Sports Exerc 2011; 43(7): 1334-59.
[http://dx.doi.org/10.1249/MSS.0b013e318213fefb] [PMID: 21694556]
[26]
Lourenco MV, Frozza RL, de Freitas GB, et al. Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models. Nat Med 2019; 25(1): 165-75.
[http://dx.doi.org/10.1038/s41591-018-0275-4] [PMID: 30617325]
[27]
Gibala MJ, Little JP, van Essen M, et al. Short-term sprint interval versus traditional endurance training: Similar initial adaptations in human skeletal muscle and exercise performance. J Physiol 2006; 575(Pt 3): 901-11.
[http://dx.doi.org/10.1113/jphysiol.2006.112094] [PMID: 16825308]
[28]
Bompa TO, Haff G. Periodization: Theory and methodology of training. 5th ed. Champaign: Human kinetics 2009.
[29]
Bompa TO, Buzzichelli C. Periodization: Theory and methodology of training. Champaign: Human kinetics 2018.
[30]
Parachikova A, Green KN, Hendrix C, LaFerla FM. Formulation of a medical food cocktail for Alzheimer’s disease: Beneficial effects on cognition and neuropathology in a mouse model of the disease. PLoS One 2010; 5(11)e14015
[http://dx.doi.org/10.1371/journal.pone.0014015] [PMID: 21103342]
[31]
Bures J, Buresova O, Huston JP. Techniques and basic experiments for the study of brain and behavior. 2nd ed. Amsterdam, Newyork: Elsevier Science Publishers 1983.
[32]
Holmes MM, Galea LA, Mistlberger RE, Kempermann G. Adult hippocampal neurogenesis and voluntary running activity: Circadian and dose-dependent effects. J Neurosci Res 2004; 76(2): 216-22.
[http://dx.doi.org/10.1002/jnr.20039] [PMID: 15048919]
[33]
Real CC, Garcia PC, Britto LRG. Treadmill exercise prevents increase of neuroinflammation markers involved in the dopaminergic damage of the 6-OHDA parkinson’s disease model. J Mol Neurosci 2017; 63(1): 36-49.
[http://dx.doi.org/10.1007/s12031-017-0955-4] [PMID: 28801819]
[34]
Zhang R, Alushin GM, Brown A, Nogales E. Mechanistic origin of microtubule dynamic instability and its modulation by EB proteins. Cell 2015; 162(4): 849-59.
[http://dx.doi.org/10.1016/j.cell.2015.07.012] [PMID: 26234155]
[35]
Paxinos G, Watson C. The rat brain in stereotaxic coordinates. New York: Academic Press 2005.
[36]
Zhou WW, Lu S, Su YJ, et al. Decreasing oxidative stress and neuroinflammation with a multifunctional peptide rescues memory deficits in mice with Alzheimer disease. Free Radic Biol Med 2014; 74: 50-63.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.06.013] [PMID: 24960578]
[37]
Lee HE, Kim DH, Park SJ, et al. Neuroprotective effect of sinapic acid in a mouse model of amyloid β(1-42) protein-induced Alzheimer’s disease. Pharmacol Biochem Behav 2012; 103(2): 260-6.
[http://dx.doi.org/10.1016/j.pbb.2012.08.015] [PMID: 22971592]
[38]
Gould TD, Dao DT, Kovacsics CE. The open field test.In: Mood and anxiety related phenotypes in mice: Characterization using behavioral tests. Gould, T.D., Ed.; Humana Press: New Jersey 2009; 42: pp. 1-20..
[39]
Capurro V, Busquet P, Lopes JP, et al. Pharmacological characterization of memoquin, a multi-target compound for the treatment of Alzheimer’s disease. PLoS One 2013; 8(2)e56870
[http://dx.doi.org/10.1371/journal.pone.0056870] [PMID: 23441223]
[40]
Kregel KC, Allen DL, Booth FW, et al. Resource book for the design of animal exercise protocols. Rockville: American Physiological Society 2006.
[41]
Vieira WHB, Goes R, Costa F, et al. Adaptação enzimática da LDH em ratos submetidos a treinamento aeróbio em esteira e laser de baixa intensidade. Braz J Phys Ther 2006; 10: 205-11.
[http://dx.doi.org/10.1590/S1413-35552006000200011]
[42]
Teixeira PSA, Do Rego ICC, Monteiro TIL, Dos Santos ACC, Ceccatto VM. Prescription of aerobic exercise training based on the incremental load test: A model of anaerobic threshold for Rats. J Exerc Physiol 2012; 15: 45-52.
[43]
Díaz-Herrera P, García-Castellano JM, Torres A, Morcuende JA, Calbet JA, Sarrat R. Effect of high-intensity running in rectus femoris muscle fiber in rats. J Orthop Res 2001; 19(2): 229-32.
[http://dx.doi.org/10.1016/S0736-0266(00)00031-0] [PMID: 11347695]
[44]
Maehly AC, Chance B. The assay of catalases and peroxidases. Methods Biochem Anal 1954; 1: 357-424.
[http://dx.doi.org/10.1002/9780470110171.ch14] [PMID: 13193536]
[45]
Bannister JV, Calabrese L. Assays for superoxide dismutase. Methods Biochem Anal 1987; 32: 279-312.
[http://dx.doi.org/10.1002/9780470110539.ch5] [PMID: 3033431]
[46]
Ohkawa H, Ohishi N, Yagi K. Reaction of linoleic acid hydroperoxide with thiobarbituric acid. J Lipid Res 1978; 19(8): 1053-7.
[http://dx.doi.org/10.1016/S0022-2275(20)40690-X] [PMID: 103988]
[47]
Ribeiro JKC, Nascimento TV, Agostinho AG, et al. Evaluation of hypoglycemic therapy through physical exercise in N5STZ-induced diabetes rats. Diabetes Metab Syndr Obes 2020; 13: 991-1004.
[http://dx.doi.org/10.2147/DMSO.S225160] [PMID: 32280255]
[48]
Mirra SS, Hart MN, Terry RD. Making the diagnosis of Alzheimer’s disease. A primer for practicing pathologists. Arch Pathol Lab Med 1993; 117(2): 132-44.
[PMID: 8427562]
[49]
Meeusen R, Duclos M, Foster C, et al. Prevention, diagnosis, and treatment of the overtraining syndrome: Joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Med Sci Sports Exerc 2013; 45(1): 186-205.
[http://dx.doi.org/10.1249/MSS.0b013e318279a10a] [PMID: 23247672]
[50]
Teixeira-Coelho F, Fonseca CG, Barbosa NHS, et al. Effects of manipulating the duration and intensity of aerobic training sessions on the physical performance of rats. PLoS One 2017; 12(8)e0183763
[http://dx.doi.org/10.1371/journal.pone.0183763] [PMID: 28841706]
[51]
Ramírez-Campillo R, Henríquez-Olguín C, Burgos C, et al. Effect of progressive volume-based overload during plyometric training on explosive and endurance performance in young soccer players. J Strength Cond Res 2015; 29(7): 1884-93.
[http://dx.doi.org/10.1519/JSC.0000000000000836] [PMID: 25559905]
[52]
Stone V, Kudo KY, Marcelino TB, August PM, Matté C. Swimming exercise enhances the hippocampal antioxidant status of female Wistar rats. Redox Rep 2015; 20(3): 133-8.
[http://dx.doi.org/10.1179/1351000214Y.0000000116] [PMID: 25387101]
[53]
Ferreira AFF, Binda KH, Singulani MP, et al. Physical exercise protects against mitochondria alterations in the 6-hidroxydopamine rat model of Parkinson’s disease. Behav Brain Res 2020; 387112607
[http://dx.doi.org/10.1016/j.bbr.2020.112607] [PMID: 32199987]
[54]
Téglás T, Németh Z, Koller Á, Van der Zee EA, Luiten PGM, Nyakas C. Effects of long-term moderate intensity exercise on cognitive behaviors and cholinergic forebrain in the aging rat. Neuroscience 2019; 411: 65-75.
[http://dx.doi.org/10.1016/j.neuroscience.2019.05.037] [PMID: 31146009]
[55]
Moore KM, Girens RE, Larson SK, et al. A spectrum of exercise training reduces soluble Aβ in a dose-dependent manner in a mouse model of Alzheimer’s disease. Neurobiol Dis 2016; 85: 218-24.
[http://dx.doi.org/10.1016/j.nbd.2015.11.004] [PMID: 26563933]
[56]
Belviranlı M, Okudan N. Voluntary, involuntary and forced exercises almost equally reverse behavioral impairment by regulating hippocampal neurotrophic factors and oxidative stress in experimental Alzheimer’s disease model. Behav Brain Res 2019; 364(364): 245-55.
[http://dx.doi.org/10.1016/j.bbr.2019.02.030] [PMID: 30790584]
[57]
Hoveida R, Alaei H, Oryan S, Parivar K, Reisi P. Treadmill running improves spatial memory in an animal model of Alzheimer’s disease. Behav Brain Res 2011; 216(1): 270-4.
[http://dx.doi.org/10.1016/j.bbr.2010.08.003] [PMID: 20709113]
[58]
Lu Y, Dong Y, Tucker D, et al. Treadmill exercise exerts neuroprotection and regulates microglial polarization and oxidative stress in a streptozotocin-induced rat model of sporadic Alzheimer’s disease. J Alzheimers Dis 2017; 56(4): 1469-84.
[http://dx.doi.org/10.3233/JAD-160869] [PMID: 28157094]
[59]
Rossi Dare L, Garcia A, Alves N, et al. Physical and cognitive training are able to prevent recognition memory deficits related to amyloid beta neurotoxicity. Behav Brain Res 2019; 365: 190-7.
[http://dx.doi.org/10.1016/j.bbr.2019.03.007] [PMID: 30844418]
[60]
Zhao N, Yan QW, Xia J, et al. Treadmill exercise attenuates Aβ-induced mitochondrial dysfunction and enhances mitophagy activity in APP/PS1 transgenic mice. Neurochem Res 2020; 45(5): 1202-14.
[http://dx.doi.org/10.1007/s11064-020-03003-4] [PMID: 32125561]
[61]
Lambert MI. .General adaptations to exercise: Acute versus chronic and strength versus endurance training. In: Exercise and human reproduction. New York: Vaamonde, D., du Plessis, S. S., Agarwal, A., Ed.; Springer 2016; 1: pp. 93-100..
[http://dx.doi.org/10.1007/978-1-4939-3402-7_6]
[62]
Kraemer WJ, Ratamess NA. Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc 2004; 36(4): 674-88.
[http://dx.doi.org/10.1249/01.MSS.0000121945.36635.61] [PMID: 15064596]
[63]
Schimidt HL, Garcia A, Izquierdo I, Mello-Carpes PB, Carpes FP. Strength training and running elicit different neuroprotective outcomes in a β-amyloid peptide-mediated Alzheimer’s disease model. Physiol Behav 2019; 206: 206-12.
[http://dx.doi.org/10.1016/j.physbeh.2019.04.012] [PMID: 30995451]
[64]
De Sá Cavalcanti JL, Engelhardt E. Aspectos da fisiopatologia da doença de Alzheimer esporádica. Rev Bras Neurol 2012; 48(4): 21-9.
[65]
Bateman RJ, Xiong C, Benzinger TL, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 2012; 367(9): 795-804.
[http://dx.doi.org/10.1056/NEJMoa1202753] [PMID: 22784036]
[66]
Zhao G, Liu HL, Zhang H, Tong XJ. Treadmill exercise enhances synaptic plasticity, but does not alter β-amyloid deposition in hippocampi of aged APP/PS1 transgenic mice. Neuroscience 2015; 298: 357-66.
[http://dx.doi.org/10.1016/j.neuroscience.2015.04.038] [PMID: 25917310]
[67]
Liu HL, Zhao G, Cai K, Zhao HH, Shi LD. Treadmill exercise prevents decline in spatial learning and memory in APP/PS1 transgenic mice through improvement of hippocampal long-term potentiation. Behav Brain Res 2011; 218(2): 308-14.
[http://dx.doi.org/10.1016/j.bbr.2010.12.030] [PMID: 21192984]
[68]
Azimi M, Gharakhanlou R, Naghdi N, Khodadadi D, Heysieattalab S. Moderate treadmill exercise ameliorates amyloid-β-induced learning and memory impairment, possibly via increasing AMPK activity and up-regulation of the PGC-1α/FNDC5/BDNF pathway. Peptides 2018; 102: 78-88.
[http://dx.doi.org/10.1016/j.peptides.2017.12.027] [PMID: 29309801]
[69]
Zhang X, He Q, Huang T, et al. Treadmill exercise decreases Aβ deposition and counteracts cognitive decline in APP/PS1 mice, possibly via hippocampal microglia modifications. Front Aging Neurosci 2019; 11: 78.
[70]
Kamat PK, Tota S, Saxena G, Shukla R, Nath C. Okadaic acid (ICV) induced memory impairment in rats: a suitable experimental model to test anti-dementia activity. Brain Res 2010; 1309: 66-74.
[http://dx.doi.org/10.1016/j.brainres.2009.10.064] [PMID: 19883632]
[71]
Marosi K, Bori Z, Hart N, et al. Long-term exercise treatment reduces oxidative stress in the hippocampus of aging rats. Neuroscience 2012; 226: 21-8.
[http://dx.doi.org/10.1016/j.neuroscience.2012.09.001] [PMID: 22982624]
[72]
Bogdanis GC, Stavrinou P, Fatouros IG, et al. Short-term high-intensity interval exercise training attenuates oxidative stress responses and improves antioxidant status in healthy humans. Food Chem Toxicol 2013; 61: 171-7.
[http://dx.doi.org/10.1016/j.fct.2013.05.046] [PMID: 23747717]
[73]
Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab 2013; 17(2): 162-84.
[http://dx.doi.org/10.1016/j.cmet.2012.12.012] [PMID: 23395166]
[74]
Francis BM, Yang J, Hajderi E, et al. Reduced tissue levels of noradrenaline are associated with behavioral phenotypes of the TgCRND8 mouse model of Alzheimer’s disease. Neuropsychopharmacology 2012; 37(8): 1934-44.
[http://dx.doi.org/10.1038/npp.2012.40] [PMID: 22491352]
[75]
Choi DH, Lee KH, Lee J. Effect of exercise-induced neurogenesis on cognitive function deficit in a rat model of vascular dementia. Mol Med Rep 2016; 13(4): 2981-90.
[http://dx.doi.org/10.3892/mmr.2016.4891] [PMID: 26934837]
[76]
Choi SH, Bylykbashi E, Chatila ZK, et al. Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer’s mouse model. Science 2018; 361(6404)eaan8821
[77]
Petzold A, Psotta L, Brigadski T, Endres T, Lessmann V. Chronic BDNF deficiency leads to an age-dependent impairment in spatial learning. Neurobiol Learn Mem 2015; 120: 52-60.
[http://dx.doi.org/10.1016/j.nlm.2015.02.009] [PMID: 25724412]
[78]
Radiske A, Rossato JI, Gonzalez MC, Köhler CA, Bevilaqua LR, Cammarota M. BDNF controls object recognition memory reconsolidation Neurobiol Learn Mem 2017; 142(Pt A): 79-84..
[http://dx.doi.org/10.1016/j.nlm.2017.02.018 ] [PMID: 28274823]
[79]
Siamilis S, Jakus J, Nyakas C, et al. The effect of exercise and oxidant-antioxidant intervention on the levels of neurotrophins and free radicals in spinal cord of rats. Spinal Cord 2009; 47(6): 453-7.
[http://dx.doi.org/10.1038/sc.2008.125] [PMID: 18936770]
[80]
Jiménez-Maldonado A, Ying Z, Byun HR, Gomez-Pinilla F. Short-term fructose ingestion affects the brain independently from establishment of metabolic syndrome. Biochim Biophys Acta Mol Basis Dis 2018; 1864(1): 24-33.
[http://dx.doi.org/10.1016/j.bbadis.2017.10.012] [PMID: 29017895]
[81]
Dienel GA, Hertz L. Glucose and lactate metabolism during brain activation. J Neurosci 2001; 66: 824-38.
[82]
Yang J, Ruchti E, Petit JM, et al. Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons. Proc Natl Acad Sci USA 2014; 111(33): 12228-33.
[http://dx.doi.org/10.1073/pnas.1322912111] [PMID: 25071212]
[83]
Xia J, Li B, Yin L, Zhao N, Yan Q, Xu B. Treadmill exercise decreases β-amyloid burden in APP/PS1 transgenic mice involving regulation of the unfolded protein response. Neurosci Lett 2019; 703: 125-31.
[http://dx.doi.org/10.1016/j.neulet.2019.03.035] [PMID: 30905823]
[84]
Khodadadi D, Gharakhanlou R, Naghdi N, et al. Treadmill exercise ameliorates spatial learning and memory deficits through improving the clearance of peripheral and central amyloid-beta levels Neurochem Res 2018; 43(8): 1561-74..
[http://dx.doi.org/10.1007/s11064-018-2571-2 ] [PMID: 29948724]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy