Abstract
Background: Response surface methodology is a unique tool for the optimization of Solid lipid Nanoparticles and Nanostructured lipid carriers by developing the relationship between dependent and independent variables and exploring their interactions.
Methods: Central Composite Design and Box Benkhen Design were used to develop optimized formulations of Gefitinib [GEF] Solid Lipid Nanoparticles [SLN] and Nanostructured Lipidic Carriers [NLC]. In the design matrix, the independent variables chosen were the amount of Solid Lipid, Liquid Lipid, and Surfactant and the dependent variables were Particle Size and Poly Dispersity Index.
Results: The GEF-SLN under optimized conditions gave rise to Particle size (187.9 nm ± 1.15), PDI (0.318 ± 0.006), %EE (95.38%±0.14), Zeta Potential (-8.75 mv ±0.18) and GEF-NLC under optimized conditions gave rise to Particle size (188.6 nm± 1.12), PDI (0.395± 0.004), %EE (97.46%± 0.33), Zeta Potential (-5.72 mv± 0.04) respectively. SEM of the Freeze-dried optimized lipidic carriers showed spherical particles. The in vitro experiments proved that Gefitinib in the lipidic carriers is released gradually throughout 24 h.
Conclusion: This study showed that the response surface methodology could be efficiently applied for the modeling of GEF-SLN & GEF-NLC.
Keywords: Response surface methodology, central composite design, box benkhen design, solid lipid nanoparticles, nanostructured lipid carriers, gefitinib.
Graphical Abstract
[http://dx.doi.org/10.2147/IJN.S122729] [PMID: 28031710]
[http://dx.doi.org/10.1080/03639045.2017.1310223] [PMID: 28323493]
[http://dx.doi.org/10.2217/nnm-2016-0224] [PMID: 27622735]
[http://dx.doi.org/10.2174/1574885514666190104115802]
[http://dx.doi.org/10.1016/j.fitote.2012.08.021] [PMID: 22982454]
[http://dx.doi.org/10.2174/1574885514666190104114209]
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.020] [PMID: 26453787]
[http://dx.doi.org/10.1016/j.colsurfb.2017.04.046] [PMID: 28454064]
[http://dx.doi.org/10.5339/gcsp.2015.2] [PMID: 26779496]
[http://dx.doi.org/10.1517/17425240903167942] [PMID: 19732031]
[http://dx.doi.org/10.3109/21691401.2014.971462]
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.078] [PMID: 28502895]
[http://dx.doi.org/10.1093/annonc/mdh177] [PMID: 15111348]
[http://dx.doi.org/10.1080/10717544.2017.1384862] [PMID: 28961023]
[http://dx.doi.org/10.1166/jbn.2017.2338] [PMID: 29377649]
[http://dx.doi.org/10.1016/j.phrs.2010.03.005] [PMID: 20380880]
[http://dx.doi.org/10.1016/j.jare.2016.03.002] [PMID: 27222747]
[http://dx.doi.org/10.1016/j.jddst.2018.12.023]
[http://dx.doi.org/10.1002/14651858.CD006847.pub2] [PMID: 29336009]
[http://dx.doi.org/10.1097/JTO.0b013e31821d43a8] [PMID: 21681118]
[http://dx.doi.org/10.1056/NEJMoa0909530] [PMID: 20573926]
[http://dx.doi.org/10.4103/0976-9668.184695] [PMID: 27433059]
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v26.i6.10] [PMID: 20402623]
[http://dx.doi.org/10.1016/j.nano.2015.01.007] [PMID: 25659645]
[http://dx.doi.org/10.3109/21691401.2015.1111234] [PMID: 26631531]
[http://dx.doi.org/10.3109/03639045.2014.956111] [PMID: 25220930]
[http://dx.doi.org/10.1016/j.ejpb.2016.04.016] [PMID: 27108266]
[http://dx.doi.org/10.1021/mp300649z] [PMID: 23495754]
[http://dx.doi.org/10.1016/j.ijpharm.2007.05.061] [PMID: 17644288]
[http://dx.doi.org/10.1016/j.jconrel.2004.01.005] [PMID: 15023472]
[http://dx.doi.org/10.1016/j.ifset.2014.06.012]
[http://dx.doi.org/10.1016/j.ijpharm.2013.03.034] [PMID: 23535345]
[http://dx.doi.org/10.1080/03639040600814676] [PMID: 16954103]
[http://dx.doi.org/10.1016/j.powtec.2009.09.004]
[http://dx.doi.org/10.1016/j.carbpol.2012.01.051]
[http://dx.doi.org/10.1208/s12249-010-9487-8] [PMID: 20680708]
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.013] [PMID: 26169145]
[http://dx.doi.org/10.1016/j.addr.2007.04.008] [PMID: 17532091]
[http://dx.doi.org/10.1016/j.jfda.2017.02.001] [PMID: 28911663]
[http://dx.doi.org/10.1016/j.nano.2009.02.002] [PMID: 19341815]
[http://dx.doi.org/10.1016/j.colsurfa.2014.04.032]