Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Methods of Synthesis and Specific Properties of Graphene Nano Composites for Biomedical and Related Energy Storage Applications

Author(s): Sarushi Rastogi, Vasudha Sharma, Meenal Gupta, Pushpa Singh, Patrizia Bocchetta* and Yogesh Kumar*

Volume 17, Issue 4, 2021

Published on: 06 January, 2021

Page: [572 - 590] Pages: 19

DOI: 10.2174/1573413716666210106101124

Price: $65

Abstract

The concept of graphene in a carbon framework has given rise to enormous improvements to the specific properties of materials. Notably, the combination of graphene with polymeric, metallic and ceramic materials has significantly improved mechanical resistance, electrical and thermal conductivity, and thermal stability of the resulting composite material. In this review, we discuss comprehensive literature on graphene-based composite materials for biomedical and related energy storage applications with emphasis to the synthesis techniques and improved properties of the nanocomposite materials due to graphene addition.

Keywords: Graphene composites, synthesis of graphene composites, properties of graphene composites, biomedical devices, graphene biosensors, graphene supercapacitors.

Graphical Abstract

[1]
Geim, A.K.; Novoselov, K.S. The rise of graphene. Nanosci. Technol. A Collect. Rev. Nat. J., 2009, 11-19.
[http://dx.doi.org/10.1142/9789814287005_0002]
[2]
Phiri, J.; Gane, P.; Maloney, T.C. General overview of graphene: production, properties and application in polymer composites. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 2017, 215, 9-28.
[3]
Singh, K.; Ohlan, A.; Dhaw, S.K. Polymer-graphene nanocomposites: preparation, characterization, properties, and applications; Nanocomposites - New Trends Dev., Intech Open, 2014.
[4]
Okpala, C.C. Nanocomposites-an overview. Int. J. Eng. Res. Dev, 2013, 8, 17-23.
[5]
Low, C.T.J.; Walsh, F.C.; Chakrabarti, M.H.; Hashim, M.A.; Hussain, M.A. Electrochemical approaches to the production of graphene flakes and their potential applications. Carbon N.Y., 2013, 54, 1-21.
[http://dx.doi.org/10.1016/j.carbon.2012.11.030]
[6]
Yan, L.; Zheng, Y.B.; Zhao, F.; Li, S.; Gao, X.; Xu, B.; Weiss, P.S.; Zhao, Y. Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials. Chem. Soc. Rev., 2012, 41(1), 97-114.
[http://dx.doi.org/10.1039/C1CS15193B] [PMID: 22086617]
[7]
Thrower, P.A.; Loader, R.T. Interstitial atom energies in graphite. Carbon N.Y., 1969, 7, 467-477.
[http://dx.doi.org/10.1016/0008-6223(69)90078-5]
[8]
Chen, D.; Tang, L.; Li, J. Graphene-based materials in electrochemistry. Chem. Soc. Rev., 2010, 39(8), 3157-3180.
[http://dx.doi.org/10.1039/b923596e] [PMID: 20589275]
[9]
Mitra, S.; Banerjee, S.; Datta, A.; Chakravorty, D. Graphene composites: The materials for the future. arXiv preprint ar Xiv. 2012, 1207, 1995.
[10]
Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S.I.; Seal, S. Graphene based materials: Past, present and future. Prog. Mater. Sci., 2011, 56, 1178-1271.
[http://dx.doi.org/10.1016/j.pmatsci.2011.03.003]
[11]
Hummers, W.S.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc., 1937, 1957(208), 1937.
[12]
Gómez-Navarro, C.; Weitz, R.T.; Bittner, A.M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett., 2007, 7(11), 3499-3503.
[http://dx.doi.org/10.1021/nl072090c] [PMID: 17944526]
[13]
Becerril, H.A.; Mao, J.; Liu, Z.; Stoltenberg, R.M.; Bao, Z.; Chen, Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano, 2008, 2(3), 463-470.
[http://dx.doi.org/10.1021/nn700375n] [PMID: 19206571]
[14]
Bourlinos, A.B.; Gournis, D.; Petridis, D.; Szabo, T.; Szeri, A.; Dékány, I. Graphite oxide: Chemical reduction to graphite and surface modifications with primary aliphatic amines and amino acids. Langmuir, 2003, 19, 6050-6055.
[http://dx.doi.org/10.1021/la026525h]
[15]
Shin, H.J.; Kim, K.K.; Benayad, A.; Yoon, S.M.; Park, H.K.; Jung, I.S.; Jin, M.H.; Jeong, H.K.; Kim, J.M.; Choi, J.Y.; Lee, Y.H. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater., 2009, 19, 1987-1992.
[http://dx.doi.org/10.1002/adfm.200900167]
[16]
Wang, S.; Chia, P.J.; Chua, L.L.; Zhao, L.H.; Png, R.Q.; Sivaramakrishnan, S.; Zhou, M.; Goh, R.G.S.; Friend, R.H.; Wee, A.T.S.; Ho, P.K.H. Band-like transport in surface-functionalized highly solution-processable graphene nanosheets. Adv. Mater., 2008, 20, 3440-3446.
[http://dx.doi.org/10.1002/adma.200800279]
[17]
Mohan, V.B.; Lau, K.; Hui, D.; Bhattacharyya, D. Graphene-based materials and their composites: A review on production, applications and product limitations. Compos., Part B Eng., 2017, 2018(142), 200-220.
[18]
Mayoral, B.; Harkin, E.; Noorunnisa, P.K.; Al Maadeed, M.A.; Ouederni, M.; Hamilton, A.R.; Suna, D. Melt processing and characterisation of polyamide 6/graphene nanoplatelet composites. RSC Advances, 2015, 5, 52395-52409.
[http://dx.doi.org/10.1039/C5RA08509H]
[19]
Hu, H.; Wang, X.; Wang, J.; Wan, L.; Liu, F.; Zheng, H.; Xu, C. Preparation and properties of graphene nanosheets-polystyrene nanocomposites via in situ emulsion polymerization. Chem. Phys. Lett., 2010, 484, 247-253.
[http://dx.doi.org/10.1016/j.cplett.2009.11.024]
[20]
Yang, X.; Li, L.; Shang, S.; Tao, X.M. Synthesis and characterization of layer-aligned poly (vinyl alcohol)/graphene nanocomposites. Polymer (Guildf.), 2010, 51, 3431-3435.
[http://dx.doi.org/10.1016/j.polymer.2010.05.034]
[21]
Istrate, O.M.; Paton, K.R.; Khan, U.; O’Neill, A.; Bell, A.P.; Coleman, J.N. Reinforcement in melt-processed polymer-graphene composites at extremely low graphene loading level. Carbon N.Y., 2014, 78, 243-249.
[http://dx.doi.org/10.1016/j.carbon.2014.06.077]
[22]
Xu, Q.; Gong, Y.; Fang, Y.; Jiang, G.; Wang, Y.; Sun, X.; Wang, R. Straightforward synthesis of hyperbranched polymer/graphene nanocomposites from graphite oxide via in situ grafting from approach. Bull. Mater. Sci., 2012, 35, 795-800.
[http://dx.doi.org/10.1007/s12034-012-0378-3]
[23]
Pinto, A.M.; Cabral, J.; Tanaka, D.A.P.; Mendes, A.M.; Magalhães, F.D. Effect of incorporation of graphene oxide and graphene nanoplatelets on mechanical and gas permeability properties of poly(lactic acid) films. Polym. Int., 2013, 62(1), 33-40.
[http://dx.doi.org/10.1002/pi.4290]
[24]
Gao, X.; Yue, H.; Gou, E.; Zhang, H.; Lin, X.; Yao, L.; Wang, B. Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrixcomposites. Mater. Des., 2016, 94, 54-60.
[http://dx.doi.org/10.1016/j.matdes.2016.01.034]
[25]
Tabandeh-Khorshid, M.; Omrani, E.; Menezes, P.L.; Rohatgi, P.K. Tribological performance of self-lubricating aluminum matrix nanocomposites: Role of graphene nanoplatelets. Eng. Sci. Technol. Int. J., 2016, 19(1), 463-469.
[26]
Kurbanoglu, S.; Rivas, L.; Ozkan, S.A.; Merkoçi, A. Electrochemically reduced graphene and iridium oxide nanoparticles for inhibition-based angiotensin-converting enzyme inhibitor detection. Biosens. Bioelectron., 2017, 88, 122-129.
[http://dx.doi.org/10.1016/j.bios.2016.07.109] [PMID: 27499381]
[27]
Kim, W.; Oh, H.S.; Shon, I.J. The effect of graphene reinforcement on the mechanical properties of Al2O3 ceramics rapidly sintered by high-frequency induction heating. Int. J. Refract. Met. Hard Mater., 2015, 48, 376-381.
[http://dx.doi.org/10.1016/j.ijrmhm.2014.10.011]
[28]
Zou, H.; Zhang, Y.; Liu, L.; Shi, L.; Li, W. The toughening mechanism and mechanical properties of graphene-reinforced zirconia ceramics by microwave sintering. Adv. Appl. Ceramics, 2018, 117(7), 420-426.
[http://dx.doi.org/10.1080/17436753.2018.1477566]
[29]
Balazsi, K.; Furkó, M.; Klimczyk, P.; Balázsi, C. Influence of graphene and graphene oxide on properties of spark plasma sintered Si3N4CeramicMatrix. Ceramics., 2020, 3, 40-50.
[http://dx.doi.org/10.3390/ceramics3010005]
[30]
Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N.H.; Bose, S.; Lee, J.H. Recent advances in graphene based polymer composites. Prog. Polym. Sci., 2010, 35, 1350-1375.
[http://dx.doi.org/10.1016/j.progpolymsci.2010.07.005]
[31]
Wang, M.C.; Yan, C.; Ma, L. Graphene Nanocomposites. Composites and Their Properties, Ning Hu. In: Tech; Wang, M.C., Ed.; Shanghai, 2012; pp. 17-36.
[http://dx.doi.org/10.5772/50840]
[32]
Wenjun, Y.; Yazhen, S.; Fei, M.; Changwen, D. Application of graphene-oxide-modified polyacrylate polymer for controlled-release coated urea. Coatings., 2018, 8(2), 64.
[http://dx.doi.org/10.3390/coatings8020064]
[33]
Lago, E.; Toth, P.S.; Pugliese, G.; Pellegrini, V.; Bonaccorso, F. Solution blending preparation of polycarbonate/graphene composite: boosting the mechanical and electrical properties. RSC Advances, 2016, 6(100), 97931-97940.
[http://dx.doi.org/10.1039/C6RA21962D]
[34]
Kausar, A. Polymer/graphene nanocomposite : Preparation to application. Am. J. Polymer Sci. Eng., 2016, 4, 111-122.
[35]
Noh, Y.J.; Joh, H.I.; Yu, J.; Hwang, S.H.; Lee, S.; Lee, C.H.; Kim, S.Y.; Youn, J.R. Ultra-high dispersion of graphene in polymer composite via solvent free fabrication and functionalization. Sci. Rep., 2015, 5, 9141.
[http://dx.doi.org/10.1038/srep09141] [PMID: 25771823]
[36]
Qin, S.; Chen, C.; Cui, M.; Zhang, A.; Zhao, H.; Wang, L. Facile preparation of polyimide/graphene nanocomposites via an in situ polymerization approach. RSC Advances, 2017, 7, 3003.
[http://dx.doi.org/10.1039/C6RA25168D]
[37]
Alam, F.E.; Dai, W.; Yang, M.; Li, X.; Yu, J.; Jiang, N.; Lin, C-T. In-situ formation of cellular graphene framework in thermoplastic composites leading to superior thermal conductivity. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5, 6164-6169.
[http://dx.doi.org/10.1039/C7TA00750G]
[38]
Chen, W.; Weimin, H.; Li, D.; Chen, S.; Dai, Z. A critical review on the development and performance of polymer/graphene nanocomposites. Sci. Eng. Compos. Mater., 2018, 25, 1059-1073.
[http://dx.doi.org/10.1515/secm-2017-0199]
[39]
Salavagione, H.J.; Martínez, G.; Ellis, G. Recent advances in the covalent modification of graphene with polymers. Macromol. Rapid Commun., 2011, 32(22), 1771-1789.
[http://dx.doi.org/10.1002/marc.201100527] [PMID: 21960315]
[40]
Alam, F.E.; Yu, J.; Shen, D.; Dai, W.; Li, H.; Zeng, X.; Yao, Y.; Du, S.; Jiang, N.; Lin, C-T. Highly conductive 3D segregated graphene architecture in polypropylene composite with efficient EMI shielding. Polymers (Basel), 2017, 9(12), 662.
[http://dx.doi.org/10.3390/polym9120662] [PMID: 30965967]
[41]
Salvatierra, R.V.; Cava, C.E.; Roman, L.S.; Oliveira, M.M.; Zarbin, A.J. The total chemical synthesis of polymer/graphene nanocomposite films. Chem. Commun. (Camb.), 2016, 52(8), 1629-1632.
[http://dx.doi.org/10.1039/C5CC08349D] [PMID: 26658554]
[42]
Prashantha, K.H.G.; Anthony, X.M. Graphene reinforced metal matrix composite (GRMMC): A review. Procedia Eng., 2014, 97, 1033-1040.
[43]
Rajesh, J.H.N.; Ramar, K.; Kathiresan, M.; Senthamaraikannan, P.; Anish, K.; Abdullah, M.A.; Mohammad, A. Graphene-based nano metal matrix composites: A review.Woodhead Publishing Series in Composites Science and Engineering, Nanocarbon and its Composites; Anish, K.; Mohammad, J.; Abdullah, M.A, Eds.; Woodhead Publishing, 2019, pp. 153-170.
[44]
Markandan, K.; Chin, J.K.; Tan, M.T.T. Recent progress in graphene based ceramic composites: A review. J. Mater. Res., 2017, 32, 84-106.
[http://dx.doi.org/10.1557/jmr.2016.390]
[45]
Porwal, H.; Grasso, S.; Reece, M.J. Review of graphene-ceramic matrix composites. Adv. Appl. Ceramics, 2013, 112, 443-454.
[http://dx.doi.org/10.1179/174367613X13764308970581]
[46]
Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater., 2015, 14(3), 271-279.
[http://dx.doi.org/10.1038/nmat4170] [PMID: 25532074]
[47]
James, G.R.; McGinn, P.J.; Kamat, P.V. Graphene-based composites for electrochemical energy storage. Electrochem. Soc. Interface, 2011, (Spring), 63-66.
[48]
Bose, S.; Kuila, T.; Uddin, M.E.; Kim, N.H.; Lau, A.K.T.; Lee, J.H. In-situ synthesis and characterization of electrically conductive polypyrrole/graphene nanocomposites. Polymer (Guildf.), 2010, 51(25), 5921-5928.
[http://dx.doi.org/10.1016/j.polymer.2010.10.014]
[49]
Talebian, S.; Mehrali, M.; Raad, R.; Safaei, F.; Xi, J.; Liu, Z.; Foroughi, J. Electrically conducting hydrogel graphene nanocomposite biofibers for biomedical applications. Front Chem., 2020, 8, 88.
[http://dx.doi.org/10.3389/fchem.2020.00088] [PMID: 32175306]
[50]
Nieto, A.; Bisht, A.; Lahiri, D.; Zhang, C.; Agarwal, A. Graphene reinforced metal and ceramic matrix composites: A review. Int. Mater. Rev., 2016, 62, 241-302.
[http://dx.doi.org/10.1080/09506608.2016.1219481]
[51]
Ke, C.; Xiao, W.; Yu, L.; Da, H.; Geng, Z.; Zhao, X.; Hong, L.; Hu, Z. Thermal properties of graphene/metal composites with aligned graphene. Mater. Des., 2018, 140, 85-94.
[http://dx.doi.org/10.1016/j.matdes.2017.11.048]
[52]
Lei, Y.; Jiang, J.; Bi, T.; Du, J.; Pang, X. Tribological behavior of in situ fabricated graphene-nickel matrix composites. RSC Advances, 2018, 8(39), 22113-22121.
[http://dx.doi.org/10.1039/C8RA02510J]
[53]
Yusoff, N.; Rameshkumar, P.; Mehmood, M.S.; Pandikumar, A.; Lee, H.W.; Huang, N.M. Ternary nanohybrid of reduced graphene oxide-nafion@silver nanoparticles for boosting the sensor performance in non-enzymatic amperometric detection of hydrogen peroxide. Biosens. Bioelectron., 2017, 87, 1020-1028.
[http://dx.doi.org/10.1016/j.bios.2016.09.045] [PMID: 27697744]
[54]
Teymourian, H.; Salimi, A.; Khezrian, S. Development of a new label‐free, indicator‐free strategy toward ultrasensitive electrochemical DNA biosensing based on fe3o4 nanoparticles/reduced graphene oxide composite. Electroanalysis, 2017, 29, 409-414.
[http://dx.doi.org/10.1002/elan.201600336]
[55]
Seger, B.; Kamat, P.V. Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells. J. Phys. Chem. C, 2009, 113(19), 7990-7995.
[http://dx.doi.org/10.1021/jp900360k]
[56]
Shuangyue, W.; Shaobo, H.; Guoqing, X.; Jianliang, L.; Ronghua, W.; Jie, L.; Kai, S.; Xiaotao, Z.; Qingkai, Y. High-quality graphene directly grown on Cu nanoparticles for Cu-graphene nanocomposites. Mater. Des., 2018, 139, 181-187.
[http://dx.doi.org/10.1016/j.matdes.2017.11.010]
[57]
Chungho, K.; Jin, W.; Kim, H.K.; Dong, H.; Kim, C.; Choi, Y.; Seok, J.; Jongnam, P. Graphene oxide assisted synthesis of self-assembled zinc oxide for lithium-ion battery anode. Chem. Mater., 2016, 28(23), 8498-8503.
[http://dx.doi.org/10.1021/acs.chemmater.5b03587]
[58]
Shuang, Z.; Ping, H.; Fei, W. Graphene-boundary strengthening mechanism in Cu/graphene nanocomposites: A molecular dynamics simulation. Mater. Des., 2020, 190, 108555.
[59]
Cusati, T.; Fiori, G.; Gahoi, A.; Passi, V.; Lemme, M.C.; Fortunelli, A.; Iannaccone, G. Electrical properties of graphene-metal contacts. Sci. Rep., 2017, 7(1), 5109.
[http://dx.doi.org/10.1038/s41598-017-05069-7] [PMID: 28698652]
[60]
Liu, J.; Yan, H.; Jiang, K. Mechanical properties of graphene platelet-reinforced alumina ceramic composites. Ceram. Int., 2013, 39, 6215-6221.
[http://dx.doi.org/10.1016/j.ceramint.2013.01.041]
[61]
Liu, Z.; Robinson, J.T.; Sun, X.; Dai, H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc., 2008, 130(33), 10876-10877.
[http://dx.doi.org/10.1021/ja803688x] [PMID: 18661992]
[62]
Kumar, P.; Huo, P.; Zhang, R.; Liu, B. Antibacterial properties of graphene-based nanomaterials. Nanomaterials (Basel), 2019, 9(5), 737.
[http://dx.doi.org/10.3390/nano9050737] [PMID: 31086043]
[63]
Santos, C.M.; Mangadlao, J.; Ahmed, F.; Leon, A.; Advincula, R.C.; Rodrigues, D.F. Graphene nanocomposite for biomedical applications: fabrication, antimicrobial and cytotoxic investigations. Nanotechnology, 2012, 23(39), 395101.
[http://dx.doi.org/10.1088/0957-4484/23/39/395101] [PMID: 22962260]
[64]
Duan, L.; Yuanming, W.; Yatao, Z.; Jindun, L. Graphene immobilized enzyme/polyethersulfone mixed matrix membrane: Enhanced antibacterial, permeable and mechanical properties. Appl. Surf. Sci., 2015, 355, 436-445.
[http://dx.doi.org/10.1016/j.apsusc.2015.07.127]
[65]
Dhanasekar, M.; Jenefer, V.; Nambiar, R.B.; Babu, S.G.; Selvam, S.P.; Neppolian, B.; Bhat, S.V. Ambient light antimicrobial activity of reduced graphene oxide supported metal doped TiO2 nanoparticles and their PVA based polymer nanocomposite films. Mater. Res. Bull., 2018, 2018(97), 238-243.
[http://dx.doi.org/10.1016/j.materresbull.2017.08.056]
[66]
Vi, T.T.T.; Rajesh, K.S.; Rout, B.; Liu, C.H.; Wong, C.B.; Chang, C.W.; Chen, C.H.; Chen, D.W.; Lue, S.J. The preparation of graphene oxide-silver nanocomposites: The effect of silver loads on Gram-positive and Gram-negative antibacterial activities. Nanomaterials (Basel), 2018, 8(3), 163.
[http://dx.doi.org/10.3390/nano8030163] [PMID: 29538336]
[67]
Matharu, R.K.; Ciric, L.; Edirisinghe, M. Nanocomposites: suitable alternatives as antimicrobial agents. Nanotechnology, 2018, 29(28), 282001.
[http://dx.doi.org/10.1088/1361-6528/aabbff] [PMID: 29620531]
[68]
Zeng, F.; Xu, D.; Zhan, C.; Liang, C.; Zhao, W.; Zhang, J.; Feng, H.; Ma, X. Surfactant-free synthesis of graphene oxide coated silver nanoparticles for SERS biosensing and intracellular drug delivery. ACS Appl. Nano Mater, 2018, 1, 2748-2753.
[http://dx.doi.org/10.1021/acsanm.8b00444]
[69]
Cobos, M.; De-La-Pinta, I.; Quindós, G.; Fernández, M.J.; Fernández, M.D. Graphene oxide-silver nanoparticle nanohybrids: synthesis, characterization, and antimicrobial properties. Nanomaterials (Basel), 2020, 10(2), 376.
[http://dx.doi.org/10.3390/nano10020376] [PMID: 32098083]
[70]
Jaworski, S.; Wierzbicki, M.; Sawosz, E.; Jung, A.; Gielerak, G.; Biernat, J.; Jaremek, H.; Łojkowski, W.; Woźniak, B.; Wojnarowicz, J.; Stobiński, L.; Małolepszy, A.; Mazurkiewicz-Pawlicka, M.; Łojkowski, M.; Kurantowicz, N.; Chwalibog, A. Graphene oxide-based nanocomposites decorated with silver nanoparticles as an antibacterial agent. Nanoscale Res. Lett., 2018, 13(1), 116.
[http://dx.doi.org/10.1186/s11671-018-2533-2] [PMID: 29687296]
[71]
Liu, J.; Cui, L.; Losic, D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater., 2013, 9(12), 9243-9257.
[http://dx.doi.org/10.1016/j.actbio.2013.08.016] [PMID: 23958782]
[72]
Weaver, C.L.; LaRosa, J.M.; Luo, X.; Cui, X.T. Electrically controlled drug delivery from graphene oxide nanocomposite films. ACS Nano, 2014, 8(2), 1834-1843.
[http://dx.doi.org/10.1021/nn406223e] [PMID: 24428340]
[73]
Huang, X.; Liu, D.; Wang, X.; Song, S.; Zhou, L.; Zhang, H. Synthesis of 3D hierarchical Fe3O4/graphene composites with high lithium storage capacity and for controlled drug delivery. J. Phys. Chem. C, 2011, 115, 21567-21573.
[http://dx.doi.org/10.1021/jp204502n]
[74]
Aliabadi, M.; Shagholani, H.; Yunessnia Lehi, A. Synthesis of a novel biocompatible nanocomposite of graphene oxide and magnetic nanoparticles for drug delivery. Int. J. Biol. Macromol., 2017, 98(98), 287-291.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.02.012] [PMID: 28167110]
[75]
Vinothini, K.; Rajendran, N.K.; Ramu, A.; Elumalai, N.; Rajan, M. Folate receptor targeted delivery of paclitaxel to breast cancer cells via folic acid conjugated graphene oxide grafted methyl acrylate nanocarrier. Biomed. Pharmacother., 2019, 110, 906-917.
[http://dx.doi.org/10.1016/j.biopha.2018.12.008] [PMID: 30572195]
[76]
Vincent, M.; de Lázaro, I.; Kostarelos, K. Graphene materials as 2D non-viral gene transfer vector platforms. Gene Ther., 2017, 24(3), 123-132.
[http://dx.doi.org/10.1038/gt.2016.79] [PMID: 27874854]
[77]
Liu, P.; Wang, S.; Liu, X.; Ding, J.; Zhou, W. Platinated graphene oxide: A nanoplatform for efficient gene-chemo combination cancer therapy. Eur. J. Pharm. Sci., 2018, 121(121), 319-329.
[http://dx.doi.org/10.1016/j.ejps.2018.06.009] [PMID: 29906508]
[78]
Wu, L.; Xie, J.; Li, T.; Mai, Z.; Wang, L.; Wang, X.; Chen, T. Gene delivery ability of polyethylenimine and polyethylene glycol dual-functionalized nanographene oxide in 11 different cell lines. R. Soc. Open Sci., 2017, 4(10), 170822.
[http://dx.doi.org/10.1098/rsos.170822] [PMID: 29134085]
[79]
Kim, H.; Kim, W.J. Photothermally controlled gene delivery by reduced graphene oxide-polyethylenimine nanocomposite. Small, 2014, 10(1), 117-126.
[http://dx.doi.org/10.1002/smll.201202636] [PMID: 23696272]
[80]
Wang, Y.; Sun, G.; Gong, Y.; Zhang, Y.; Liang, X.; Yang, L. Functionalized folate-modified graphene oxide/pei sirna nanocomplexes for targeted ovarian cancer gene therapy. Nanoscale Res. Lett., 2020, 15(1), 57.
[http://dx.doi.org/10.1186/s11671-020-3281-7] [PMID: 32140846]
[81]
Tonelli, F.M.P.; Paiva, N.C.O.; Medeiros, R.V.B.; Pinto, M.C.X.; Tonelli, F.C.P.; Resende, R.R. Tissue Engineering: The Use of Stem Cells in Regenerative Medicine.Current Developments in Biotechnology and Bioengineering; Vanete, Thomaz-Soccol; Ashok, Pandey; Rodrigo, R. Resende, Eds.; Elsevier, 2017, pp. 315-324.
[82]
Dubey, N.; Bentini, R.; Islam, I.; Cao, T.; Castro Neto, A.H.; Rosa, V. Graphene: a versatile carbon-based material for bone tissue engineering. Stem Cells Int., 2015, 2015, 804213.
[http://dx.doi.org/10.1155/2015/804213] [PMID: 26124843]
[83]
Prasadh, S.; Suresh, S.; Wong, R. Osteogenic potential of graphene in bone tissue engineering scaffolds. Materials (Basel), 2018, 11(8), 1430.
[http://dx.doi.org/10.3390/ma11081430] [PMID: 30110908]
[84]
Goenka, S.; Sant, V.; Sant, S. Graphene-based nanomaterials for drug delivery and tissue engineering. J. Control. Release, 2014, 173, 75-88.
[http://dx.doi.org/10.1016/j.jconrel.2013.10.017] [PMID: 24161530]
[85]
Geetha Bai, R.; Muthoosamy, K.; Manickam, S.; Hilal-Alnaqbi, A. Graphene-based 3D scaffolds in tissue engineering: fabrication, applications, and future scope in liver tissue engineering. Int. J. Nanomedicine, 2019, 14(14), 5753-5783.
[http://dx.doi.org/10.2147/IJN.S192779] [PMID: 31413573]
[86]
Negar, M.; Said, F. Al-Sarawi; Jagan, M.; Dusan, L. Advancing fabrication and properties of three-dimensional graphene-alginate scaffolds for application in neural tissue engineering. RSC Advances, 2019, 9, 36838-36848.
[http://dx.doi.org/10.1039/C9RA07481C]
[87]
Pumera, M. Graphene in biosensing. Mater. Today, 2011, 14(7-8), 308-315.
[http://dx.doi.org/10.1016/S1369-7021(11)70160-2]
[88]
Hernandez, F.J.; Ozalp, V.C. Graphene and other nanomaterial-based electrochemical aptasensors. Biosensors (Basel), 2012, 2(1), 1-14.
[http://dx.doi.org/10.3390/bios2010001] [PMID: 25585628]
[89]
Liu, Y.; Tuleouva, N.; Ramanculov, E.; Revzin, A. Aptamer-based electrochemical biosensor for interferon gamma detection. Anal. Chem., 2010, 82(19), 8131-8136.
[http://dx.doi.org/10.1021/ac101409t] [PMID: 20815336]
[90]
Liang, J.; Chen, Z.; Guo, L.; Li, L. Electrochemical sensing of L-histidine based on structure-switching DNAzymes and gold nanoparticle-graphene nanosheet composites. Chem. Commun. (Camb.), 2011, 47(19), 5476-5478.
[http://dx.doi.org/10.1039/c1cc10965k] [PMID: 21483916]
[91]
Tung, T.T.; Tran, M.T.; Feller, J.F.; Castro, M.; Van Ngo, T.; Hassan, K.; Nine, M.J.; Losic, D. Graphene and metal organic frameworks (MOFs) hybridization for tunable chemoresistive sensors for detection of volatile organic compounds (VOCs) biomarkers. Carbon N.Y., 2020, 159, 333-344.
[http://dx.doi.org/10.1016/j.carbon.2019.12.010]
[92]
Silva, M.; Alves, N.M.; Paiva, M.C. Graphene‐polymer nanocomposites for biomedical applications. Polym. Adv. Technol., 2018, 29, 687-700.
[http://dx.doi.org/10.1002/pat.4164]
[93]
Dey, R.S. Development of biosensors from polymer graphene composites. Graphene-Based Polymer Nanocomposites in Electronics. Springer Series on Polymer and Composite Materials; Sadasivuni, K.; Ponnamma, D.; Kim, J; Thomas, S., Ed.; Springer: Cham, 2015.
[http://dx.doi.org/10.1007/978-3-319-13875-6_11]
[94]
Solanki, P.R.; Srivastava, S.; Ali, M.A.; Srivastava, R.K.; Srivastava, A.; Malhotra, B.D. Reduced graphene oxide-titania based platform for label-free biosensor. RSC Advances, 2014, 4, 60386-60396.
[http://dx.doi.org/10.1039/C4RA09265A]
[95]
Lee, J.; Kim, J.; Kim, S.; Min, D.H. Biosensors based on graphene oxide and its biomedical application. Adv. Drug Deliv. Rev., 2016, 106(Pt B), 275-287.
[http://dx.doi.org/10.1016/j.addr.2016.06.001] [PMID: 27302607 ]
[96]
Shukla, K.; Sampath, S.; Vijayamohanan, K. Electrochemical supercapacitors: Energy storage beyond batteries. Curr. Sci., 2000, 79, 1656-1661.
[97]
Chen, X.; Villa, N.S.; Zhuang, Y.; Chen, L.; Wang, T.; Li, Z.; Kong, T. Stretchable supercapacitors as emergent energy storage units for health monitoring bioelectronics. Adv. Energy Mater., 2020, 10, 1902769.
[http://dx.doi.org/10.1002/aenm.201902769]
[98]
Chee, W.K.; Lim, H.N.; Zainal, Z.; Huang, N.M.; Harrison, I.; Andou, Y. Flexible graphene-based supercapacitors: A review. J. Phys. Chem. C, 2016, 120(8), 4153-4172.
[http://dx.doi.org/10.1021/acs.jpcc.5b10187]
[99]
Huang, L.; Santiago, D.; Loyselle, P.; Dai, L. Graphene-based nanomaterials for flexible and wearable supercapacitors. Small, 2018, 14(43), e1800879.
[http://dx.doi.org/10.1002/smll.201800879] [PMID: 30009468]
[100]
Bocchetta, P.; Frattini, D.; Ghosh, S.; Mohan, A.M.V.; Kumar, Y.; Kwon, Y. Soft materials for wearable/flexible electrochemical energy conversion, storage, and biosensor devices. Materials (Basel), 2020, 13(12), 1-34.
[http://dx.doi.org/10.3390/ma13122733] [PMID: 32560176]
[101]
Pumera, M. Graphene-based nanomaterials for energy storage. Energy Environ. Sci., 2011, 4(3), 668.
[http://dx.doi.org/10.1039/C0EE00295J]
[102]
Huang, X.; Zeng, Z.; Fan, Z.; Liu, J.; Zhang, H. Graphene-based electrodes. Adv. Mater., 2012, 24(45), 5979-6004.
[http://dx.doi.org/10.1002/adma.201201587] [PMID: 22927209]
[103]
Wang, H.; Casalongue, H.S.; Liang, Y.; Dai, H. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc., 2010, 132(21), 7472-7477.
[http://dx.doi.org/10.1021/ja102267j] [PMID: 20443559]
[104]
Zhang, Y.; Pan, C. Measurements of mechanical properties and number of layers of graphene from nano-indentation. Diamond Related Materials, 2012, 24, 1-5.
[http://dx.doi.org/10.1016/j.diamond.2012.01.033]
[105]
Wu, H.; Drzal, L.T. Graphene nanoplatelet paper as a light-weight composite with excellent electrical and thermal conductivity and good gas barrier properties. Carbon N.Y., 2012, 50(3), 1135-1145.
[http://dx.doi.org/10.1016/j.carbon.2011.10.026]
[106]
Yu, A.; Sy, A.; Davies, A. Graphene nanoplatelets supported MnO2 nanoparticles for electrochemical supercapacitor. Synth. Met., 2011, 161(17-18), 2049-2054.
[http://dx.doi.org/10.1016/j.synthmet.2011.04.034]
[107]
Bonso, J.S.; Rahy, A.; Perera, S.D.; Nour, N.; Seitz, O.; Chabal, Y.J.; Balkus, K.J.; Ferraris, J.P.; Yang, D.J. Exfoliated graphite nanoplatelets-V 2O 5 nanotube composite electrodes for supercapacitors. J. Power Sources, 2012, 203, 227-232.
[http://dx.doi.org/10.1016/j.jpowsour.2011.09.084]
[108]
Bozzini, B.; Bocchetta, P.; Gianoncelli, A.; Mele, C.; Kiskinova, M. Electrodeposition of Co/CoO nanoparticles onto graphene for ORR electrocatalysis: A study based on micro-X-ray absorption spectroscopy and X-ray fluorescence mapping. Acta Chim. Slov., 2014, 61(2), 263-271.
[PMID: 25125109]
[109]
Wang, G.; Yang, J.; Park, J.; Gou, X.; Wang, B.; Liu, H.; Yao, J. Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem., 2008, 112, 8192-8195.
[110]
Mahmood, N.; Zhang, C.; Yin, H.; Hou, Y. Graphene-based nanocomposites for energy storage and conversion in lithium battries, supercapacitors and fuel cells. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2, 15-32.
[http://dx.doi.org/10.1039/C3TA13033A]
[111]
Pumera, M. Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev., 2010, 39(11), 4146-4157.
[http://dx.doi.org/10.1039/c002690p] [PMID: 20623061]
[112]
Wang, Y.; Shi, Z.; Huang, Y.; Ma, Y.; Wang, C.; Chen, M.; Chen, Y. Supercapacitor devices based on Graphene materials. J. Phys. Chem. C, 2009, 113(30), 13103-13107.
[http://dx.doi.org/10.1021/jp902214f]
[113]
Ha, H.J.; Kil, E.H.; Kwon, Y.H.; Kim, J.Y.; Lee, C.K.; Lee, S.Y. UV-curable semi-interpenetrating polymer network integrated, highly bendable plastic crystal composite electrolytes for shape-comfortable all-solid-state lithium ion batteries. Energy Environ. Sci., 2012, 5, 64-91.
[http://dx.doi.org/10.1039/c2ee03025j]
[114]
Kumar, Y.; Pandey, G.P.; Hashmi, S.A. Gel polymer electrolyte based electrical double layer capacitors: Comparative study with multiwalled carbon nanotubes and activated carbon electrodes. J. Phys. Chem. C, 2012, 116, 26118.
[http://dx.doi.org/10.1021/jp305128z]
[115]
Manuel, S.A.; Nahm, K.S. Review on composite polymer electrolytes for lithium battries. Polymer (Guildf.), 2006, 47, 5952-5964.
[http://dx.doi.org/10.1016/j.polymer.2006.05.069]
[116]
Pandey, G.P.; Hashmi, S.A. Ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate-based gel polymer electrolyte for electrochemical capacitors. J. Mater. Chem. A Mater. Energy Sustain., 2013, 10, 3372-3378.
[117]
Mac, F.D.R.; Forsyth, M. Plastic crystl electrolytes material: New perspectives on solid stated ionic. Adv. Mater., 2001, 13, 957.
[http://dx.doi.org/10.1002/1521-4095(200107)13:12/13<957:AID-ADMA957>3.0.CO;2-#]
[118]
Yue, R.; Niu, Y.; Wang, Z.; Douglas, J.F.; Zhu, X.; Chen, E. Suppression of crystallization in a plastic crystal electrolyte (SN/LiClO4) by a polymeric additive (polyethylene oxide) for battery applications. Polymer (Guildf.), 2009, 50, 1288-1296.
[http://dx.doi.org/10.1016/j.polymer.2009.01.022]
[119]
Patel, M.; Menezes, P.V.; Bhattacharyya, A.J. Ion transport in a polymer-plastic solid soft matter electrolyte in the light of solvent dynamics and ion association. J. Phys. Chem. B, 2010, 114(16), 5233-5240.
[http://dx.doi.org/10.1021/jp1009077] [PMID: 20373767]
[120]
Fan, L.Z.; Maier, J. Composite effects in poly(ethylene oxide) succinonitrile based all-solid electrolytes. Electrochem. Commun., 2006, 8, 1753-1756.
[http://dx.doi.org/10.1016/j.elecom.2006.08.017]
[121]
Gupta, R.K.; Kim, H.M.; Rhee, H.W. Poly(ethylene oxide): succinonitrile- a polymetric matrix for fast ion-conductiong redox-couple solid-electrolytes. J. Phys. D Appl. Phys., 2011, 44, 205106-205110.
[http://dx.doi.org/10.1088/0022-3727/44/20/205106]
[122]
Patel, M.; Bhattacharyya, A.J. Plastic–polymer composite electrolytes: Novel soft matter electrolytes for rechargeable lithium batteries. Electrochem. Commun., 2008, 10, 1912.
[http://dx.doi.org/10.1016/j.elecom.2008.10.009]
[123]
Suleman, M.; Kumar, Y.; Hashmi, S.A. Structural and electrochemical properties of succinonitrile-based gel polymer electrolytes: role of ionic liquid addition. J. Phys. Chem. B, 2013, 117(24), 7436-7443.
[http://dx.doi.org/10.1021/jp312358x] [PMID: 23758408]
[124]
Alarco, P.J.; Abu-Lebdeh, Y.; Abouimrane, A.; Armand, M. The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors. Nat. Mater., 2004, 3(7), 476-481.
[http://dx.doi.org/10.1038/nmat1158] [PMID: 15195084]
[125]
Fan, L.Z.; Hu, Y.S.; Bhattacharyya, A.J. Succinonitrile as a versatile addictive for polymer electrolytes. J. Maier. Adv. Funct. Mater., 2007, 17, 2800-2807.
[http://dx.doi.org/10.1002/adfm.200601070]
[126]
Ohno, H. Electrochemical Aspects of Ionic Liquids. A John Wiley Sons . Inc. Hoboken: New Jersey , 2005.
[127]
Singh, M.K.; Kumar, Y.; Hashmi, S.A. Bucky gel of multiwalled carbon nanotubes as electrodes for high performance, flexible electric double layer capacitor. Nanotechnology, 2013, 24, 465-704.
[http://dx.doi.org/10.1088/0957-4484/24/46/465704]
[128]
Stoller, M.D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R.S. Graphene-based ultracapacitors. Nano Lett., 2008, 8(10), 3498-3502.
[http://dx.doi.org/10.1021/nl802558y] [PMID: 18788793]
[129]
Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B.Z. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett., 2010, 10(12), 4863-4868.
[http://dx.doi.org/10.1021/nl102661q] [PMID: 21058713]
[130]
Gao, Y. Graphene and polymer composites for supercapacitor applications: A review. Nanoscale Res. Lett., 2017, 12(1), 387.
[http://dx.doi.org/10.1186/s11671-017-2150-5] [PMID: 28582964]
[131]
Bozzini, B.; Bocchetta, P.; Gianoncelli, A.; Kourousias, G.; Kiskinova, M.; Zilio, S.D. In situ soft X-ray fluorescence and absorption microspectroscopy: A study of Mn-Co/polypyrrole electrodeposition. J. Vac. Sci. Technol. A Vacuum, Surfaces. Film., 2015, 33(3), 031102.
[132]
Bozzini, B.; Bocchetta, P.; Alemán, B.; Amati, M.; Gianoncelli, A.; Gregoratti, L.; Sezen, H.; Taurino, A.; Kiskinova, M. Electrodeposition and pyrolysis of Mn/polypyrrole nanocomposites: A study based on soft X-ray absorption, fluorescence and photoelectron microspectroscopies. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3, 19155-19167.
[http://dx.doi.org/10.1039/C5TA05572E]
[133]
Davies, A.; Audette, P.; Farrow, B.; Hassan, F.; Chen, Z.; Choi, J.Y.; Yu, A. Graphene-based flexible supercapacitors: Pulse-electropolymerization of polypyrrole on free- standing graphene films. J. Phys. Chem. C, 2011, 115(35), 17612-17620.
[http://dx.doi.org/10.1021/jp205568v]
[134]
Sammed, K.A.; Pan, L.; Asif, M.; Usman, M.; Cong, T.; Amjad, F.; Imran, M.A. Reduced holey graphene oxide film and carbon nanotubes sandwich structure as a binder-free electrode material for supercapcitor. Sci. Rep., 2020, 10(1), 2315.
[http://dx.doi.org/10.1038/s41598-020-58162-9] [PMID: 32047199]
[135]
Jeong, Y.R.; Lee, G.; Park, H.; Ha, J.S. Stretchable, Skin-attachable electronics with integrated energy storage devices for biosignal monitoring. Acc. Chem. Res., 2019, 52(1), 91-99.
[http://dx.doi.org/10.1021/acs.accounts.8b00508] [PMID: 30586283]
[136]
Zhang, L.L.; Zhao, S.; Tian, X.N.; Zhao, X.S. Layered graphene oxide nanostructures with sandwiched conducting polymers as supercapacitor electrodes. Langmuir, 2010, 26(22), 17624-17628.
[http://dx.doi.org/10.1021/la103413s] [PMID: 20961127]
[137]
Huang, C.; Zhang, J.; Young, N.P.; Snaith, H.J.; Grant, P.S. Solid-state supercapacitors with rationally designed heterogeneous electrodes fabricated by large area spray processing for wearable energy storage applications. Sci. Rep., 2016, 6, 25684.
[http://dx.doi.org/10.1038/srep25684] [PMID: 27161379]
[138]
Padmajan, S.S.; Lee, K.E.; Lim, J.; Lee, H.J.; Koo, S.H.; Kim, I.H.; Jung, H.J.; Kim, S.O. Interface-confined high crystalline growth of semiconducting polymers at graphene fibers for high-performance wearable supercapacitors. ACS Nano, 2017, 11(9), 9424-9434.
[http://dx.doi.org/10.1021/acsnano.7b05029] [PMID: 28783312]
[139]
Chen, M.; Wu, B.; Li, D. Core-shell structured cellulose nanofibers/graphene@ polypyrrole microfibers for all-solid-state wearable supercapacitors with enhanced electrochemical performance. Macromol. Mater. Eng., 2020, 305(6), 1-15.
[http://dx.doi.org/10.1002/mame.201900854]
[140]
Shao, Y.; El-Kady, M.F.; Wang, L.J.; Zhang, Q.; Li, Y.; Wang, H.; Mousavi, M.F.; Kaner, R.B. Graphene-based materials for flexible supercapacitors. Chem. Soc. Rev., 2015, 44(11), 3639-3665.
[http://dx.doi.org/10.1039/C4CS00316K] [PMID: 25898904]
[141]
Hondred, J.A.; Medintz, I.L.; Claussen, J.C. Enhanced electrochemical biosensor and supercapacitor with 3D porous architectured graphene via salt impregnated inkjet maskless lithography. Nanoscale Horiz., 2019, 4, 735-746.
[http://dx.doi.org/10.1039/C8NH00377G]
[142]
Hanker, J.S.; Giammara, B.L. Biomaterials and biomedical devices. Science, 1988, 242(4880), 885-892.
[http://dx.doi.org/10.1126/science.3055300] [PMID: 3055300]
[143]
Xue, Y.; Ding, Y.; Niu, J.; Xia, Z.; Roy, A.; Chen, H.; Qu, J.; Wang, Z.L.; Dai, L. Rationally designed graphene-nanotube 3D architectures with a seamless nodal junction for efficient energy conversion and storage. Sci. Adv., 2015, 1(8), e1400198.
[http://dx.doi.org/10.1126/sciadv.1400198] [PMID: 26601246]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy