Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Recent Advances and Need of Green Synthesis in Two-Dimensional Materials for Energy Conversion and Storage Applications

Author(s): Joice Sophia Ponraj*, Muniraj Vignesh Narayanan, Ranjith Kumar Dharman, Valanarasu Santiyagu, Ramalingam Gopal* and Joao Gaspar

Volume 17, Issue 4, 2021

Published on: 01 January, 2021

Page: [554 - 571] Pages: 18

DOI: 10.2174/1573413716999210101122503

Price: $65

Abstract

Increasing energy crisis across the globe requires immediate solutions. Two-dimensional (2D) materials are of great significance because of their application in energy storage and conversion devices but the production process significantly impacts the environment thereby posing a severe problem in the field of pollution control. The green synthesis method provides an eminent way of reduction in pollutants. This article reviews the importance of green synthesis in the energy application sector. The focus of 2D materials like graphene, MoS2, VS2 in energy storage and conversion devices is emphasized based on supporting recent reports. The emerging Li-ion batteries are widely reviewed along with their promising alternatives like Zn, Na, Mg batteries and are featured in detail. The impact of green methods in the energy application field is outlined. Moreover, future outlook in the energy sector is envisioned by proposing an increase in 2D elemental materials research.

Keywords: Green synthesis, 2D materials, graphene, TMDs, energy storage, batteries, supercapacitors.

Graphical Abstract

[1]
Mirzaei, H.; Darroudi, M. Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceram. Int., 2017, 43(1, Part B), 907-914.
[http://dx.doi.org/10.1016/j.ceramint.2016.10.051]
[2]
Arruda, S.C.; Silva, A.L.; Galazzi, R.M.; Azevedo, R.A.; Arruda, M.A. Nanoparticles applied to plant science: a review. Talanta, 2015, 131, 693-705.
[http://dx.doi.org/10.1016/j.talanta.2014.08.050] [PMID: 25281161]
[3]
Agarwal, H.; Venkat Kumar, S.; Rajeshkumar, S. A review on green synthesis of zinc oxide nanoparticles- An eco-friendly approach. Resource-Efficient Technologies, 2017, 3(4), 406-413.
[http://dx.doi.org/10.1016/j.reffit.2017.03.002]
[4]
Abdul Salam, H.; Sivaraj, R.; Venckatesh, R. Green synthesis and characterization of zinc oxide nanoparticles from Ocimum basilicum L. var. purpurascens Benth.-Lamiaceae leaf extract. Mater. Lett., 2014, 131, 16-18.
[http://dx.doi.org/10.1016/j.matlet.2014.05.033]
[5]
Rauwel, P.; Küünal, S.; Ferdov, S.; Rauwel, E. A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Adv. Mater. Sci. Eng., 2015, 2015, 682749.
[http://dx.doi.org/10.1155/2015/682749]
[6]
Raveendran, P.; Fu, J.; Wallen, S.L. Completely “green” synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc., 2003, 125(46), 13940-13941.
[http://dx.doi.org/10.1021/ja029267j] [PMID: 14611213]
[7]
Lee, J.; Huang, J.; Sumpter, B.G.; Yoon, M. Strain-engineered optoelectronic properties of 2D transition metal dichalcogenide lateral heterostructures. 2D Materials, 2017, 4(2), 021016.
[http://dx.doi.org/10.1088/2053-1583/aa5542]
[8]
Zhu, Y.; Peng, L.; Fang, Z.; Yan, C.; Zhang, X.; Yu, G. Structural engineering of 2D nanomaterials for energy storage and catalysis. Adv. Mater., 2018, 30(15), e1706347.
[http://dx.doi.org/10.1002/adma.201706347] [PMID: 29430788]
[9]
de Marco, B.A.; Rechelo, B.S.; Tótoli, E.G.; Kogawa, A.C.; Salgado, H.R.N. Evolution of green chemistry and its multidimensional impacts: A review. Saudi Pharm. J., 2019, 27(1), 1-8.
[http://dx.doi.org/10.1016/j.jsps.2018.07.011] [PMID: 30627046]
[10]
Zhu, C.; Du, D.; Lin, Y. Graphene-like 2D nanomaterial-based biointerfaces for biosensing applications. Biosens. Bioelectron., 2017, 89(Pt 1), 43-55.
[http://dx.doi.org/10.1016/j.bios.2016.06.045] [PMID: 27373809]
[11]
Srinivasan, S.; Ray, U.; Balasubramanian, G. Thermal conductivity reduction in analogous 2D nanomaterials with isotope substitution. Graphene and Silicene. Chem. Phys. Lett., 2016, 650, 88-93.
[http://dx.doi.org/10.1016/j.cplett.2016.02.073]
[12]
Kulish, V.V.; Malyi, O.I.; Persson, C.; Wu, P. Phosphorene as an anode material for Na-ion batteries: a first-principles study. Phys. Chem. Chem. Phys., 2015, 17(21), 13921-13928.
[http://dx.doi.org/10.1039/C5CP01502B] [PMID: 25947542]
[13]
Feng, Y.; Wang, F.; Yang, Z.; Wang, J. Two dimensional hexagonal boron nitride (2D-hBN): Synthesis, properties and applications. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2017, 46, 5.
[14]
Kartick, B.; Srivastava, S.K.; Srivastava, I. Green synthesis of graphene. J. Nanosci. Nanotechnol., 2013, 13(6), 4320-4324.
[http://dx.doi.org/10.1166/jnn.2013.7461] [PMID: 23862494]
[15]
Xie, J.; Xie, Y. Transition metal nitrides for electrocatalytic energy conversion: Opportunities and challenges. Chemistry, 2016, 22(11), 3588-3598.
[http://dx.doi.org/10.1002/chem.201501120] [PMID: 26494184]
[16]
Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-dimensional transition metal carbides. ACS Nano, 2012, 6(2), 1322-1331.
[http://dx.doi.org/10.1021/nn204153h] [PMID: 22279971]
[17]
Urbankowski, P.; Anasori, B.; Hantanasirisakul, K.; Yang, L.; Zhang, L.; Haines, B.; May, S.J.; Billinge, S.J.L.; Gogotsi, Y. 2D molybdenum and vanadium nitrides synthesized by ammoniation of 2D transition metal carbides (MXenes). Nanoscale, 2017, 9(45), 17722-17730.
[http://dx.doi.org/10.1039/C7NR06721F] [PMID: 29134998]
[18]
Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 2012, 7(11), 699-712.
[http://dx.doi.org/10.1038/nnano.2012.193] [PMID: 23132225]
[19]
Zhang, X.; Hou, L.; Ciesielski, A.; Samorì, P. 2D materials beyond graphene for high-performance energy storage applications. Adv. Energy Mater., 2016, 6(23), 1600671.
[http://dx.doi.org/10.1002/aenm.201600671]
[20]
Han, S.; Wu, D.; Li, S.; Zhang, F.; Feng, X. Graphene: A two-dimensional platform for lithium storage. In: Small (Weinheim an der Bergstrasse, Germany); , 2013; p. 1.
[21]
Lv, R.; Robinson, J.A.; Schaak, R.E.; Sun, D.; Sun, Y.; Mallouk, T.E.; Terrones, M. Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. Acc. Chem. Res., 2015, 48(1), 56-64.
[http://dx.doi.org/10.1021/ar5002846] [PMID: 25490673]
[22]
Yin, Z.; Li, H.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Lu, G.; Zhang, Q.; Chen, X.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano, 2012, 6(1), 74-80.
[http://dx.doi.org/10.1021/nn2024557] [PMID: 22165908]
[23]
Nandwana, V.; Huang, W.; Li, Y.; Dravid, V.P. One-Pot green synthesis of Fe3O4/MoS2 0D/2D nanocomposites and their application in noninvasive point-of-care glucose diagnostics. ACS Applied Nano Materials, 2018, 1(4), 1949-1958.
[http://dx.doi.org/10.1021/acsanm.8b00429]
[24]
Rafique, M.; Sadaf, I.; Rafique, M.S.; Tahir, M.B. A review on green synthesis of silver nanoparticles and their applications. Artif. Cells Nanomed. Biotechnol., 2017, 45(7), 1272-1291.
[http://dx.doi.org/10.1080/21691401.2016.1241792] [PMID: 27825269]
[25]
Kartick, B.; Srivastava, S.K. Simple facile route for the preparation of graphite oxide and graphene. J. Nanosci. Nanotechnol., 2011, 11(10), 8586-8592.
[http://dx.doi.org/10.1166/jnn.2011.4959] [PMID: 22400229]
[26]
Khosroshahi, Z.; Kharaziha, M.; Karimzadeh, F.; Allafchian, A. Green reduction of graphene oxide by ascorbic acid. AIP Conf. Proc., 2018, 1920(1), 020009.
[http://dx.doi.org/10.1063/1.5018941]
[27]
Chhowalla, M.; Liu, Z.; Zhang, H. Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chem. Soc. Rev., 2015, 44(9), 2584-2586.
[http://dx.doi.org/10.1039/C5CS90037A] [PMID: 25882213]
[28]
Wei, W.; Tian, A.; Jia, F.; Wang, K.; Qu, P.; Xu, M. Green synthesis of GeO2/graphene composites as anode material for lithium-ion batteries with high capacity. RSC Advances, 2016, 6(90), 87440-87445.
[http://dx.doi.org/10.1039/C6RA14819K]
[29]
Sahoo, M.; Sreena, K.P.; Vinayan, B.P.; Ramaprabhu, S. Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery. Mater. Res. Bull., 2015, 61, 383-390.
[http://dx.doi.org/10.1016/j.materresbull.2014.10.049]
[30]
Karbhal, I.; Devarapalli, R.R.; Debgupta, J.; Pillai, V.K.; Ajayan, P.M.; Shelke, M.V. Facile green synthesis of BCN nanosheets as high-performance electrode material for electrochemical energy storage. Chemistry, 2016, 22(21), 7134-7140.
[31]
Li, Y-F.; Liu, Y-Z.; Zhang, W-K.; Guo, C-Y.; Chen, C-M. Green synthesis of reduced graphene oxide paper using Zn powder for supercapacitors. Mater. Lett., 2015, 157, 273-276.
[http://dx.doi.org/10.1016/j.matlet.2015.05.114]
[32]
Du, Y.; Yin, Z.; Rui, X.; Zeng, Z.; Wu, X-J.; Liu, J.; Zhu, Y.; Zhu, J.; Huang, X.; Yan, Q.; Zhang, H. A facile, relative green, and inexpensive synthetic approach toward large-scale production of SnS2 nanoplates for high-performance lithium-ion batteries. Nanoscale, 2013, 5(4), 1456-1459.
[http://dx.doi.org/10.1039/c2nr33458e] [PMID: 23306599]
[33]
Chen, X.; Su, B.; Wu, G.; Yang, C.J.; Zhuang, Z.; Wang, X.; Chen, X. Platinum nanoflowers supported on graphene oxide nanosheets: their green synthesis, growth mechanism, and advanced electrocatalytic properties for methanol oxidation. J. Mater. Chem., 2012, 22(22), 11284-11289.
[http://dx.doi.org/10.1039/c2jm31133j]
[34]
Chen, X.; Cai, Z.; Chen, X.; Oyama, M. Green synthesis of graphene–PtPd alloy nanoparticles with high electrocatalytic performance for ethanol oxidation. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(2), 315-320.
[http://dx.doi.org/10.1039/C3TA13155F]
[35]
Vinayan, B.P.; Nagar, R.; Ramaprabhu, S. Solar light assisted green synthesis of palladium nanoparticle decorated nitrogen doped graphene for hydrogen storage application. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(37), 11192-11199.
[http://dx.doi.org/10.1039/c3ta12016c]
[36]
Ali, A.; Shen, P.K. Recent advances in graphene-based platinum and palladium electrocatalysts for the methanol oxidation reaction. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(39), 22189-22217.
[http://dx.doi.org/10.1039/C9TA06088J]
[37]
Nguyen, N.H.A.; Padil, V.V.T.; Slaveykova, V.I.; Černík, M.; Ševců, A. Green synthesis of metal and metal oxide nanoparticles and their effect on the unicellular alga Chlamydomonas reinhardtii. Nanoscale Res. Lett., 2018, 13(1), 159.
[http://dx.doi.org/10.1186/s11671-018-2575-5] [PMID: 29796771]
[38]
Geim, A.K.; Grigorieva, I.V. Van der Waals heterostructures. Nature, 2013, 499(7459), 419-425.
[http://dx.doi.org/10.1038/nature12385] [PMID: 23887427]
[39]
Khan, K.; Tareen, A.K.; Mahmood, A.; Khan, Q.; Zhang, Y.; Ouyang, Z.; Guo, Z. Going green with batteries and supercapacitor: Two dimensional materials and their nanocomposites based energy storage applications. Prog. Solid State Chem., 2019, 58, 100254.
[http://dx.doi.org/10.1016/j.progsolidstchem.2019.100254]
[40]
Anastas, P.T.; Zimmerman, J.B. Peer reviewed: design through the 12 principles of green engineering; ACS Publications, 2003.
[41]
Anastas, P.T.; Kirchhoff, M.M. Origins, current status, and future challenges of green chemistry. Acc. Chem. Res., 2002, 35(9), 686-694.
[http://dx.doi.org/10.1021/ar010065m] [PMID: 12234198]
[42]
Li, C.J.; Anastas, P.T. Green chemistry: present and future. Chem. Soc. Rev., 2012, 41(4), 1413-1414.
[http://dx.doi.org/10.1039/c1cs90064a] [PMID: 22268063]
[43]
Vázquez Sánchez, A.; Ávila Zárraga, J.G. Green oxidation of organic compounds: Manganese Sulphate/Oxone®/Water. J. Mex. Chem. Soc., 2007, 51(4), 213-216.
[44]
Brahmachari, G. Design for carbon–carbon bond forming reactions under ambient conditions. RSC Advances, 2016, 6(69), 64676-64725.
[http://dx.doi.org/10.1039/C6RA14399G]
[45]
Petrone, D.A.; Ye, J.; Lautens, M. Modern Transition-Metal-Catalyzed Carbon-Halogen Bond Formation. Chem. Rev., 2016, 116(14), 8003-8104.
[http://dx.doi.org/10.1021/acs.chemrev.6b00089] [PMID: 27341176]
[46]
Bariwal, J.; Van der Eycken, E. C-N bond forming cross-coupling reactions: an overview. Chem. Soc. Rev., 2013, 42(24), 9283-9303.
[http://dx.doi.org/10.1039/c3cs60228a] [PMID: 24077333]
[47]
Ran, N.; Knop, D.R.; Draths, K.M.; Frost, J.W. Benzene-free synthesis of hydroquinone. J. Am. Chem. Soc., 2001, 123(44), 10927-10934.
[http://dx.doi.org/10.1021/ja016460p] [PMID: 11686696]
[48]
Ravichandiran, P.; Kannan, R.; Ramasubbu, A.; Muthusubramanian, S.; Samuel, V.K. Green synthesis of 1,4-quinone derivatives and evaluation of their fluorescent and electrochemical properties. J. Saudi Chem. Soc., 2016, 20, S93-S99.
[http://dx.doi.org/10.1016/j.jscs.2012.09.011]
[49]
Cardinal, P.; Greer, B.; Luong, H.; Tyagunova, Y. A multistep synthesis incorporating a green bromination of an aromatic ring. J. Chem. Educ., 2012, 89(8), 1061-1063.
[http://dx.doi.org/10.1021/ed200579w]
[50]
Duan, H.; Wang, D.; Li, Y. Green chemistry for nanoparticle synthesis. Chem. Soc. Rev., 2015, 44(16), 5778-5792.
[http://dx.doi.org/10.1039/C4CS00363B] [PMID: 25615873]
[51]
Yang, D.P.; Liu, X.; Teng, C.P.; Owh, C.; Win, K.Y.; Lin, M.; Loh, X.J.; Wu, Y.L.; Li, Z.; Ye, E. Unexpected formation of gold nanoflowers by a green synthesis method as agents for a safe and effective photothermal therapy. Nanoscale, 2017, 9(41), 15753-15759.
[http://dx.doi.org/10.1039/C7NR06286A] [PMID: 28994849]
[52]
Bhattacharjee, A.; Ahmaruzzaman, M. Green synthesis of 2D CuO nanoleaves (NLs) and its application for the reduction of p-nitrophenol. Mater. Lett., 2015, 161, 79-82.
[http://dx.doi.org/10.1016/j.matlet.2015.08.061]
[53]
Amarnath, C.A.; Hong, C.E.; Kim, N.H.; Ku, B-C.; Kuila, T.; Lee, J.H. Efficient synthesis of graphene sheets using pyrrole as a reducing agent. Carbon, 2011, 49(11), 3497-3502.
[http://dx.doi.org/10.1016/j.carbon.2011.04.048]
[54]
Liu, R.; Yu, X.; Zhang, G.; Zhang, S.; Cao, H.; Dolbecq, A.; Mialane, P.; Keita, B.; Zhi, L. Polyoxometalate-mediated green synthesis of a 2D silver nanonet/graphene nanohybrid as a synergistic catalyst for the oxygen reduction reaction. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(38)
[http://dx.doi.org/10.1039/c3ta12941a]
[55]
Zhu, C. Reducing sugar: New functional molecules for the green synthesis of graphene nanosheets. ACS Nano, 2010, 4(4), 2429-2437.
[56]
Zhu, C.; Fang, Y.; Dong, S. Reducing sugar: New functional molecules for the green synthesis of graphene nanosheets. ACS Nano, 2010, 4(4), 2429-2437.
[57]
Pei, S.; Wei, Q.; Huang, K.; Cheng, H.M.; Ren, W. Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation. Nat. Commun., 2018, 9(1), 145.
[http://dx.doi.org/10.1038/s41467-017-02479-z] [PMID: 29321501]
[58]
Zhang, Y.; Liu, S.; Wang, L.; Qin, X.; Tian, J.; Lu, W.; Chang, G.; Sun, X. One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing. RSC Advances, 2012, 2(2), 538-545.
[http://dx.doi.org/10.1039/C1RA00641J]
[59]
Aunkor, M.T.H.; Mahbubul, I.M.; Saidur, R.; Metselaar, H.S.C. The green reduction of graphene oxide. RSC Advances, 2016, 6(33), 27807-27828.
[http://dx.doi.org/10.1039/C6RA03189G]
[60]
Tavakoli, F.; Salavati-Niasari, M.A. badiei, and F. Mohandes, Green synthesis and characterization of graphene nanosheets. Mater. Res. Bull., 2015, 63, 51-57.
[http://dx.doi.org/10.1016/j.materresbull.2014.11.045]
[61]
Rahimi, R.; Pordel, S.; Rabbani, M. Synthesis of Bi2WO6 nanoplates using oleic acid as a green capping agent and its application for thiols oxidation. J. Nanostructure Chem., 2016, 6(2), 191-196.
[http://dx.doi.org/10.1007/s40097-016-0195-0]
[62]
Yi, Z.; Li, X.; Xu, X.; Luo, B.; Luo, J.; Wu, W.; Yi, Y.; Tang, Y. Green, effective chemical route for the synthesis of silver nanoplates in tannic acid aqueous solution. Colloids Surf. A Physicochem. Eng. Asp., 2011, 392(1), 131-136.
[http://dx.doi.org/10.1016/j.colsurfa.2011.09.045]
[63]
Priyabrata, M.A.A.; Mandal, D.; Senapati, S.; Sudhakar, R.S.; Khan, M.; Parishcha, R.; Ajaykumar, P.V.; Alam, M.; Kumar, R.; Sastry, M. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. ACS, 2001, 1(10), 515-519.
[64]
Kowshik, M.; Vogel, W. J. Urban, S.K. Kulkarni, and K.M. Paknikar, Microbial Synthesis of Semiconductor PbS Nanocrystallites. Adv. Mater., 2002, 14(11), 815-818.
[http://dx.doi.org/10.1002/1521-4095(20020605)14:11<815:AID-ADMA815>3.0.CO;2-K]
[65]
Morris, R.E. Ionothermal synthesis--ionic liquids as functional solvents in the preparation of crystalline materials. Chem. Commun. (Camb.), 2009, (21), 2990-2998.
[http://dx.doi.org/10.1039/b902611h] [PMID: 19462065]
[66]
Leitner, W. Homogeneous catalysts for application in supercritical carbon dioxide as a ‘green’ solvent. Elsevier SAS, 2000, 3, 595-600.
[http://dx.doi.org/10.1016/S1387-1609(00)01159-2]
[67]
Seddon, M.J.E.K.R. Ionic liquids. Green solvents for the future. Pure Appl. Chem., 2000, 72(7), 1391-1398.
[http://dx.doi.org/10.1351/pac200072071391]
[68]
Dong, B.; Wang, W-J.; Pan, W.; Kang, G-J. Ionic liquid as a green solvent for ionothermal synthesis of 2D keto-enamine-linked covalent organic frameworks. Mater. Chem. Phys., 2019, 226, 244-249.
[http://dx.doi.org/10.1016/j.matchemphys.2019.01.032]
[69]
Hussain, I.; Singh, N.B.; Singh, A.; Singh, H.; Singh, S.C. Green synthesis of nanoparticles and its potential application. Biotechnol. Lett., 2016, 38(4), 545-560.
[http://dx.doi.org/10.1007/s10529-015-2026-7] [PMID: 26721237]
[70]
Akinwande, D.; Brennan, C.J.; Bunch, J.S.; Egberts, P.; Felts, J.R.; Gao, H.; Huang, R.; Kim, J-S.; Li, T.; Li, Y.J.E.M.L. A review on mechanics and mechanical properties of 2D materials-Graphene and beyond. Ext. Mechanics Lett., 2017, 13, 42-77.
[71]
Huo, C.; Yan, Z.; Song, X.; Zeng, H.J.S.b. 2D materials via liquid exfoliation: A review on fabrication and applications. 2015, 60(23), 1994-2008.
[72]
Matthew, J.; Allen, V.C.T.; Richard, B.K. Honeycomb carbon: A review of graphene. Chem. Rev., 2010, 110, 132-145.
[http://dx.doi.org/10.1021/cr900070d]
[73]
Cai, X.; Lai, L.; Shen, Z.; Lin, J. Graphene and graphene-based composites as Li-ion battery electrode materials and their application in full cells. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(30), 15423-15446.
[http://dx.doi.org/10.1039/C7TA04354F]
[74]
Sumair, A.S.; Iftikhar, H.G.; Hashim, N.; Shafiqullah, M.; Muhammad, M. Improved performance of CuFe2O4/rGO nanohybrid as an anode material for lithium-ion batteries prepared via facile one-step method. Curr. Nanosci., 2019, 15(4), 420-429.
[http://dx.doi.org/10.2174/1573413714666181115122016]
[75]
Herrera-Pérez Gabriel, P.-Z.G.; Ysmael, V.-G.; Ana María, V.M.; Rafael, V.-B. Anodic ZnO-graphene composite materials in lithium batteries. intech, 2019.
[76]
Quesnel, E.; Roux, F.; Emieux, F.; Faucherand, P.; Kymakis, E.; Volonakis, G.; Giustino, F.; Martín-García, B.; Moreels, I.; Gürsel, S.A.; Yurtcan, A.B.; Noto, V.D.; Talyzin, A.; Baburin, I.; Tranca, D.; Seifert, G.; Crema, L.; Speranza, G.; Tozzini, V.; Bondavalli, P.; Pognon, G.; Botas, C.; Carriazo, D.; Singh, G.; Rojo, T.; Kim, G.; Yu, W.; Grey, C.P.; Pellegrini, V. Graphene-based technologies for energy applications, challenges and perspectives. 2D Materials, 2015, 2(3), 030204.
[http://dx.doi.org/10.1088/2053-1583/2/3/030204]
[77]
Sandeep, K.M.; Vadali, V.S.S.S. Graphene and graphene/binary transition metal oxide composites as anode materials in Li-Ion batteries. Nanosci. Nanotechnol. Asia, 2015, 5(2), 90-108.
[http://dx.doi.org/10.2174/2210681205666151030214409]
[78]
Li, X.; Zhu, H. Two-dimensional MoS2: Properties, preparation, and applications. J. Materiomics, 2015, 1(1), 33-44.
[http://dx.doi.org/10.1016/j.jmat.2015.03.003]
[79]
Chhowalla, M.; Shin, H.S.; Eda, G.; Li, L.J.; Loh, K.P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem., 2013, 5(4), 263-275.
[http://dx.doi.org/10.1038/nchem.1589] [PMID: 23511414]
[80]
Stephenson, T.; Li, Z.; Olsen, B.; Mitlin, D. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci., 2014, 7(1), 209-231.
[http://dx.doi.org/10.1039/C3EE42591F]
[81]
Rashidi, S.; Caringula, A.; Nguyen, A.; Obi, I.; Obi, C.; Wei, W. Recent progress in MoS2 for solar energy conversion applications. Front. Energy, 2019, 13(2), 251-268.
[http://dx.doi.org/10.1007/s11708-019-0625-z]
[82]
Jiantao, W.; Juanyu, Y.; Shigang, L. A mini review: Nanostructured silicon-based materials for lithium ion battery. Nanosci. Nanotechnol. Asia, 2016, 6(1), 3-27.
[http://dx.doi.org/10.2174/221068120601160302171553]
[83]
Zhuang, J.; Xu, X.; Peleckis, G.; Hao, W.; Dou, S.X.; Du, Y. Silicene: A promising anode for lithium-ion batteries. Adv. Mater., 2017, 29(48), 1606716.
[http://dx.doi.org/10.1002/adma.201606716] [PMID: 28328167]
[84]
Tritsaris, G.A.; Kaxiras, E.; Meng, S.; Wang, E. Adsorption and diffusion of lithium on layered silicon for Li-ion storage. Nano Lett., 2013, 13(5), 2258-2263.
[http://dx.doi.org/10.1021/nl400830u] [PMID: 23611247]
[85]
Lin, X.; Ni, J. Much stronger binding of metal adatoms to silicene than to graphene: A first-principles study. Phys. Rev. B Condens. Matter Mater. Phys., 2012, 86(7), 075440.
[http://dx.doi.org/10.1103/PhysRevB.86.075440]
[86]
Zhu, J.; Schwingenschlögl, U. Silicene for Na-ion battery applications. 2D Materials, 2016, 3(3), 035012.
[http://dx.doi.org/10.1088/2053-1583/3/3/035012]
[87]
Mai, Y.J.; Wang, X.L.; Xiang, J.Y.; Qiao, Y.Q.; Zhang, D.; Gu, C.D.; Tu, J.P. CuO/graphene composite as anode materials for lithium-ion batteries. Electrochim. Acta, 2011, 56(5), 2306-2311.
[http://dx.doi.org/10.1016/j.electacta.2010.11.036]
[88]
Wang, X.; Zhou, X.; Yao, K.; Zhang, J.; Liu, Z.A. SnO2/graphene composite as a high stability electrode for lithium ion batteries. Carbon, 2011, 49(1), 133-139.
[http://dx.doi.org/10.1016/j.carbon.2010.08.052]
[89]
Chou, S-L.; Wang, J-Z.; Choucair, M.; Liu, H-K.; Stride, J.A.; Dou, S-X. Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochem. Commun., 2010, 12(2), 303-306.
[http://dx.doi.org/10.1016/j.elecom.2009.12.024]
[90]
Wang, X.; Zhang, Z.; Qu, Y.; Lai, Y.; Li, J. Nitrogen-doped graphene/sulfur composite as cathode material for high capacity lithium–sulfur batteries. J. Power Sources, 2014, 256, 361-368.
[http://dx.doi.org/10.1016/j.jpowsour.2014.01.093]
[91]
Chang, K.; Chen, W. In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem. Commun. (Camb.), 2011, 47(14), 4252-4254.
[http://dx.doi.org/10.1039/c1cc10631g] [PMID: 21380470]
[92]
Zhao, B.; Wang, Z.; Gao, Y.; Chen, L.; Lu, M.; Jiao, Z.; Jiang, Y.; Ding, Y.; Cheng, L. Hydrothermal synthesis of layer-controlled MoS2/graphene composite aerogels for lithium-ion battery anode materials. Appl. Surf. Sci., 2016, 390, 209-215.
[http://dx.doi.org/10.1016/j.apsusc.2016.08.078]
[93]
Hwang, H.; Kim, H.; Cho, J. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett., 2011, 11(11), 4826-4830.
[http://dx.doi.org/10.1021/nl202675f] [PMID: 21958327]
[94]
Bhaskar, A.; Deepa, M.; Narasinga Rao, T. MoO2/multiwalled carbon nanotubes (MWCNT) hybrid for use as a Li-ion battery anode. ACS Appl. Mater. Interfaces, 2013, 5(7), 2555-2566.
[http://dx.doi.org/10.1021/am3031536] [PMID: 23480480]
[95]
Mizushima, K.P.C.J.; Wiseman, P.J.; Goodenough, J.B. LixCoO 2 (0<x~l): A new cathode material for batteries of high energy density. Mater. Res. Bull., 1980, 15, 783-789.
[http://dx.doi.org/10.1016/0025-5408(80)90012-4]
[96]
Agostini, M.; Brutti, S.; Hassoun, J. High voltage Li-ion battery using exfoliated graphite/graphene nanosheets anode. ACS Appl. Mater. Interfaces, 2016, 8(17), 10850-10857.
[http://dx.doi.org/10.1021/acsami.6b01407] [PMID: 27052542]
[97]
Wu, S.; Ge, R.; Lu, M.; Xu, R.; Zhang, Z. Graphene-based nano-materials for lithium-sulfur battery and sodium-ion battery. Nano Energy, 2015, 15, 379-405.
[http://dx.doi.org/10.1016/j.nanoen.2015.04.032]
[98]
Kim, H.; Lim, H-D.; Kim, J.; Kang, K. Graphene for advanced Li/S and Li/air batteries. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(1), 33-47.
[http://dx.doi.org/10.1039/C3TA12522J]
[99]
Dong, C.; Xu, L. Cobalt- and cadmium-based metal-organic frameworks as high-performance anodes for sodium ion batteries and lithium ion batteries. ACS Appl. Mater. Interfaces, 2017, 9(8), 7160-7168.
[http://dx.doi.org/10.1021/acsami.6b15757] [PMID: 28166402]
[100]
Al-Saedi, S.I.; Haider, A.J.; Naje, A.N.; Bassil, N. Improvement of Li-ion batteries energy storage by graphene additive. Energy Reports, 2020, 6, 64-71.
[http://dx.doi.org/10.1016/j.egyr.2019.10.019]
[101]
Kim, K.; Lee, Z.; Malone, B.D.; Chan, K.T.; Alemán, B.; Regan, W.; Gannett, W.; Crommie, M.F.; Cohen, M.L.; Zettl, A. Multiply folded graphene. Phys. Rev. B., 2011, 83(24), 245433.
[http://dx.doi.org/10.1103/PhysRevB.83.245433]
[102]
Xiao, X.; Liu, W.; Wang, K.; Li, C.; Sun, X.; Zhang, X.; Liu, W.; Ma, Y. High-performance solid-state Zn batteries based on a free-standing organic cathode and metal Zn anode with an ordered nano-architecture. Nanoscale Advances, 2020, 2(1), 296-303.
[http://dx.doi.org/10.1039/C9NA00562E]
[103]
Shen, C.; Li, X.; Li, N.; Xie, K.; Wang, J.G.; Liu, X.; Wei, B. Graphene-boosted, high-performance aqueous Zn-ion battery. ACS Appl. Mater. Interfaces, 2018, 10(30), 25446-25453.
[http://dx.doi.org/10.1021/acsami.8b07781] [PMID: 29979565]
[104]
Huang, Y.; Liu, J.; Huang, Q.; Zheng, Z.; Hiralal, P.; Zheng, F.; Ozgit, D.; Su, S.; Chen, S.; Tan, P.-H.; Zhang, S.; Zhou, H. Flexible high energy density zinc-ion batteries enabled by binder-free MnO2/reduced graphene oxide electrode. Npj Flexible Electronics, 2018, 2(1)
[105]
Ji, B.; Yao, W.; Tang, Y. High-performance rechargeable zinc-based dual-ion batteries. Sustainable Energy & Fuels, 2020, 4(1), 101-107.
[http://dx.doi.org/10.1039/C9SE00744J]
[106]
Khamsanga, S.; Pornprasertsuk, R.; Yonezawa, T.; Mohamad, A.A.; Kheawhom, S. δ-MnO2 nanoflower/graphite cathode for rechargeable aqueous zinc ion batteries. Sci. Rep., 2019, 9(1), 8441.
[http://dx.doi.org/10.1038/s41598-019-44915-8] [PMID: 31186468]
[107]
Wegayehu, T. brief review of solid electrolyte for lithium ion batteries in particular to garnet-structured Li7La3Zr2O12 solid-state electrolyte. Int. J. Adv. Res. (Indore), 2017, 5(4), 1657-1663.
[http://dx.doi.org/10.21474/IJAR01/3994]
[108]
Li, Y.; Lu, Y.; Zhao, C.; Hu, Y-S.; Titirici, M-M.; Li, H.; Huang, X.; Chen, L. Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Mat., 2017, 7, 130-151.
[http://dx.doi.org/10.1016/j.ensm.2017.01.002]
[109]
Zhang, T.; Tao, Z.; Chen, J. Magnesium-air batteries: from principle to application. Mater. Horiz., 2014, 1(2), 196-206.
[http://dx.doi.org/10.1039/C3MH00059A]
[110]
Li, H.; Peng, L.; Zhu, Y.; Chen, D.; Zhang, X.; Yu, G. An advanced high-energy sodium ion full battery based on nanostructured Na2Ti3O7/VOPO4 layered materials. Energy Environ. Sci., 2016, 9(11), 3399-3405.
[http://dx.doi.org/10.1039/C6EE00794E]
[111]
Ling, C.; Mizuno, F. Boron-doped graphene as a promising anode for Na-ion batteries. Phys. Chem. Chem. Phys., 2014, 16(22), 10419-10424.
[http://dx.doi.org/10.1039/C4CP01045K] [PMID: 24760182]
[112]
Qin, W.; Chen, T.; Pan, L.; Niu, L.; Hu, B.; Li, D.; Li, J.; Sun, Z. MoS2-reduced graphene oxide composites via microwave assisted synthesis for sodium ion battery anode with improved capacity and cycling performance. Electrochim. Acta, 2015, 153, 55-61.
[http://dx.doi.org/10.1016/j.electacta.2014.11.034]
[113]
Sun, J.; Lee, H.W.; Pasta, M.; Yuan, H.; Zheng, G.; Sun, Y.; Li, Y.; Cui, Y. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol., 2015, 10(11), 980-985.
[http://dx.doi.org/10.1038/nnano.2015.194] [PMID: 26344183]
[114]
Lamuel David, R.B.A.G.S. MoS2/Graphene composite paper for sodium-ion battery electrodes. Am. Chem. Soc., 2013, 8(2), 1759-1770.
[115]
Wang, Y-X.; Lim, Y-G.; Park, M-S.; Chou, S-L.; Kim, J.H.; Liu, H-K.; Dou, S-X.; Kim, Y-J. Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(2), 529-534.
[http://dx.doi.org/10.1039/C3TA13592F]
[116]
Su, D.; Ahn, H.J.; Wang, G. SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chem. Commun. (Camb.), 2013, 49(30), 3131-3133.
[http://dx.doi.org/10.1039/c3cc40448j] [PMID: 23478677]
[117]
Berchmans, S.; Bandodkar, A.J.; Jia, W.; Ramírez, J.; Meng, Y.S.; Wang, J. An epidermal alkaline rechargeable Ag-Zn printable tattoo battery for wearable electronics. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(38), 15788-15795.
[http://dx.doi.org/10.1039/C4TA03256J]
[118]
Zhao-Karger, Z.; Gil Bardaji, M.E.; Fuhr, O.; Fichtner, M. A new class of non-corrosive, highly efficient electrolytes for rechargeable magnesium batteries. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(22), 10815-10820.
[http://dx.doi.org/10.1039/C7TA02237A]
[119]
Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun., 2020, 11(1), 1550.
[http://dx.doi.org/10.1038/s41467-020-15355-0] [PMID: 32214093]
[120]
Zhong, C.; Liu, B.; Ding, J.; Liu, X.; Zhong, Y.; Li, Y.; Sun, C.; Han, X.; Deng, Y.; Zhao, N.; Hu, W. Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc-manganese dioxide batteries. Nat. Energy, 2020, 5, 440-449.
[http://dx.doi.org/10.1038/s41560-020-0584-y]
[121]
Chee, W.K.; Lim, H.N.; Zainal, Z.; Huang, N.M.; Harrison, I.; Andou, Y. Flexible graphene-based supercapacitors: A review. J. Phys. Chem. C, 2016, 120(8), 4153-4172.
[http://dx.doi.org/10.1021/acs.jpcc.5b10187]
[122]
Saleem, A.M.; Desmaris, V.; Enoksson, P. Performance enhancement of carbon nanomaterials for supercapacitors. J. Nanomater., 2016, 2016, 1-17.
[http://dx.doi.org/10.1155/2016/1537269]
[123]
Endo, M.; Takeda, T.; Kim, Y.J.; Koshiba, K. High power Electric Double Layer Capacitor (EDLC’s); from operating principle to pore size control in advanced activated carbons. Carbon Science, 2001, 1(3), 117-128.
[124]
Xu, B.; Yue, S.; Sui, Z.; Zhang, X.; Hou, S.; Cao, G.; Yang, Y. What is the choice for supercapacitors: graphene or graphene oxide? Energy Environ. Sci., 2011, 4(8), 2826-2830.
[http://dx.doi.org/10.1039/c1ee01198g]
[125]
Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B.Z. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett., 2010, 10(12), 4863-4868.
[http://dx.doi.org/10.1021/nl102661q] [PMID: 21058713]
[126]
Stoller, M.D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R.S. Graphene-based ultracapacitors. Nano Lett., 2008, 8(10), 3498-3502.
[http://dx.doi.org/10.1021/nl802558y] [PMID: 18788793]
[127]
Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater., 2010, 22(35), 3906-3924.
[http://dx.doi.org/10.1002/adma.201001068] [PMID: 20706983]
[128]
Sahu, V.; Shekhar, S.; Sharma, R.K.; Singh, G. Ultrahigh performance supercapacitor from lacey reduced graphene oxide nanoribbons. ACS Appl. Mater. Interfaces, 2015, 7(5), 3110-3116.
[http://dx.doi.org/10.1021/am5071706] [PMID: 25597895]
[129]
Chen, S.; Zhu, J.; Wu, X.; Han, Q.; Wang, X. Graphene oxide--MnO2 nanocomposites for supercapacitors. ACS Nano, 2010, 4(5), 2822-2830.
[http://dx.doi.org/10.1021/nn901311t] [PMID: 20384318]
[130]
Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang, X. Graphene oxide doped polyaniline for supercapacitors. Electrochem. Commun., 2009, 11(6), 1158-1161.
[http://dx.doi.org/10.1016/j.elecom.2009.03.036]
[131]
Li, Z.; Gadipelli, S.; Li, H.; Howard, C.A.; Brett, D.J.L.; Shearing, P.R.; Guo, Z.; Parkin, I.P.; Li, F. Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage. Nat. Energy, 2020, 5(2), 160-168.
[http://dx.doi.org/10.1038/s41560-020-0560-6]
[132]
Blomquist, N.; Koppolu, R.; Dahlström, C.; Toivakka, M.; Olin, H. Influence of substrate in roll-to-roll coated nanographite electrodes for metal-free supercapacitors. Sci. Rep., 2020, 10(1), 5282.
[http://dx.doi.org/10.1038/s41598-020-62316-0] [PMID: 32210325]
[133]
Tang, H.; Wang, J.; Yin, H.; Zhao, H.; Wang, D.; Tang, Z. Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes. Adv. Mater., 2015, 27(6), 1117-1123.
[http://dx.doi.org/10.1002/adma.201404622] [PMID: 25529000]
[134]
Zhao, C.; Zhou, Y.; Ge, Z.; Zhao, C.; Qian, X. Facile construction of MoS2/RCF electrode for high-performance supercapacitor. Carbon, 2018, 127, 699-706.
[http://dx.doi.org/10.1016/j.carbon.2017.11.052]
[135]
Muzaffar, A.; Ahamed, M.B.; Deshmukh, K.; Thirumalai, J. A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renew. Sustain. Energy Rev., 2019, 101, 123-145.
[http://dx.doi.org/10.1016/j.rser.2018.10.026]
[136]
Lee, S-H.; Kim, K-Y.; Yoon, J-R. Binder- and conductive additive-free laser-induced graphene/LiNi1/3Mn1/3Co1/3O2 for advanced hybrid supercapacitors. NPG Asia Mater., 2020, 12(1), 28.
[http://dx.doi.org/10.1038/s41427-020-0204-0]
[137]
Tao, H.; Fan, Q.; Ma, T.; Liu, S.; Gysling, H.; Texter, J.; Guo, F.; Sun, Z. Two-dimensional materials for energy conversion and storage. Prog. Mater. Sci., 2020, 111, 100637.
[http://dx.doi.org/10.1016/j.pmatsci.2020.100637]
[138]
Heard, C.J.; Čejka, J.; Opanasenko, M.; Nachtigall, P.; Centi, G.; Perathoner, S. 2D oxide nanomaterials to address the energy transition and catalysis. Adv. Mater., 2019, 31(3), e1801712.
[http://dx.doi.org/10.1002/adma.201801712] [PMID: 30132995]
[139]
Wu, J.; Becerril, H.A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P. Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett., 2008, 92(26), 2924771.
[http://dx.doi.org/10.1063/1.2924771]
[140]
Tsuboi, Y. Enhanced photovoltaic performances of graphene/si solar cells by insertion of an MoS2 thin film. Nanosclae, 2015, 34, 14476-14482.
[141]
Yin, Z.; Sun, S.; Salim, T.; Wu, S.; Huang, X.; He, Q.; Lam, Y.M.; Zhang, H. Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes. ACS Nano, 2010, 4(9), 5263-5268.
[http://dx.doi.org/10.1021/nn1015874] [PMID: 20738121]
[142]
Díez-Pascual, A.M.; Luceño Sánchez, J.A.; Peña Capilla, R.; García Díaz, P. Recent developments in graphene/polymer nanocomposites for application in polymer solar cells. Polymers (Basel), 2018, 10(2), E217.
[http://dx.doi.org/10.3390/polym10020217] [PMID: 30966253]
[143]
Li, X.; Chen, W.; Zhang, S.; Wu, Z.; Wang, P.; Xu, Z.; Chen, H.; Yin, W.; Zhong, H.; Lin, S. 18.5% efficient graphene/GaAs van der Waals heterostructure solar cell. Nano Energy, 2015, 16, 310-319.
[http://dx.doi.org/10.1016/j.nanoen.2015.07.003]
[144]
Lin, S.; Li, X.; Wang, P.; Xu, Z.; Zhang, S.; Zhong, H.; Wu, Z.; Xu, W.; Chen, H. Interface designed MoS2/GaAs heterostructure solar cell with sandwich stacked hexagonal boron nitride. Sci. Rep., 2015, 5, 15103.
[http://dx.doi.org/10.1038/srep15103] [PMID: 26458358]
[145]
Miao, X.; Tongay, S.; Petterson, M.K.; Berke, K.; Rinzler, A.G.; Appleton, B.R.; Hebard, A.F. High efficiency graphene solar cells by chemical doping. Nano Lett., 2012, 12(6), 2745-2750.
[http://dx.doi.org/10.1021/nl204414u] [PMID: 22554195]
[146]
Xie, C.; Zhang, X.; Ruan, K.; Shao, Z.; Dhaliwal, S.S.; Wang, L.; Zhang, Q.; Zhang, X.; Jie, J. High-efficiency, air stable graphene/Si micro-hole array Schottky junction solar cells. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(48), 13750c.
[http://dx.doi.org/10.1039/c3ta13750c]
[147]
Agresti, A.; Pescetelli, S.; Taheri, B.; Del Rio Castillo, A.E.; Cinà, L.; Bonaccorso, F.; Di Carlo, A. Graphene-perovskite solar cells exceed 18 % efficiency: A stability study. ChemSusChem, 2016, 9(18), 2609-2619.
[http://dx.doi.org/10.1002/cssc.201600942] [PMID: 27629238]
[148]
Zhang, X.; Ren, X.; Liu, B.; Munir, R.; Zhu, X.; Yang, D.; Li, J.; Liu, Y.; Smilgies, D-M.; Li, R.; Yang, Z.; Niu, T.; Wang, X.; Amassian, A.; Zhao, K.; Liu, S. Stable high efficiency two-dimensional perovskite solar cells via cesium doping. Energy Environ. Sci., 2017, 10(10), 2095-2102.
[http://dx.doi.org/10.1039/C7EE01145H]
[149]
Ortiz-Torres, M.I.; Fernández-Niño, M.; Cruz, J.C.; Capasso, A.; Matteocci, F.; Patiño, E.J.; Hernández, Y.; González Barrios, A.F. Rational design of photo-electrochemical hybrid devices based on graphene and Chlamydomonas reinhardtii light-harvesting proteins. Sci. Rep., 2020, 10(1), 3376.
[http://dx.doi.org/10.1038/s41598-020-60408-5] [PMID: 32099058]
[150]
Behura, S.K.; Wang, C.; Wen, Y.; Berry, V. Graphene–semiconductor heterojunction sheds light on emerging photovoltaics. Nat. Photonics, 2019, 13(5), 312-318.
[http://dx.doi.org/10.1038/s41566-019-0391-9]
[151]
Lee, S-W.; Bae, S.; Hwang, J-K.; Lee, W.; Lee, S.; Hyun, J.Y.; Cho, K.; Kim, S.; Heinz, F.D.; Bin Choi, S.; Choi, D.; Kang, D.; Yang, J.; Jeong, S.; Park, S.J.; Schubert, M.C.; Glunz, S.; Kim, W.M.; Kang, Y.; Lee, H-S.; Kim, D. Perovskites fabricated on textured silicon surfaces for tandem solar cells. Commun. Chem., 2020, 3(1), 37.
[http://dx.doi.org/10.1038/s42004-020-0283-4]
[152]
Geisz, J.F.; France, R.M.; Schulte, K.L.; Steiner, M.A.; Norman, A.G.; Guthrey, H.L.; Young, M.R.; Song, T.; Moriarty, T. Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration. Nat. Energy, 2020, 5(4), 326-335.
[http://dx.doi.org/10.1038/s41560-020-0598-5]
[153]
Wang, X.; Han, J.; Huang, D.; Wang, J.; Xie, Y.; Liu, Z.; Li, Y.; Yang, C.; Zhang, Y.; He, Z.; Bao, X.; Yang, R. Optimized molecular packing and non-radiative energy loss based on terpolymer methodology combining two asymmetric segments for high-performance polymer solar cells. ACS Appl. Mater. Interfaces, 2020.
[154]
Yadav, R.; Subhash, A.; Chemmenchery, N.; Kandasubramanian, B. Graphene and graphene oxide for fuel cell technology. Ind. Eng. Chem. Res., 2018, 57(29), 9333-9350.
[http://dx.doi.org/10.1021/acs.iecr.8b02326]
[155]
Bayer, T.; Bishop, S.R.; Nishihara, M.; Sasaki, K.; Lyth, S.M. Characterization of a graphene oxide membrane fuel cell. J. Power Sources, 2014, 272, 239-247.
[http://dx.doi.org/10.1016/j.jpowsour.2014.08.071]
[156]
Pop, E.; Varshney, V.; Roy, A.K. Thermal properties of graphene: Fundamentals and applications. MRS Bull., 2012, 37(12), 1273-1281.
[http://dx.doi.org/10.1557/mrs.2012.203]
[157]
He, Y.; Wang, J.; Zhang, H.; Zhang, T.; Zhang, B.; Cao, S.; Liu, J. Polydopamine-modified graphene oxide nanocomposite membrane for proton exchange membrane fuel cell under anhydrous conditions. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(25)
[http://dx.doi.org/10.1039/c3ta15301k]
[158]
Cao, Y-C.; Xu, C.; Wu, X.; Wang, X.; Xing, L.; Scott, K. A poly (ethylene oxide)/graphene oxide electrolyte membrane for low temperature polymer fuel cells. J. Power Sources, 2011, 196(20), 8377-8382.
[http://dx.doi.org/10.1016/j.jpowsour.2011.06.074]
[159]
Marinoiu, A.; Gatto, I.; Raceanu, M.; Varlam, M.; Moise, C.; Pantazi, A.; Jianu, C.; Stefanescu, I.; Enachescu, M. Low cost iodine doped graphene for fuel cell electrodes. Int. J. Hydrogen Energy, 2017, 42(43), 26877-26888.
[http://dx.doi.org/10.1016/j.ijhydene.2017.07.036]
[160]
Xu, Z-R.; Luo, J-L.; Chuang, K.T. The study of Au/MoS2 anode catalyst for solid oxide fuel cell (SOFC) using H2S-containing syngas fuel. J. Power Sources, 2009, 188(2), 458-462.
[http://dx.doi.org/10.1016/j.jpowsour.2008.12.008]
[161]
Samuel James Rowley-Neale, G.C.S.; Craig, E.B. Mass producible 2d-mos2 impregnated screen-printed electrodes which demonstrate efficient electrocatalysis towards the oxygen reduction reaction. ACS Appl. Mater. Interfaces, 2017.
[162]
Askari, M.B.; Beheshti-Marnani, A.; Seifi, M.; Rozati, S.M.; Salarizadeh, P. Fe3O4@MoS2/RGO as an effective nano-electrocatalyst toward electrochemical hydrogen evolution reaction and methanol oxidation in two settings for fuel cell application. J. Colloid Interface Sci., 2019, 537, 186-196.
[http://dx.doi.org/10.1016/j.jcis.2018.11.019] [PMID: 30445348]
[163]
Burhan, H.; Ay, H.; Kuyuldar, E.; Sen, F. Monodisperse Pt-Co/GO anodes with varying Pt: Co ratios as highly active and stable electrocatalysts for methanol electrooxidation reaction. Sci. Rep., 2020, 10(1), 6114.
[http://dx.doi.org/10.1038/s41598-020-63247-6] [PMID: 32273553]
[164]
Shen, G.; Liu, J.; Wu, H.B.; Xu, P.; Liu, F.; Tongsh, C.; Jiao, K.; Li, J.; Liu, M.; Cai, M.; Lemmon, J.P.; Soloveichik, G.; Li, H.; Zhu, J.; Lu, Y. Multi-functional anodes boost the transient power and durability of proton exchange membrane fuel cells. Nat. Commun., 2020, 11(1), 1191.
[http://dx.doi.org/10.1038/s41467-020-14822-y] [PMID: 32132527]
[165]
Kamar, E.M.; Sheha, E. Green synthesis of Co3O4/graphene nanocomposite as cathode for magnesium batteries. Mater. Sci. Pol., 2017, 35(3), 528-533.
[http://dx.doi.org/10.1515/msp-2017-0076]
[166]
Saravanan, S.; Kato, R.; Balamurugan, M.; Kaushik, S.; Soga, T. Efficiency improvement in dye sensitized solar cells by the plasmonic effect of green synthesized silver nanoparticles. J. Sci. Adv. Materials Dev., 2017, 2(4), 418-424.
[167]
Vinayan, B.P.; Nagar, R.; Ramaprabhu, S. Synthesis and investigation of mechanism of platinum–graphene electrocatalysts by novel co-reduction techniques for proton exchange membrane fuel cell applications. J. Mater. Chem., 2012, 22(48), 25325-25334.
[http://dx.doi.org/10.1039/c2jm33894g]
[168]
Wu, D.; Wang, S.; Zhang, S.; Liu, Y.; Ding, Y.; Yang, B.; Chen, H. Stabilization of two-dimensional penta-silicene for flexible lithium-ion battery anodes via surface chemistry reconfiguration. Phys. Chem. Chem. Phys., 2019, 21(3), 1029-1037.
[http://dx.doi.org/10.1039/C8CP05008B] [PMID: 30311925]
[169]
Sun, R.; Pei, C.; Sheng, J.; Wang, D.; Wu, L.; Liu, S.; An, Q.; Mai, L. High-rate and long-life VS2 cathodes for hybrid magnesium-based battery. Energy Storage Mat., 2018, 12, 61-68.
[http://dx.doi.org/10.1016/j.ensm.2017.11.012]
[170]
Lv, J.; Xu, M.; Lin, S.; Shao, X.; Zhang, X.; Liu, Y.; Wang, Y.; Chen, Z.; Ma, Y. Direct-gap semiconducting tri-layer silicene with 29% photovoltaic efficiency. Nano Energy, 2018, 51, 489-495.
[http://dx.doi.org/10.1016/j.nanoen.2018.06.079]
[171]
Pandit, B.; Bommineedi, L.K.; Sankapal, B.R. Electrochemical engineering approach of high performance solid-state flexible supercapacitor device based on chemically synthesized VS2 nanoregime structure. J. Energy Chem., 2019, 31, 79-88.
[http://dx.doi.org/10.1016/j.jechem.2018.05.011]
[172]
He, P.; Yan, M.; Zhang, G.; Sun, R.; Chen, L.; An, Q.; Mai, L. Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater., 2017, 7(11), 01920.
[http://dx.doi.org/10.1002/aenm.201601920]
[173]
Sun, R.; Wei, Q.; Sheng, J.; Shi, C.; An, Q.; Liu, S.; Mai, L. Novel layer-by-layer stacked VS2 nanosheets with intercalation pseudocapacitance for high-rate sodium ion charge storage. Nano Energy, 2017, 35, 396-404.
[http://dx.doi.org/10.1016/j.nanoen.2017.03.036]
[174]
Sharma, J.K.; Akhtar, M.S.; Ameen, S.; Srivastava, P.; Singh, G. Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications. J. Alloys Compd., 2015, 632, 321-325.
[http://dx.doi.org/10.1016/j.jallcom.2015.01.172]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy