Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

A Review of Research Progress on Agathis dammara and its Application Prospects for Cardiovascular Diseases and Fatty Liver Disease

Author(s): Anyi Wang, Shanshan Yue, Ankang Peng and Rong Qi*

Volume 21, Issue 6, 2021

Published on: 17 November, 2020

Page: [670 - 676] Pages: 7

DOI: 10.2174/1389557520666201117110834

Price: $65

Abstract

Cardiovascular diseases and fatty liver disease have become the leading causes of death in modern society. However, the currently existing drugs do not solve all issues related to these diseases; thus, it is expected that more potential drugs for clinical use will be developed. Undeniably, natural products have attracted increasing attention. It is of great significance to identify effective active monomer components for drug discovery and disease prevention. As a pure natural product, Agathis dammara (AD) has antioxidant, hypolipidemic, hypoglycemic, antitumor, and anti-inflammatory activities. However, at present, there are few reports regarding the effects of AD on chronic inflammatory cardiovascular diseases, such as aneurysm, atherosclerosis, myocardial ischemia-reperfusion injury, and cardiac hypertrophy and liver diseases such as fatty liver disease. AD and products derived from it have a very broad application prospect for cardiovascular diseases and fatty liver disease.

Keywords: Agathis dammara, application prospects, cardiovascular diseases, fatty liver disease.

Graphical Abstract

[1]
Lv, S.L.; Liang, C.L.; Long, Y.S.; Hu, Q.R. Effect of introduction and cultivation of betula platyphylla and taxodiaceae in Zhenhai. Guangdong. For. Sci. Techn., 2009, 25(3), 55-59.
[2]
Zhang, X.W. Study on introduction and cultivation of Sea-shell fir; Stra. Sci, 2002.
[3]
Xiao, D. The shellfish of Malaysian blood dragon wood. Furn. Int. Des., 2013, 12, 90-93.
[4]
Brophy, J.J.; Goldsack, R.J.; Wu, M.Z.; Fookes, C.J.R.; Forster, P.I. The steam volatile oil of Wollemia nobilis and its comparison with other members of the Araucariaceae (Agathis and Araucaria). Biochem. Syst. Ecol., 2000, 28(6), 563-578.
[http://dx.doi.org/10.1016/S0305-1978(99)00090-3] [PMID: 10793256]
[5]
Wang, T.T. Study on the chemical constituents and cytotoxicity of Elaeagnus angustifolia; Lanzhou University, 2010.
[6]
Chen, Z.; He, D.; Deng, J.; Zhu, J.; Mao, Q. Chemical composition and antibacterial activity of the essential oil from Agathis dammara (Lamb.) Rich fresh leaves. Nat. Prod. Res., 2015, 29(21), 2050-2053.
[http://dx.doi.org/10.1080/14786419.2015.1022544] [PMID: 25782597]
[7]
Huang, R.Z.; Tan, D.F.; Zhang, J.Q.; Huang, L.F. Chemical constituents of volatile oil from leaves of three species of Taxodiaceae. Sci. Silv. Sin., 2008, 44(12), 99-104.
[8]
Guesmi, F.; Tyagi, A.K.; Prasad, S.; Landoulsi, A. Terpenes from essential oils and hydrolate of Teucrium alopecurus triggered apoptotic events dependent on caspases activation and PARP cleavage in human colon cancer cells through decreased protein expressions. Oncotarget, 2018, 9(64), 32305-32320.
[http://dx.doi.org/10.18632/oncotarget.25955] [PMID: 30190788]
[9]
Yeo, S.K.; Ali, A.Y.; Hayward, O.A.; Turnham, D.; Jackson, T.; Bowen, I.D.; Clarkson, R. Beta-bisabolene, a sesquiterpene from the essential oil extract of opoponax (Commiphora guidottii), exhibits cytotoxicity in breast cancer cell lines. Phytother. Res., 2016, 30(3), 418-425.
[http://dx.doi.org/10.1002/ptr.5543] [PMID: 26666387]
[10]
Rodrigues, A.C.; Bomfim, L.M.; Neves, S.P.; Menezes, L.R.; Dias, R.B.; Soares, M.B.; Prata, A.P.; Rocha, C.A.; Costa, E.V.; Bezerra, D.P. Antitumor properties of the essential oil from the leaves of Duguetia gardneriana. Planta Med., 2015, 81(10), 798-803.
[http://dx.doi.org/10.1055/s-0035-1546130] [PMID: 26125546]
[11]
Chaudhary, S.C.; Siddiqui, M.S.; Athar, M.; Alam, M.S. D-Limonene modulates inflammation, oxidative stress and Ras-ERK pathway to inhibit murine skin tumorigenesis. Hum. Exp. Toxicol., 2012, 31(8), 798-811.
[http://dx.doi.org/10.1177/0960327111434948] [PMID: 22318307]
[12]
Guo, Q.; Liu, K.; Deng, W.; Zhong, B.; Yang, W.; Chun, J. Chemical composition and antimicrobial activity of Gannan navel orange (Citrus sinensis Osbeck cv. Newhall) peel essential oils. Food Sci. Nutr., 2018, 6(6), 1431-1437.
[http://dx.doi.org/10.1002/fsn3.688] [PMID: 30258585]
[13]
Fahim, M.; Ibrahim, M.; Zahiruddin, S.; Parveen, R.; Khan, W.; Ahmad, S.; Shrivastava, B.; Shrivastava, A.K. TLC-bioautography identification and GC-MS analysis of antimicrobial and antioxidant active compounds in Musa × paradisiaca L. fruit pulp essential oil. Phytochem. Anal., 2019, 30(3), 332-345.
[http://dx.doi.org/10.1002/pca.2816] [PMID: 30609101]
[14]
Rezaie, M.; Farhoosh, R.; Sharif, A.; Asili, J.; Iranshahi, M. Chemical composition, antioxidant and antibacterial properties of Bene (Pistacia atlantica subsp. mutica) hull essential oil. J. Food Sci. Technol., 2015, 52(10), 6784-6790.
[http://dx.doi.org/10.1007/s13197-015-1789-0] [PMID: 26396430]
[15]
Ulukanli, Z.; Karabörklü, S.; Bozok, F.; Çenet, M.; Oztürk, B.; Balcilar, M. Antimicrobial, insecticidal and phytotoxic activities of Cotinus coggyria Scop. essential oil (Anacardiaceae). Nat. Prod. Res., 2014, 28(23), 2150-2157.
[http://dx.doi.org/10.1080/14786419.2014.928879] [PMID: 24980636]
[16]
Lemes, R.S.; Alves, C.C.F.; Estevam, E.B.B.; Santiago, M.B.; Martins, C.H.G.; Santos, T.C.L.D.; Crotti, A.E.M.; Miranda, M.L.D. Chemical composition and antibacterial activity of essential oils from Citrus aurantifolia leaves and fruit peel against oral pathogenic bacteria. An. Acad. Bras. Cienc., 2018, 90(2), 1285-1292.
[http://dx.doi.org/10.1590/0001-3765201820170847] [PMID: 29898096]
[17]
Sousa, O.V.; Silvério, M.S.; Del-Vechio-Vieira, G.; Matheus, F.C.; Yamamoto, C.H.; Alves, M.S. Antinociceptive and anti-inflammatory effects of the essential oil from Eremanthus erythropappus leaves. J. Pharm. Pharmacol., 2008, 60(6), 771-777.
[http://dx.doi.org/10.1211/jpp.60.6.0013] [PMID: 18498714]
[18]
de Souza, M.C.; Vieira, A.J.; Beserra, F.P.; Pellizzon, C.H.; Nóbrega, R.H.; Rozza, A.L. Gastroprotective effect of limonene in rats: Influence on oxidative stress, inflammation and gene expression. Phytomedicine, 2019, 53, 37-42.
[http://dx.doi.org/10.1016/j.phymed.2018.09.027] [PMID: 30668410]
[19]
Hirota, R.; Nakamura, H.; Bhatti, S.A.; Ngatu, N.R.; Muzembo, B.A.; Dumavibhat, N.; Eitoku, M.; Sawamura, M.; Suganuma, N. Limonene inhalation reduces allergic airway inflammation in Dermatophagoides farinae -treated mice. J. Dermatol. Sci., 2012, 72(3), 225-232.
[PMID: 22520927]
[20]
Kummer, R.; Fachini-Queiroz, F.C.; Estevão-Silva, C.F.; Grespan, R.; Silva, E.L.; Bersani-Amado, C.A.; Cuman, R.K.N.J.E-B.C.; Medicine, A. Evaluation of anti-inflammatory activity of citrus latifolia tanaka essential oil and limonene in experimental mouse models. Evid. Based Complement. Alternat. Med., 2013, 2013859083
[http://dx.doi.org/10.1155/2013/859083] [PMID: 23762165]
[21]
Plastina, P.; Apriantini, A.; Meijerink, J.; Witkamp, R.; Gabriele, B.; Fazio, A. In vitro anti-inflammatory and radical scavenging properties of Chinotto (Citrus myrtifolia Raf.) essential oils. Nutrients, 2018, 10(6), 783-783.
[http://dx.doi.org/10.3390/nu10060783] [PMID: 29912150]
[22]
Souza, M.C.; Siani, A.C.; Ramos, M.F.; Menezes-de-Lima, O.J.; Henriques, M.G. Evaluation of anti-inflammatory activity of essential oils from two Asteraceae species. Pharmazie, 2003, 58(8), 582-586.
[PMID: 12967039]
[23]
Gholivand, M.B.; Rahimi-Nasrabadi, M.; Batooli, H.; Ebrahimabadi, A.H. Chemical composition and antioxidant activities of the essential oil and methanol extracts of Psammogeton canescens. Food Chem. Toxicol., 2010, 48(1), 24-28.
[http://dx.doi.org/10.1016/j.fct.2009.09.007] [PMID: 19748545]
[24]
Kazemi, M.; Rostami, H. Chemical composition, antimicrobial and antioxidant activities of the essential oil of Psammogeton canescens. Nat. Prod. Res., 2015, 29(3), 277-280.
[http://dx.doi.org/10.1080/14786419.2014.951357] [PMID: 25154367]
[25]
Samadi, N.; Masoum, S.; Mehrara, B.; Hosseini, H. Application of linear multivariate calibration techniques to identify the peaks responsible for the antioxidant activity of Satureja hortensis L. and Oliveria decumbens Vent. essential oils by gas chromatography-mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 1001, 75-81.
[http://dx.doi.org/10.1016/j.jchromb.2015.07.037] [PMID: 26262598]
[26]
Shakeri, A.; Akhtari, J.; Soheili, V.; Taghizadeh, S.F.; Sahebkar, A.; Shaddel, R.; Asili, J. Identification and biological activity of the volatile compounds of Glycyrrhiza triphylla Fisch. & C.A. Mey. Microb. Pathog., 2017, 109, 39-44.
[http://dx.doi.org/10.1016/j.micpath.2017.05.022] [PMID: 28526637]
[27]
He, W.; Li, X.; Peng, Y.; He, X.; Pan, S. Anti-oxidant and anti-melanogenic properties of essential oil from peel of pomelo cv. guan xi. Molecules, 2019, 24(2), 242.
[http://dx.doi.org/10.3390/molecules24020242] [PMID: 30634693]
[28]
Barra, A.; Coroneo, V.; Dessi, S.; Cabras, P.; Angioni, A. Characterization of the volatile constituents in the essential oil of Pistacia lentiscus L. from different origins and its antifungal and antioxidant activity. J. Agric. Food Chem., 2007, 55(17), 7093-7098.
[http://dx.doi.org/10.1021/jf071129w] [PMID: 17658828]
[29]
Martins, M. R.; Arantes, S.; Candeias, F.; Tinoco, M.T.; Cruz-Morais, J. Antioxidant, antimicrobial and toxicological properties of Schinus molle L. essential oils. J. Ethnopharmacol., 2014, 151(1), 485-492.
[http://dx.doi.org/10.1016/j.jep.2013.10.063] [PMID: 24231069]
[30]
Wang, J.; Wang, Z.; Liu, M.; Chen, X.; Huang, F.; Li, G.; Wu, Y. Component analysis of volatile oil from Chaozhou Citrus peel and study on its bacteriostatic and antioxidant properties. J. Hanshan Norm. Univ., 2014, 35(3), 61-67.
[31]
Teneva, D.; Denkova-Kostova, R.; Goranov, B.; Hristova-Ivanova, Y.; Slavchev, A.; Denkova, Z.; Kostov, G. Chemical composition, antioxidant activity and antimicrobial activity of essential oil from Citrus aurantium L. zest against some pathogenic microorganisms. Z. Natforsch. C J. Biosci., 2019, 74(5-6), 105-111.
[http://dx.doi.org/10.1515/znc-2018-0062] [PMID: 30685748]
[32]
Ciftci, O.; Ozdemir, I.; Tanyildizi, S.; Yildiz, S.; Oguzturk, H. Antioxidative effects of curcumin, β-myrcene and 1,8-cineole against 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced oxidative stress in rats liver. Toxicol. Ind. Health, 2011, 27(5), 447-453.
[http://dx.doi.org/10.1177/0748233710388452] [PMID: 21245202]
[33]
Tao, N.; Chen, Y.; Wu, Y.; Wang, X.; Li, L.; Zhu, A. The terpene limonene induced the green mold of citrus fruit through regulation of reactive oxygen species (ROS) homeostasis in Penicillium digitatum spores. Food Chem., 2019, 277, 414-422.
[http://dx.doi.org/10.1016/j.foodchem.2018.10.142] [PMID: 30502165]
[34]
Huang, N.N. Study on antioxidant characteristics of citrus essential oil and its protective effect on oxidative damage of skin cells; Huazhong Agricultural University, 2016.
[35]
Liang, S.H.; Pang, S.B.; Liu, X.Y.; Xu, L.; Sun, Y.H. Experimental study on the effect of golden chicken chrysanthemum extract on reducing blood lipid in animals. Agric. Recl. Med. Mag., 2009, 31(6), 495-498.
[36]
Yuan, J.L.; Wang, S.W. Study on the chemical constituents and pharmacodynamics of Zanthoxylum bungeanum. Progr. Mod. Biom., 2010, 10(3), 552-554.
[37]
Cardoso-Teixeira, A.C.; Ferreira-da-Silva, F.W.; Peixoto-Neves, D.; Oliveira-Abreu, K.; Pereira-Gonçalves, Á.; Coelho-de-Souza, A.N.; Leal-Cardoso, J.H. Hydroxyl group and vasorelaxant effects of perillyl alcohol, carveol, limonene on aorta smooth muscle of rats. Molecules, 2018, 23(6), 1-13.
[http://dx.doi.org/10.3390/molecules23061430] [PMID: 29899230]
[38]
Ban, X.Q. Study on antibacterial and antioxidant activities of dill seed and coptis chinensis extract; Huazhong Agricultural University, 2011.
[39]
Zhang, W.G.; Li, L.L.; Wang, Y.; Luo, X.; Han, X.; Mao, X.M. Effect of Xinjiang Kunlun chrysanthemum extract on blood glucose in diabetic mice., 2015.
[40]
Yu, S.T.; Xiao, L.E.; Wang, P.; Huang, L.; Miao, L.K.; Cheng, S.F. GC-MS analysis of volatile components of Citronellostachys pubescens from different producing areas. Flav. Fragr. Cosm., 2016, 6, 5-8.
[41]
Panda, S. The effect of Anethum graveolens L. (dill) on corticosteroid induced diabetes mellitus: Involvement of thyroid hormones. Phytother. Res., 2008, 22(12), 1695-1697.
[http://dx.doi.org/10.1002/ptr.2553] [PMID: 18814208]
[42]
Zhang, Q.S.; Wang, X.P.; Wu, L.L.; Xiang, Y. 2018.
[43]
Jin, X.N.; Zheng, M.Y. Protective effect of houttuynia cordata ethanol extract on acute liver injury induced by carbon tetrachloride. J. Med. Sci. Yanbian Univ., 2010, 33(4), 263-265.
[44]
He, X.J.; Qiu, F.; Zhao, L.M. Protective effect of houttuynia cordata on immune liver injury. Chin. J. Mod. Med., 2011, 21(28), 3475-3477.
[45]
Ben Hsouna, A.; Gargouri, M.; Dhifi, W.; Ben Saad, R.; Sayahi, N.; Mnif, W.; Saibi, W. Potential anti-inflammatory and antioxidant effects of Citrus aurantium essential oil against carbon tetrachloride-mediated hepatotoxicity: A biochemical, molecular and histopathological changes in adult rats. Environ. Toxicol., 2019, 34(4), 388-400.
[http://dx.doi.org/10.1002/tox.22693] [PMID: 30578595]
[46]
Zheng, Q.H.; Jiang, P.; Zhou, X.L. Analysis of antitussive active components in fresh leaves of Geranium. Biom. Chem. Eng., 2011, 45(1), 37-40.
[47]
Del Ben, M.; Baratta, F.; Polimeni, L.; Angelico, F. Non-alcoholic fatty liver disease and cardiovascular disease: Epidemiological, clinical and pathophysiological evidences. Intern. Emerg. Med., 2012, 7(Suppl. 3), S291-S296.
[http://dx.doi.org/10.1007/s11739-012-0819-4] [PMID: 23073870]
[48]
Cobbina, E.; Akhlaghi, F. Non-alcoholic fatty liver disease (NAFLD) - pathogenesis, classification, and effect on drug metabolizing enzymes and transporters. Drug Metab. Rev., 2017, 49(2), 197-211.
[http://dx.doi.org/10.1080/03602532.2017.1293683] [PMID: 28303724]
[49]
Samanta, S.; Balasubramanian, S.; Rajasingh, S.; Patel, U.; Dhanasekaran, A.; Dawn, B.; Rajasingh, J. MicroRNA: A new therapeutic strategy for cardiovascular diseases. Trends Cardiovasc. Med., 2016, 26(5), 407-419.
[http://dx.doi.org/10.1016/j.tcm.2016.02.004] [PMID: 27013138]
[50]
Schaftenaar, F.; Frodermann, V.; Kuiper, J.; Lutgens, E. Atherosclerosis: The interplay between lipids and immune cells. Curr. Opin. Lipidol., 2016, 27(3), 209-215.
[http://dx.doi.org/10.1097/MOL.0000000000000302] [PMID: 27031276]
[51]
Wolf, D.; Ley, K. Immunity and inflammation in atherosclerosis. Circ. Res., 2019, 124(2), 315-327.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313591] [PMID: 30653442]
[52]
Yu, M.; Tsai, S.F.; Kuo, Y.M. The therapeutic potential of anti-inflammatory exerkines in the treatment of atherosclerosis. Int. J. Mol. Sci., 2017, 18(6)E1260
[http://dx.doi.org/10.3390/ijms18061260] [PMID: 28608819]
[53]
Muhlestein, J.B. Bacterial infections and atherosclerosis. J. Investig. Med., 1998, 46(8), 396-402.
[PMID: 9805426]
[54]
Tan, X.C.; Chua, K.H.; Ravishankar Ram, M.; Kuppusamy, U.R. Monoterpenes: Novel insights into their biological effects and roles on glucose uptake and lipid metabolism in 3T3-L1 adipocytes. Food Chem., 2016, 196, 242-250.
[http://dx.doi.org/10.1016/j.foodchem.2015.09.042] [PMID: 26593489]
[55]
Ravizza, R.; Gariboldi, M.B.; Molteni, R.; Monti, E. Linalool, a plant-derived monoterpene alcohol, reverses doxorubicin resistance in human breast adenocarcinoma cells. Oncol. Rep., 2008, 20(3), 625-630.
[PMID: 18695915]
[56]
Mbaveng, A.T.; Hamm, R.; Kuete, V. 19 - Harmful and protective effects of terpenoids from African medicinal plants. Toxicological Survey of African Medicinal Plants; Kuete, V., Ed.; Elsevier, 2014, pp. 557-576.
[http://dx.doi.org/10.1016/B978-0-12-800018-2.00019-4]
[57]
Yang, W.; Chen, X.; Li, Y.; Guo, S.; Yu, X. Advances in pharmacological activities of terpenoids. Nat. Prod. Commun., 2020, 15(3)
[http://dx.doi.org/10.1177/1934578X20903555]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy