Generic placeholder image

Current Biotechnology

Editor-in-Chief

ISSN (Print): 2211-5501
ISSN (Online): 2211-551X

Mini-Review Article

Genetic Interactions Effects of Cardiovascular Disorder Using Computational Models: A Review

Author(s): Sridharan Priya* and Radha K. Manavalan

Volume 9, Issue 3, 2020

Page: [177 - 191] Pages: 15

DOI: 10.2174/2211550109999201008125800

Price: $65

Abstract

Background: The diseases in the heart and blood vessels such as heart attack, Coronary Artery Disease, Myocardial Infarction (MI), High Blood Pressure, and Obesity, are generally referred to as Cardiovascular Diseases (CVD). The risk factors of CVD include gender, age, cholesterol/ LDL, family history, hypertension, smoking, and genetic and environmental factors. Genome- Wide Association Studies (GWAS) focus on identifying the genetic interactions and genetic architectures of CVD.

Objective: Genetic interactions or Epistasis infer the interactions between two or more genes where one gene masks the traits of another gene and increases the susceptibility of CVD. To identify the Epistasis relationship through biological or laboratory methods needs an enormous workforce and more cost. Hence, this paper presents the review of various statistical and Machine learning approaches so far proposed to detect genetic interaction effects for the identification of various Cardiovascular diseases such as Coronary Artery Disease (CAD), MI, Hypertension, HDL and Lipid phenotypes data, and Body Mass Index dataset.

Conclusion: This study reveals that various computational models identified the candidate genes such as AGT, PAI-1, ACE, PTPN22, MTHR, FAM107B, ZNF107, PON1, PON2, GTF2E1, ADGRB3, and FTO, which play a major role in genetic interactions for the causes of CVDs. The benefits, limitations, and issues of the various computational techniques for the evolution of epistasis responsible for cardiovascular diseases are exhibited.

Keywords: Epistasis, GWAS, genes, cardiovascular diseases, genetic interactions, SNPs.

Graphical Abstract

[1]
World Health Organization: WHO. Cardiovascular Diseases. Available from:. https://www.who.int/health-topics/cardiovascular-diseases/
[2]
Nhs.Uk. Cardiovascular Disease. Available from: https://www.nhs.uk/conditions/cardiovascular-disease/
[3]
Higuera V. What Is Coronary Artery Disease? Healthline. Available from: https://www.healthline.com/health/coronary-artery-disease#risks
[4]
Kjeldsen SE. Hypertension and cardiovascular risk: General aspects. Pharmacol Res 2018; 129: 95-9.
[http://dx.doi.org/10.1016/j.phrs.2017.11.003] [PMID: 29127059]
[5]
Mendis S, Puska P, Norrving B. Global atlas on cardiovascular disease prevention and control. WHO World Hear Fed World Stroke Organ. 2011.
[6]
Prevention C for DC and. LDL & HDL: Good & bad cholesterol. CDC, Available from. https://www.cdc.gov/cholesterol/ldl_hdl.htm
[7]
Oh S, Lee J, Kwon MS, Kim K, Park T. Efficient and fast analysis for detecting high order gene-by-gene interactions in a genome-wide association study. Proc - 2011 IEEE Int Conf Bioinforma Biomed BIBM.
[http://dx.doi.org/10.1109/BIBM.2011.103]
[8]
García-González I, López-Díaz RI, Canché-Pech JR, et al. Epistasis analysis of metabolic genes polymorphisms associated with ischemic heart disease in Yucatan. Clínica e Investig En Arterioscler 2018.
[http://dx.doi.org/10.1016/j.artere.2017.11.004]
[9]
Sharan R. Analysis of biological networks: Genetic interaction networks, Available from: https://www.csie.ntu.edu.tw/
[10]
Niel C, Sinoquet C, Dina C, Rocheleau G. A survey about methods dedicated to epistasis detection. Front Genet 2015; 6: 285.
[http://dx.doi.org/10.3389/fgene.2015.00285] [PMID: 26442103]
[11]
L science at S. Single nucleotide polymorphism. Available from: https://www.nature.com/scitable/definition/single-nucleotide-polymorphism-snp-295
[12]
What are single nucleotide polymorphisms (SNPs)? Available from: https://ghr.nlm.nih.gov/primer/genomicresearch/snp
[13]
Ritchie MD, Hahn LW, Roodi N, et al. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 2001; 69(1): 138-47.
[http://dx.doi.org/10.1086/321276] [PMID: 11404819]
[14]
Bastone L, Reilly M, Rader DJ, Foulkes AS. MDR and PRP: A comparison of methods for high-order genotype-phenotype associations. Hum Hered 2004; 58(2): 82-92.
[http://dx.doi.org/10.1159/000083029] [PMID: 15711088]
[15]
Coffey CS, Hebert PR, Ritchie MD, et al. An application of conditional logistic regression and multifactor dimensionality reduction for detecting gene- gene interactions on risk of myocardial infarction: The importance of model validation. BMC Bioinformatics 2004; 5: 49.
[http://dx.doi.org/10.1186/1471-2105-5-49] [PMID: 15119966]
[16]
Williams SM, Ritchie MD, Phillips JA III, et al. Multilocus analysis of hypertension: A hierarchical approach. Hum Hered 2004; 57(1): 28-38.
[http://dx.doi.org/10.1159/000077387] [PMID: 15133310]
[17]
Park J, Kim Y, Lee C. Identification of epistasis in ischemic stroke using multifactor dimensionality reduction and entropy decomposition. BMB Rep 2009; 42(9): 617-22.
[http://dx.doi.org/10.5483/BMBRep.2009.42.9.617] [PMID: 19788865]
[18]
Agirbasli M, Guney AI, Ozturhan HS, et al. Multifactor dimensionality reduction analysis of MTHFR, PAI-1, ACE, PON1, and eNOS gene polymorphisms in patients with early onset coronary artery disease. Eur J Cardiovasc Prev Rehabil 2011; 18(6): 803-9.
[http://dx.doi.org/10.1177/1741826711398806] [PMID: 21450592]
[19]
Lou XY, Chen GB, Yan L, et al. A generalized combinatorial approach for detecting gene-by-gene and gene-by-environment interactions with application to nicotine dependence. Am J Hum Genet 2007; 80(6): 1125-37.
[http://dx.doi.org/10.1086/518312] [PMID: 17503330]
[20]
Choi J, Park T. Multivariate generalized multifactor dimensionality reduction to detect gene-gene interactions. BMC Syst Biol 2013; 7(Suppl. 6): S15.
[http://dx.doi.org/10.1186/1752-0509-7-S6-S15] [PMID: 24565370]
[21]
Liu FH, Song JY, Shang XR, Meng XR, Ma J, Wang HJ. The gene-gene interaction of INSIG-SCAP-SREBP pathway on the risk of obesity in Chinese children. BioMed Res. Int. 2014; 2014: 538564
[http://dx.doi.org/10.1155/2014/538564] [PMID: 25028659]
[22]
Huh I. Gene-gene interaction of multiple binary traits 2014; 0-4.
[23]
Yu W, Kwon MS, Park T. Multivariate quantitative multifactor dimensionality reduction for detecting gene-gene interactions. Hum Hered 2015; 79(3-4): 168-81.
[http://dx.doi.org/10.1159/000377723] [PMID: 26201702]
[24]
Kwon MS, Lee S, Kim Y, Park T. VizEpis: A visualization and mapping tool for interpreting epistasis. CIBCB 2016 - Annu IEEE Int Conf Comput Intell Bioinforma Comput Biol.
[http://dx.doi.org/10.1109/BIBM.2015.7359877]
[25]
Zhou X, Chan KCC. Identification of interactions using modelbased multifactor dimensionality reduction. BMC Proc 2016; 10: 4-8.
[http://dx.doi.org/10.1109/CIBCB.2016.7758094]
[26]
Gola D, König IR. Identification of interactions using model-based multifactor dimensionality reduction. BMC Proc 2016; 10(Suppl. 7): 135-9.
[http://dx.doi.org/10.1186/s12919-016-0019-8] [PMID: 27980625]
[27]
De R, Verma SS, Holzinger E, et al. Identifying gene-gene interactions that are highly associated with four quantitative lipid traits across multiple cohorts. Hum Genet 2017; 136(2): 165-78.
[http://dx.doi.org/10.1007/s00439-016-1738-7] [PMID: 27848076]
[28]
Yu W, Lee S, Park T. A unified model based multifactor dimensionality reduction framework for detecting gene-gene interactions. Bioinformatics 2016; 32(17): i605-10.
[http://dx.doi.org/10.1093/bioinformatics/btw424] [PMID: 27587680]
[29]
Yang CH, Chuang LY, Lin YD. Multiobjective differential evolution-based multifactor dimensionality reduction for detecting gene-gene interactions. Sci Rep 2017; 7(1): 12869.
[http://dx.doi.org/10.1038/s41598-017-12773-x] [PMID: 28993686]
[30]
Yang CH, Chuang LY, Lin YD. CMDR based differential evolution identifies the epistatic interaction in genome-wide association studies. Bioinformatics 2017; 33(15): 2354-62.
[http://dx.doi.org/10.1093/bioinformatics/btx163] [PMID: 28379338]
[31]
Yang CH, Lin YD, Chuang LY. Multiple-criteria decision analysis-based multifactor dimensionality reduction for detecting gene- gene interactions. IEEE J Biomed Health Inform 2019; 23(1): 416-26.
[http://dx.doi.org/10.1109/JBHI.2018.2790951] [PMID: 29993963]
[32]
Zhou X, Chan KCC. Detecting gene-gene interactions for complex quantitative traits using generalized fuzzy classification. BMC Bioinformatics 2018; 19(1): 329.
[http://dx.doi.org/10.1186/s12859-018-2361-5] [PMID: 30227829]
[33]
Yang CH, Chuang LY, Lin YD. Multiobjective multifactor dimensionality reduction to detect SNP-SNP interactions. Bioinformatics 2018; 34(13): 2228-36.
[http://dx.doi.org/10.1093/bioinformatics/bty076] [PMID: 29471406]
[34]
Yang CH, Lin Y. Da, Chuang LY. Class balanced multifactor dimensionality reduction to detect gene-gene interactions. IEEE/ACM Trans Comput Biol Bioinforma 2018.
[35]
Yang C-H, Chuang L-Y, Lin Y-D. Epistasis analysis using an improved fuzzy C-means-based entropy approach. IEEE Trans Fuzzy Syst 2019.
[36]
Kim H, Jeong HB, Jung HY, Park T, Park M. Multivariate cluster-based multifactor dimensionality reduction to identify genetic interactions for multiple quantitative phenotypes. BioMed Res Int 2019; 2019: 4578983.
[http://dx.doi.org/10.1155/2019/4578983] [PMID: 31380425]
[37]
Kim YJ, Go MJ, Hu C, et al. MAGIC consortium. Large-scale genome-wide association studies in East Asians identify new genetic loci influencing metabolic traits. Nat Genet 2011; 43(10): 990-5.
[http://dx.doi.org/10.1038/ng.939] [PMID: 21909109]
[38]
Yang CH, Chuang LY, Lin YD. An improved fuzzy set-based multifactor dimensionality reduction for detecting epistasis. Artif Intell Med 2020; 102: 101768.
[http://dx.doi.org/10.1016/j.artmed.2019.101768] [PMID: 31980105]
[39]
Yang CH, Chuang LY, Lin Y. Da. Fuzzy logic system application for detecting SNP-SNP interaction. IEEE Access 2020; 8: 49951-60.
[http://dx.doi.org/10.1109/ACCESS.2020.2977108]
[40]
Wessel J, Schork AJ, Tiwari HK, Schork NJ. Powerful designs for genetic association studies that consider twins and sibling pairs with discordant genotypes. Genet Epidemiol 2007; 31(7): 789-96.
[http://dx.doi.org/10.1002/gepi.20241] [PMID: 17549743]
[41]
He J, Wang K, Edmondson AC, Rader DJ, Li C, Li M. Gene-based interaction analysis by incorporating external linkage disequilibrium information. Eur J Hum Genet 2011; 19(2): 164-72.
[http://dx.doi.org/10.1038/ejhg.2010.164] [PMID: 20924406]
[42]
Chikkagoudar S, Wang K, Li M. GENIE: a software package for gene-gene interaction analysis in genetic association studies using multiple GPU or CPU cores. BMC Res Notes 2011; 4: 158.
[http://dx.doi.org/10.1186/1756-0500-4-158] [PMID: 21615923]
[43]
Lucas G, Lluís-Ganella C, Subirana I, et al. Myocardial Infarction Genetics Consortium. Wellcome Trust Case Control Consortium. Hypothesis-based analysis of gene-gene interactions and risk of myocardial infarction. PLoS One 2012; 7(8): e41730.
[http://dx.doi.org/10.1371/journal.pone.0041730] [PMID: 22876292]
[44]
Hung H, Lin YT, Chen P, Wang CC, Huang SY, Tzeng JY. Detection of gene-gene interactions using multistage sparse and low-rank regression. Biometrics 2016; 72(1): 85-94.
[http://dx.doi.org/10.1111/biom.12374] [PMID: 26288029]
[45]
Zhao J, Zhu Y, Xiong M. Genome-wide gene-gene interaction analysis for next-generation sequencing. Eur J Hum Genet 2016; 24(3): 421-8.
[http://dx.doi.org/10.1038/ejhg.2015.147] [PMID: 26173972]
[46]
Zhang F, Xie D, Liang M, Xiong M. Functional regression models for epistasis analysis of multiple quantitative traits. PLoS Genet 2016; 12(4): e1005965.
[http://dx.doi.org/10.1371/journal.pgen.1005965] [PMID: 27104857]
[47]
Meng Y, Groth S, Quinn JR, Bisognano J, Wu TT. An exploration of gene-gene interactions and their effects on hypertension. Int. J. Genomics. 2017; 2017: 7208318.
[http://dx.doi.org/10.1155/2017/7208318] [PMID: 28642868]
[48]
Wan X, Yang C, Yang Q, et al. BOOST: A fast approach to detecting gene-gene interactions in genome-wide case-control studies. Am J Hum Genet 2010; 87(3): 325-40.
[http://dx.doi.org/10.1016/j.ajhg.2010.07.021] [PMID: 20817139]
[49]
Verma SS, Lucas A, Zhang X, et al. Collective feature selection to identify crucial epistatic variants. BioData Min 2018; 11: 5.
[http://dx.doi.org/10.1186/s13040-018-0168-6] [PMID: 29713383]
[50]
Chanda P, Sucheston L, Liu S, Zhang A, Ramanathan M. Information-theoretic gene-gene and gene-environment interaction analysis of quantitative traits. BMC Genomics 2009; 10: 509.
[http://dx.doi.org/10.1186/1471-2164-10-509] [PMID: 19889230]
[51]
Bhattacharya D, Bhattacharya S. A Bayesian semiparametric approach to learning about gene–gene interactions in case-control studies. J Appl Stat 2018; 45: 2906-28.
[http://dx.doi.org/10.1080/02664763.2018.1444741]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy