Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Review Article

Ultra-Low Loss Mg2TiO4 Based Dielectric Ceramics for Microwave Applications: An Overview

Author(s): Ranjan Kumar Bhuyan*

Volume 14, Issue 2, 2022

Published on: 25 August, 2020

Page: [110 - 120] Pages: 11

DOI: 10.2174/1876402912999200825104327

Price: $65

Abstract

For several decades, temperature stable, medium permittivity, and low loss dielectric ceramics have been used as resonators, oscillators, filters, and GPS patch antennas for microwave communication systems. Various microwave dielectric ceramics have been proposed and widely used in telecommunication industries. Among the most interesting materials of that kind, magnesium orthotitanate (Mg2TiO4) is recognized as one of the most promising low loss microwave materials, which played an important role in the field of microwave and millimeter wireless communication industry. It was found that by modifying the Mg2TiO4 compound with other materials, their microwave dielectric properties have changed tremendously. The main purpose of this review is to gather information about Mg2TiO4 - based low loss dielectrics used for microwave applications. The study also helps the researchers and technologists to get compact information for Mg2TiO4 -based compounds all over the world.

Keywords: Mg2TiO4 ceramics, microwave dielectrics, high-k dielectrics, quality factor, temperature coefficient of resonant frequency, spinel compounds.

Graphical Abstract

[1]
Rabha, S.; Dobbidi, P. Enhanced microwave dielectric and electrical properties of Zn substituted Mg2TiO4 ceramics for RF/microwave applications. J. Mater. Sci. Mater. Electron., 2019, 60, 392.
[2]
Yu, H. Luo, Ting.; He, Lie.; Liu J. Effect of ZnO on Mg2TiO4 - MgTiO3- CaTiO3 microwave dielectric ceramics prepared by reaction sintering route. Adv. Appl. Ceram, 2018, 118, 1.
[3]
Kumar, T.S.; Gogoi, P.; Perumal, A.; Sharma, P.; Dobbidi, P. Effect of cobalt doping on the structural, microstructure and microwave dielectric properties of MgTiO3 ceramics prepared by semi alkoxide precursor method. J. Am. Ceram. Soc., 2014, 97, 1054.
[4]
Huang, C.L.; Tseng, J.F. Dielectric characteristics of La(Co1/2O1/2)O3 ceramics system at microwave frequency. Mater. Lett., 2004, 58, 3732.
[http://dx.doi.org/10.1016/j.matlet.2004.08.005]
[5]
Li, B.J.; Wang, S.Y.; Liao, Y.H.; Chen, Y.B. Dielectric properties and crystal structure of (Mg1-xCox)2(Ti0.95Sn0.05)O4 ceramics. J. Ceram. Soc. Jpn., 2014, 122, 955.
[http://dx.doi.org/10.2109/jcersj2.122.955]
[6]
Huang, C.L.; Wange, J.J.; Chang, Y.P. Dielectric properties of low loss (1-x) (Mg0.95Zn0.05)TiO3-xSrTiO3 ceramic system at microwave frequency. J. Am. Ceram. Soc., 2007, 90, 858.
[http://dx.doi.org/10.1111/j.1551-2916.2006.01472.x]
[7]
Cava, R.J. Dielectric materials for applications in microwave communications. J. Mater. Chem., 2001, 11, 54.
[http://dx.doi.org/10.1039/b003681l]
[8]
Pamu, D.; Lakshmi, N.R.G.; Raju, J.K.C. Effect of BaO, SrO, and MgO addition on microwave dielectric properties of (Zr0.8, Sn0.2) TiO4 ceramics. J. Alloys Compd., 2009, 475, 745.
[http://dx.doi.org/10.1016/j.jallcom.2008.07.136]
[9]
Huang, C.L.; Tseng, C.F.; Yang, W.R.; Yang, T.J. High dielectric constant low loss microwave dielectric in the (1-x)Nd(Zn1/2Ti1/2)O3–xSrTiO3 system with zero temperature coefficient of resonant frequency. J. Am. Ceram. Soc., 2008, 91, 2201.
[http://dx.doi.org/10.1111/j.1551-2916.2008.02434.x]
[10]
Huang, C.L.; Yang, T.J.; Huang, C.C. Low dielectric loss ceramics in the ZnAl2O4-TiO2 system as a τf compensator. J. Am. Ceram. Soc., 2009, 92, 119.
[http://dx.doi.org/10.1111/j.1551-2916.2008.02827.x]
[11]
Anjana, P.S.; Sebastain, M.T.; Suma, M.N.; Mohanan, P. Low dielectric loss PTFE/CeO2 ceramic composites for microwave substrate applications. Int. J. Appl. Ceram. Technol., 2008, 5, 325.
[http://dx.doi.org/10.1111/j.1744-7402.2008.02228.x]
[12]
Liang, B.L.; Zheng, X.H.; Tang, D.P. New high-epsilon and high-Q microwave dielectric ceramics: (1−x) Ca0.61Nd0.26TiO3−xNd (Zn0.5Ti0.5) O3. J. Alloys Compd., 2009, 488, 409.
[http://dx.doi.org/10.1016/j.jallcom.2009.09.001]
[13]
Fiedziuszko, S.J.; Hunter, I.C.; Itoh, T.; Kobayashi, Y.; Nishikawa, T.; Stitzer, S.N.; Wakino, K. Dielectric materials, devices, and circuits. IEEE Trans. Microw. Theory Tech., 2002, 50, 706.
[http://dx.doi.org/10.1109/22.989956]
[14]
Hu, Chengxi Novel low-permittivity (Mg1-xCux)2SiO4 microwave dielectric ceramics. Adv. Mater. Sci. Eng., 2018.
[15]
Huang, C.L.; Tai, C.Y.; Huang, C.Y.; Chien, Y.H. Low-loss microwave dielectrics in the spinel-structured (Mg1−xNix)Al2O4 solid solutions. J. Am. Ceram. Soc., 2010, 93, 1999.
[16]
Belous, A.; Ovchar, O.; Durilin, D.; Krzmanc, M.M.; Valant, M. High –Q microwave dielectric materials based on the spinel Mg2TiO4. J. Am. Ceram. Soc., 2006, 89, 3441.
[http://dx.doi.org/10.1111/j.1551-2916.2006.01271.x]
[17]
Masse, D.J.; Readey, R.; Hatwig, C. A new low-loss high-k temperature-compensated dielectric for microwave applications. Proc. IEEE, 1971, 59, 1628.
[http://dx.doi.org/10.1109/PROC.1971.8508]
[18]
Konishi, Y. Microwave dielectric resonators (in Japan). Techn; Rep; NHK: Tokyo, Japan, 1971, p. 111.
[19]
Plourde, J.K. Measuring dielectric constant of substrates for microwave applications; IEEE MTT-S Digest, 1973, p. 202.
[20]
Plourde, J.K.; Linn, D.F., Jr H. M. O.; Jr., J.T. Ba2Ti9O20 as a microwave dielectric resonator. J. Am. Ceram. Soc., 1975, 58, 418.
[http://dx.doi.org/10.1111/j.1151-2916.1975.tb19013.x]
[21]
Wakino, K.; Katsube, M.; Tamura, H.; Nishikawa, T.; Ishikawa, Y. Microwave dielectric materials (in Japan); IEEE Four Joint Conv, 1977, p. p. 235.
[22]
Reaney, M.; Iddles, D. Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc., 2006, 89, 2063.
[23]
Zheng, H.; Reaney, I.M.; Muir, D.; Price, T.; Iddles, D.M. Composite dielectric ceramics based on BaO–Ln2O3–TiO2 (Ln = Nd, La). Jpn. J. Appl. Phys., 2005, 44, 3087.
[http://dx.doi.org/10.1143/JJAP.44.3087]
[24]
Sebastian, M.T. Dielectric materials for wireless communication; Elsevier Science Publishers: Oxford, 2008.
[25]
Wakino, K. Recent development of dielectric resonator materials and filters in Japan. Ferroelectrics, 1989, 91, 69.
[http://dx.doi.org/10.1080/00150198908015730]
[26]
Ferreira, V.M.; Azhough, F.; Baptista, J.L.; Freer, R. Proceedings of ECAPD-2 (London 1992). Ferroelectrics, 1992, 133, 127.
[http://dx.doi.org/10.1080/00150199208217987]
[27]
Kawashima, S.; Nishida, M.; Ueda, I.; Wakino, K. Ba(Zn1/3Ta2/3)O3 Ceramics with low dielectric loss at microwave frequencies. J. Am. Ceram. Soc., 1983, 66, 421.
[http://dx.doi.org/10.1111/j.1151-2916.1983.tb10074.x]
[28]
Von Dover, R.B.; Schneemeyer, L.F.; Fleming, R.M. Discovery of a useful thin-film dielectric using a composition-spread approach. Nature, 1998, 392, 162.
[http://dx.doi.org/10.1038/32381]
[29]
O’Bryan, H.M.; Thomson, J. A new BaO‐TiO2 compound with temperature‐stable high permittivity and low microwave loss. J. Am. Ceram. Soc., 1983, 66, 66.
[http://dx.doi.org/10.1111/j.1151-2916.1983.tb09970.x]
[30]
Wakino, K.; Minai, K.; Tamura, H. Microwave characteristics of (Zr, Sn) TiO4 and BaO-PbO-Nd2O3-TiO2 dielectric resonators. J. Am. Ceram. Soc., 1984, 67, 278.
[http://dx.doi.org/10.1111/j.1151-2916.1984.tb18847.x]
[31]
Buschbaum, H.M. The crystal chemistry of AM2O4 oxometallates. J. Alloys Compd., 2003, 349, 49.
[http://dx.doi.org/10.1016/S0925-8388(02)00925-8]
[32]
Paudel, T.R.; Zakutyev, A.; Lany, S.; d’Avezac, M.; Zunger, A. Doping rules and doping phototypes in A2BO4 spinel oxides. Adv. Funct. Mater., 2011, 21, 4493.
[http://dx.doi.org/10.1002/adfm.201101469]
[33]
Ueda, N.; Omata, T.; Hikuma, N.; Ueda, K.; Mizoguchi, H.; Hasimoto, T.; Kawazoe, H.; Hashimoto, T. New oxide phase with wide band gap and high electro conductivity, MgIn2O4. Appl. Phys. Lett., 1992, 61, 1954.
[http://dx.doi.org/10.1063/1.108374]
[34]
Omata, T.; Ueda, N.; Hikuma, N.; Ueda, K.; Mizoguchi, H.; Hashimoto, T.; Kawazoe, H. New ultraviolet‐transport electroconductive oxide, ZnGa2O4 spinel. Appl. Phys. Lett., 1993, 62, 499.
[http://dx.doi.org/10.1063/1.108891]
[35]
Leite, E.R.; Souza, C.M.G.; Longo, E.; Varela, J.A. Influence of the polymerization on the synthesis of SrTiO3. Part II, particle and aglomerate morphologies. Ceram. Int., 1995, 21, 143.
[http://dx.doi.org/10.1016/0272-8842(95)90903-V]
[36]
Li, B.J.; Chen, J.Y.; Huang, G.S.; Jiang, C.Y.; Huang, C.L. Dielectric properties of B2O3-doped 0.92 (Mg0. 95Co0. 05) 2TiO4–0.08 (Ca0. 8Sr0. 2) TiO3 ceramics for microwave applications. J. Alloys Compd., 2010, 505, 291.
[http://dx.doi.org/10.1016/j.jallcom.2010.06.051]
[37]
Surendran, K.P.; Bijumon, P.V.; Mohanan, P.; Sebastian, M.T. (1-x)MgAl2O4-xTiO2 dielectrics for microwave and millimeter wave applications. Appl. Phys., A Mater. Sci. Process., 2005, 81, 823.
[http://dx.doi.org/10.1007/s00339-005-3282-5]
[38]
Huang, C.L.; Tai, C.Y.; Huang, C.Y.; Chen, Y.H. Low‐Loss microwave dielectrics in the spinel‐structured (Mg1−xNix)Al2O4 solid solutions. J. Am. Ceram. Soc., 2010, 93, 1999.
[39]
Escardino, A.; Amoros, J.L.; Gozalbo, A.; Orts, M.J.; Moreno, A. Gahnite devitrification in ceramic frits: Mechanism and process kinetics. J. Am. Ceram. Soc., 2000, 83, 2938.
[http://dx.doi.org/10.1111/j.1151-2916.2000.tb01664.x]
[40]
Surendran, K.P.; Santha, N.; Mohanan, P.; Sebastian, M.T. Temperature stable low loss ceramic dielectrics in (1-x)ZnAlO-xTiO system for microwave substrate applications. Eur. Phys. J. B, 2004, 41, 301.
[http://dx.doi.org/10.1140/epjb/e2004-00321-8]
[41]
Lei, W.; Lu, W-Z.; Zhu, J.H.; Wang, X-H. Microwave dielectric properties of ZnAl2O4–TiO2 spinel-based composites. Mater. Lett., 2007, 61, 4066.
[http://dx.doi.org/10.1016/j.matlet.2007.01.017]
[42]
Surendran, K.P.; Sebastian, M.T.; Manjusha, M.V.; Philip, J. A low loss, dielectric substrate in ZnAl2O4–TiO2ZnAl2O4–TiO2 system for microelectronic applications. J. Appl. Phys., 2005, 98044101.
[http://dx.doi.org/10.1063/1.2007873]
[43]
Lei, W.; Lu, W-Z.; Liu, D.; Zhu, J-H. Phase evolution and microwave dielectric properties of (1−x) ZnAl2O4−xMg2TiO4 ceramics. J. Am. Ceram. Soc., 2009, 92, 105.
[http://dx.doi.org/10.1111/j.1551-2916.2008.02757.x]
[44]
Huang, C.L.; Chen, Y.H.; Tai, C.Y.; Huang, C.Y. High-Q microwave dielectrics in the (Mg1−xZnx)Al2O4 (x = 0–0.1) system. J. Alloys Compd., 2011, 509, L150.
[http://dx.doi.org/10.1016/j.jallcom.2010.12.202]
[45]
Kajfez, D. Dielectric resonators; Artech House: Norwood, 1986, pp. 327-376.
[46]
Buchanan, R.C. Ceramic Materials for Electronics; properties and applilcation; Marcel Dekker: New York, 1986, Vol. 4, pp. 449-150.
[47]
Moulson, A.J.; Herbert, J.M. Electroceramics; Champman and Hall: London, 1990.
[48]
Ohsato, H. Research and development of microwave dielectric ceramics for wireless communications. J. Ceram. Soc. Jpn., 2005, 113, 703.
[http://dx.doi.org/10.2109/jcersj.113.703]
[49]
Huang, C.L.; Wange, J.J.; Huang, C.Y. Microwave dielectric properties of sintered alumina using nano‐scaled powders of α alumina and TiO2. J. Am. Ceram. Soc., 2007, 90, 1487.
[http://dx.doi.org/10.1111/j.1551-2916.2007.01557.x]
[50]
Ohsato, H.; Tsunooka, T.; Sugiyama, T.; Kakimoto, K.I.; Ogawa, H. Forsterite ceramics for millimeterwave dielectrics. J. Electroceram., 2006, 17, 445.
[http://dx.doi.org/10.1007/s10832-006-0452-6]
[51]
Guo, Y.; Ohsato, H.; Kakimoto, K.I. Characterization and dielectric behavior of willemite and TiO2-doped willemite ceramics at millimeter-wave frequency. J. Eur. Ceram. Soc., 2006, 26, 1827.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2005.09.008]
[52]
Huang, C.L.; Chen, J.Y. Low‐loss microwave dielectrics using Mg2(Ti1−xSnx)O4 (x=0.01–0.09) solid solution. J. Am. Ceram. Soc., 2009, 92, 2237.
[http://dx.doi.org/10.1111/j.1551-2916.2009.03060.x]
[53]
Gong, Z.; Wang, Z.; Wang, L.; Fu, Z.; Han, W.; Zhang, Q. Microwave dielectric properties of high-Q Mg(Sn x Ti1−x)O3 ceramics. Electron. Mater. Lett., 2013, 3, 331.
[http://dx.doi.org/10.1007/s13391-013-2214-3]
[54]
Huang, C.L.; Wang, J.J.; Li, B.J.; Shih, C.F. Dielectric properties of (1 − x)(Mg0.95Zn0.05)TiO3–x(Na0.5Nd0.5)TiO3 ceramic system at microwave frequencies. Mater. Lett., 2008, 62, 2516.
[http://dx.doi.org/10.1016/j.matlet.2007.12.055]
[55]
Cho, S.Y.; Kim, I.T.; Hong, K.S. Microwave dielectric properties and applications of rare earth aluminates. J. Mater. Res., 1999, 14, 253.
[56]
Kay, H.F.; Bailey, P.C. Structure and properties of CaTiO3. Acta Crystallogr., 1957, 10, 219.
[http://dx.doi.org/10.1107/S0365110X57000675]
[57]
Ohsato, H.; Ohhashi, T.; Kato, H.; Nishigaki, S.; Okuda, T. Microwave dielectric properties and structure of the Ba6-3xSm8+ 2xTi18O54 solid solutions. Jpn. J. Appl. Phys., 1995, 34, 187.
[http://dx.doi.org/10.1143/JJAP.34.187]
[58]
Hunter, A. Microwave filters –applications and technology. IEEE Trans. Microw. Theory Tech., 2002, 50, 794.
[http://dx.doi.org/10.1109/22.989963]
[59]
Pfaff, G. Peroxide route for synthesis of magnesium titanate powders of various compositions. Ceram. Int., 1994, 20, 111.
[http://dx.doi.org/10.1016/0272-8842(94)90067-1]
[60]
Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst., 2011, 44, 1272.
[http://dx.doi.org/10.1107/S0021889811038970]
[61]
Hakki, B.W.; Coleman, P.D. A dielectric resonator method of measuring inductive capacities in the millimeter range. IEEE Trans. Microw. Theory Tech., 1960, 8, 402.
[http://dx.doi.org/10.1109/TMTT.1960.1124749]
[62]
Courtney, W.E. Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulator. IEEE Trans. Microw. Theory Tech., 1970, 18, 476.
[http://dx.doi.org/10.1109/TMTT.1970.1127271]
[63]
Sebastian, M.T.; Ubic, R.; Jantunen, H. Low loss dielectric ceramic materials and their properties. Int. Mater. Rev., 2015, 60, 392.
[http://dx.doi.org/10.1179/1743280415Y.0000000007]
[64]
Sohn, J.H.; Inaguma, Y.; Yoon, S.O.; Itoh, M.; Nakamura, T.; Yoon, S.J.; Kim, H.J. Microwave dielectric characteristic of ilmenite-type titanates with high-Q values. Jpn. J. Appl. Phys., 1994, 33, 54466.
[http://dx.doi.org/10.1143/JJAP.33.5466]
[65]
Martinez-lope, M.J.; Barura-Pena, M.P.; Garica-Clavel, M.E. Structural and electrical properties of Mg2TiO4. Thermochim. Acta, 1992, 194, 59.
[http://dx.doi.org/10.1016/0040-6031(92)80004-G]
[66]
Huang, C.L.; Chen, J.Y. Low loss microwave dielectrics using SrTiO3- modified (Mg0.95Co0.05)2TiO4 ceramics. J. Alloys Compd., 2009, 485, 706.
[http://dx.doi.org/10.1016/j.jallcom.2009.06.035]
[67]
Huang, C.L.; Liu, S.S.; Chen, S.S. Dielectric properties of a new ceramic system (Mg0.95Zn0.05)2TiO4-CaTiO3 at microwave frequencies. Jpn. J. Appl. Phys., 2009, 48071402.
[http://dx.doi.org/10.1143/JJAP.48.071402]
[68]
Huang, C.L.; Chen, J.Y.; Li, B.J. A new dielectric material system using (1-x) (Mg0.95Co0.05)2TiO4- xCa0.8Sm0.4/3TiO3 at microwave frequencies. Mater. Chem. Phys., 2010, 120, 217.
[http://dx.doi.org/10.1016/j.matchemphys.2009.10.050]
[69]
Cheng, L.; Liu, P.; Qu, S.X.; Cheng, L.; Zhang, H.W. Microwave dielectric properties of Mg2TiO4 ceramics synthesized via high energy ball milling method. J. Alloys Compd., 2015, 623, 238.
[http://dx.doi.org/10.1016/j.jallcom.2014.10.149]
[70]
Huang, C.L.; Liu, S.S. Low loss microwave dielectrics in the (Mg1-xZnx)2TiO4ceramic. J. Am. Ceram. Soc., 2008, 91, 3428.
[http://dx.doi.org/10.1111/j.1551-2916.2008.02614.x]
[71]
Huang, C.L.; Chen, J.Y. High-Q microwave dielectrics in the (Mg1-xCox)2TiO4ceramic. J. Am. Ceram. Soc., 2009, 92, 379.
[http://dx.doi.org/10.1111/j.1551-2916.2008.02742.x]
[72]
Huang, C.L.; Chen, J.Y. Low-loss microwave dielectric ceramics using (Mg1-x Mnx)2TiO4(x =0.02 – 0.1) solid solutions. J. Am. Ceram. Soc., 2009, 92, 2237.
[http://dx.doi.org/10.1111/j.1551-2916.2009.03060.x]
[73]
Huang, C.L.; Ho, C. Microwave dielectric properties of (Mg1-x Mnx)2TiO4(x =0.02 – 0.1) ceramics. J. Am. Ceram. Soc., 2010, 7, E163.
[74]
Huang, C.L.; Tseng, Y.W.; Kuo, Y.C. Low-loss microwave dielectrics in the (Mg1-x Cox)1.8 Ti1.1O4 (x =0.03 – 1.00) solid solutions. J. Am. Ceram. Soc., 2011, 94, 2963.
[http://dx.doi.org/10.1111/j.1551-2916.2011.04464.x]
[75]
Bhuyan, R.K.; Thatikonda, S.K.; Goswami, D.; James, A.R.; Perumal, A.; Pamu, D. Enhanced densification and microwave dielectric properties of Mg2TiO4 ceramics added with CeO2 nanoparticles. Mater. Sci. Eng. B, 2013, 178, 178.
[76]
Bhuyan, R.K.; Thatikonda, S.K.; Goswami, D.; James, A.R.; Pamu, D. Liquid phase effect of La2O3 and V2O5 on microwave dielectric properties of Mg2TiO4 ceramics. J. Electroceram., 2013, 31, 48.
[http://dx.doi.org/10.1007/s10832-013-9795-y]
[77]
Bhuyan, R.K.; Thatikonda, S.K.; Pamu, D. Liquid phase effect of Bi2O3 additive on densification, microstructure and microwave dielectric properties of Mg2TiO4 ceramics. Ferroelectrics, 2017, 516, 173.
[http://dx.doi.org/10.1080/00150193.2017.1362226]
[78]
Bhuyan, R.K.; Thatikonda, S.K.; Pamu, D. Structural and microwave dielectric properties of Mg2TiO4 ceramics synthesized by mechanical method. Int. J. Appl. Ceram. Technol., 2013, 516, E18.
[http://dx.doi.org/10.1111/j.1744-7402.2012.02823.x]
[79]
Bhuyan, R.K.; Mohapatra, R.K.; Nath, G.; Sahoo, B.K.; Das, D.; Pamu, D. Influence of high energy ball milling on structural, microstructural and optical properties of Mg2TiO4 nanoparticles. J. Mater. Sci. Mater. Electron., 2020, 31, 628.
[http://dx.doi.org/10.1007/s10854-019-02568-3]
[80]
Bhuyan, R.K.; Pamu, D.; Sahoo, B.K.; Sarangi, A.K. Structural and Theremal study of Mg2TiO4 nanoparticles synthesized by mechanical alloying method. Micro Nanosyst., 2020, 12(2), 87-91.
[http://dx.doi.org/10.2174/1876402911666190613105851]
[81]
Bhuyan, R.K.; Thatikonda, S.K.; Pamu, D.; Renehan, J.M.; Jacob, M.V. Cryogenic microwave dielectric properties of Mg2TiO4 ceramics added with CeO2 nanoparticles. Adv. Mat. Res., 2014, 2, 327.
[82]
Bhuyan, R.K.; Thatikonda, S.K.; Pamu, D.; Renehan, J.M.; Jacob, M.V. Low temperature and broadband dielectric properties of V2O5 doped Mg2TiO4 ceramics. Mater. Express, 2014, 4, 349.
[http://dx.doi.org/10.1166/mex.2014.1182]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy