Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Review Article

Synthesis and Transport Properties of Cobalt Ferrite: A Systematic Overview

Author(s): Ananga U. Naik, Santosh K. Satpathy* and Banarji Behera

Volume 14, Issue 2, 2022

Published on: 31 August, 2020

Page: [101 - 109] Pages: 9

DOI: 10.2174/1876402912666200831180445

Price: $65

Abstract

CoFe2O4, the single-phase nanocrystalline material, has potential applications in information storage, sensors and actuators. This ferrite has a tetragonal P4mm crystallographic structure with a crystallite size 42 nm. The CoFe2O4 is prepared by different techniques. The spinal structure of dielectric and hysteresis study disclosed ferroelectric nature over a broad spectrum of frequency and temperature with low dielectric loss. Based on Spinal structure phase metal oxides, a distinct range of properties became useful for different applications. Spinal structure materials have attractive characteristics in electrical conductivity, dielectric constant, dielectric loss, structural and magnetic properties. Spinal structure materials showed efficient essential properties for photovoltaic solar cells.

Keywords: Synthesis, dielectric, impedance, electrical conductivity, techniques, properties.

Next »
Graphical Abstract

[1]
Dasan, Y.K.; Guan, B.H.; Zahari, M.H.; Chuan, L.K. Influence of La3+ Substitution on structure, morphology and magnetic properties of nanocrystalline Ni-Zn ferrite. PLoS One, 2017, 12(1)e0170075
[http://dx.doi.org/10.1371/journal.pone.0170075] [PMID: 28081257]
[2]
Shahare, A.M.; Bisen, M.S.; Bagde, A.V.; Choudhary, D.S. An overview on structural and magnetic properties of certain substitutions in cobalt ferrite. Int. J. Curr. Eng. Sci.Res., 2019, 6(1), 2394-0697.
[3]
Huq, M.F.; Saha, D.K.; Ahmed, R.; Mahmood, Z.H. Ni-Cu-Zn ferrite research: A brief review. J. Sci. Res., 2013, 5(2), 215-233.
[http://dx.doi.org/10.3329/jsr.v5i2.12434]
[4]
Jaswal, L.; Singh, B. Ferrite materials: A chronological review. J. Int. Sci. Technol., 2014, 2(2), 69-71.
[5]
Hamdeh, H.H.; Hikal, W.M.; Taher, S.M.; Ho, J.C. Mössbauer evaluation of cobalt ferrite nanoparticles synthesized by forced hydrolysis. J. Appl. Phys., 2005, 97(064310), 1-4.
[http://dx.doi.org/10.1063/1.1856219]
[6]
Nongjai, R.; Khan, S.; Asokan, K.; Ahmed, H.; Khan, I. Magnetic and electrical properties of In doped cobalt ferrite nanoparticles. J. Appl. Phys., 2012, 112(084321), 1-7.
[http://dx.doi.org/10.1063/1.4759436]
[7]
Yavari, S.; Mahmodi, N.M.; Teymouri, P.; Shahmoradi, B.; Maleki, A. Cobalt ferrite nanoparticles: Preparation, characterization and anionic dye removal capability. J. Taiwan Inst. Chem. Eng., 2016, 59, 320-329.
[8]
Balakrishnan, P.; Veluchamy, P. Synthesis and characterization of CoFe2O4 magnetic nanoparticles using Sol-Gel method. Int. J. Chem. Tech Res. CODEN (USA), 2015, 8(1), 271-276.
[http://dx.doi.org/10.1007/s12633-018-9922-0]
[9]
Farid, M.T.; Ahmad, I.; Aman, S.; Kanwal, M.; Murtaza, G.; Ali, I.; Ahmad, I.; Ishfaq, M. Sem, FTIR and dielectric properties of cobalt substituted spinel ferrites. J. Ovonic Res., 2015, 11(1), 1-10.
[10]
Karimi, Z.; Mohammadifar, Y.; Shokrollahi, H.; Asla, Sh.K. Yousefi, Gh.; Karimie, L. Magnetic and structural properties of nano-sized Dy-doped cobalt ferrite synthesized by co-precipitation. J. Magn. Magn. Mater., 2014, 361, 150-156.
[http://dx.doi.org/10.1016/j.jmmm.2014.01.016]
[11]
Xavier, S.; Thankachan, S.; Jacob, B.P.; Mohammed, E.M. Effect of samarium substitution on the structural and magnetic properties of nanocrystalline cobalt ferrite. J. Nanosci., 2013, 2013
[12]
Dascalu, G.; Pompilian, G.; Chazallon, B.; Nica, V.; Caltun, O.F.; Gurlui, S.; Focsa, C. Rare earth doped cobalt ferrite thin films deposited by PLD. Appl. Phys., A Mater. Sci. Process., 2013, 110, 915-922.
[http://dx.doi.org/10.1007/s00339-012-7196-8]
[13]
Ashour, A.H.; El-Batal, A.I.; Maksoud, M.I.A.A.; El-Sayyad, G.S.; Labib, Sh.; Abdeltwab, E.; El-Okr, M.M. Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol-gel technique. Particuology, 2018, 40, 141-15.
[http://dx.doi.org/10.1016/j.partic.2017.12.001]
[14]
Baharuddin, N. A.; Rahman, H. A.; Muchtar, A.; Sulong, A. B.; Abdullah, H. Development of lanthanum strontium cobalt ferrite composite cathodes for intermediate- to low-temperature solid oxide fuel cells. Zhejiang University-SCIENCE A (Appl. Phys. Eng.), 2013, 14(1), 11-24.
[15]
Bharathi, K.K.; Ramana, C.V. Improved electrical and dielectric properties of La-doped Co ferrite. J. Mater. Res., 2011, 26(4), 584-591.
[http://dx.doi.org/10.1557/jmr.2010.37]
[16]
Bulai, G.; Diamandescu, L.; Dumitru, I.; Gurlui, S.; Feder, M.; Caltun, O.F. Effect of rare earth substation in cobalt ferrite bulk materials. J. Magn. Magn. Mater., 2015, 390, 123-131.
[http://dx.doi.org/10.1016/j.jmmm.2015.04.089]
[17]
Deng, D.H.; Pang, H.; Du, J.M.; Deng, J.W.; Li, S.J.; Chen, J.; Zhang, J.S. Fabrication of cobalt ferrite nanostructures and comparison of their electrochemical properties. Cryst. Res. Technol., 2012, 47(10), 1-7.
[http://dx.doi.org/10.1002/crat.201200161]
[18]
Gandha, K.; Elkins, K.; Poudyal, N. Liu, Ping. Synthesis and characterization of Cofe2o4 nanoparticles with high coercivity. J. Appl. Phys., 2015, 117(17), p.17A736.
[19]
Goswami, P.P.; Choudhury, H.A.; Chakma, S.; Moholkar, V.S. Sonochemical synthesis of cobalt ferrite nanoparticles. Int. J. Chem. Eng., 2013, 2013, 1-6.
[http://dx.doi.org/10.1155/2013/934234]
[20]
Millot, N.; Le Gallet, S.; Aymes, D.; Bernad, F.; Grin, Y. Spark plasma sintering of cobalt ferrite nanopowders prepared by co-precipitation and hydrothermal synthesis. J. Eur. Ceram. Soc., 2007, 27, 921-926.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2006.04.141]
[21]
Cannas, C.; Musinu, A.; Peddis, D.; Piccaluga, G. Synthesis and characterization of CoFe2O4 nanoparticles dispersed in a silica matrix by a Sol-Gel autocombustion method. Chem. Mater., 2006, 18, 3835-3842.
[http://dx.doi.org/10.1021/cm060650n]
[22]
Routray, K.L.; Behera, D. Enhancement in conductivity and dielectric properties of rare-earth (Gd3+) substituted nano-sized CoFe2O4 J. Mater. Sci. Mater. Electron., 2018, 29(16), 14248-14260.
[http://dx.doi.org/10.1007/s10854-018-9558-2]
[23]
Kirankumar, V.S.; Sumathi, S. Photocatalytic and antibacterial activity of bismuth and copper codoped cobalt ferrite nanoparticles. J. Mater. Sci. Mater. Electron., 2018, 29, 8738-8746.
[http://dx.doi.org/10.1007/s10854-018-8890-x]
[24]
Kumar, P.; Chand, J.; Singh, M. Ferromagnetic ordering in lanthanum substituted nano-cobalt ferrites at room temperature. Integr. Ferroelectr., 2012, 134, 53-57.
[http://dx.doi.org/10.1080/10584587.2012.664532]
[25]
Lin, Q.; Lin, J.; He, Y.; Wang, R.; Dong, J. The structural and magnetic properties of gadolinium doped CoFe2O4 nanoferrites. J. Nanomat., 2015, 2015
[26]
Meng, X.; Li, H.; Chen, J.; Mei, L.; Wang, K.; Li, X. Mossbauer study of cobalt ferrite nanocrystal substituted with rare-earth Y+3 ions. J. Magn. Magn. Mater., 2009, 321, 1155-1158.
[http://dx.doi.org/10.1016/j.jmmm.2008.10.041]
[27]
Quickel, T.E.; Le, V.H.; Brezesinski, T.; Tolbert, S.H. On the correlation between nanoscale structure and magnetic properties in ordered mesoporous cobalt ferrite (CoFe2O4) thin films. Nano Lett., 2010, 10(8), 2982-2988.
[http://dx.doi.org/10.1021/nl1014266] [PMID: 20698611]
[28]
Rahaman, Md. T.; Vargas, M.; Ramana, C.V. Structural characteristics, electrical conduction, and dielectric properties of gadolinium substituted cobalt ferrite. J. Alloys Compd., 2014, 617, 547-562.
[http://dx.doi.org/10.1016/j.jallcom.2014.07.182]
[29]
Sanpo, N.; Berndt, C.C.; Wen, C.; Wang, J. Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications. Acta Biomater., 2013, 9(3), 5830-5837.
[http://dx.doi.org/10.1016/j.actbio.2012.10.037] [PMID: 23137676]
[30]
Mohanty, D.; Satpathy, S.K.; Behera, B.; Mohapatra, R.K. Dielectric and frequency dependent transport properties in magnesium doped CuFe2O4 composite Materials Today: Proceedings, 2020.
[31]
Mohant, D.; Mallick, P.; Biswal, S.K.; Behera, B.; Mohapatra, R. K.; Behera, A.; Satpathy, S. K. Investigation of structural, dielectric and electrical properties of ZnFe2O4 composite Materials Today: Proceedings, 2020.
[32]
de Gennes, P.G.; Taupin, C. Microemulsions and the flexibility of oil/water interfaces. J. Phys. Chem., 1982, 86, 2294-2304.
[http://dx.doi.org/10.1021/j100210a011]
[33]
Eicke, H.F.; Shepherd, J.C.W.; Steinemann, A. Exchange of solubilized water and aqueous electrolyte solutions between micelles in apolar media. J. Coll. Inter. Sci., 1976, 56, 168-176.
[http://dx.doi.org/10.1016/0021-9797(76)90159-4]
[34]
Fendler, J.H. Atomic and molecular clusters in membrane mimetic chemistry. Chem. Rev., 1987, 87, 877-899.
[http://dx.doi.org/10.1021/cr00081a002]
[35]
Pillai, V.; Manu, P.K.; Multani, S.; Shah, D.O. Structure and magnetic properties of nanoparticles of barium ferrite synthesized using microemulsion processing. Colloids Surf. A Physicochem. Eng. Asp., 1993, 80(1), 69-75.
[http://dx.doi.org/10.1016/0927-7757(93)80225-4]
[36]
Huma, M.; Mahmood, A.; Mahmood, K.; Lodhi, M.Y.; Muhammad, F.W.; Shakir, I.; Whab, H.; Asghar, M.; Khan, M.A. Influence of cobalt substitution on the magnetic properties of zinc nanocrystals synthesized via microemulsion route. Ceram. Int., 2014, 40(7), 9439-9444.
[http://dx.doi.org/10.1016/j.ceramint.2014.02.015 0272-8842]
[37]
Khan, M.A.; Sabir, M.; Mahmood, A.; Asghar, M.; Mahmood, K.; Khan, M.A.; Ahmad, I.; Sher, M.; Warsi, M.F. High-frequency dielectric response and magnetic studies of Zn1− xTbxFe2O4 nanocrystalline ferrites synthesized via micro-emulsion technique. J. Magn. Magn. Mater., 2014, 360, 188-192.
[http://dx.doi.org/10.1016/j.jmmm.2014.02.059]
[38]
Rajjab, A.; Mahamood, A.; Khan, M.A.; Chugati, A.H.; Sahid, M.; Shakir, I.; Warsi, M.F. Impacts of Ni-Co substitution on the structural, magnetic and dielectric properties of magnesium nano-ferrites fabricated by the microemulsion method. J. Alloys Compd., 2014, 584, 363-368.
[http://dx.doi.org/10.1016/j.jallcom.2013.08.114]
[39]
Mathew, D.S. Juang, Ruey-Shin. An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in micro-emulsions. Chem. Eng. J., 2007, 129, 51-65.
[http://dx.doi.org/10.1016/j.cej.2006.11.001]
[40]
Uskoković, V.; Drofenik, M. A mechanism for the formation of nanostructured NiZn ferrites via a microemulsion-assisted precipitation method. Colloids Surf. A Physicochem. Eng. Asp., 2005, 266, 168-174.
[http://dx.doi.org/10.1016/j.colsurfa.2005.06.022]
[41]
Lv, Wei-z.; Liu, B; Luo, Z. K.; Ren, X.Z.; Zhang, P.X. XRD studies on the nanosized copper ferrite powders synthesized by sonochemical method. J. Alloys Compd., 2008, 465, 261-264.
[http://dx.doi.org/10.1016/j.jallcom.2007.10.049]
[42]
Shafi, K.V.P.M.; Gedanken, A. Sonochemical preparation and size-dependent properties of nanostructured CoFe2O4 particles. Chem. Mater., 1998, 10, 3445-3450.
[http://dx.doi.org/10.1021/cm980182k]
[43]
Sivakumar, M.; Takami, T.; Ikuta, H.; Towata, A.; Yasui, K.; Tuziuti, T.; Kozuka, T.; Bhattacharya, D.; Iida, Y. Fabrication of zinc ferrite nanocrystals by sonochemical emulsification and evaporation: observation of magnetization and its relaxation at low temperature. J. Phys. Chem. B, 2006, 110(31), 15234-15243.
[http://dx.doi.org/10.1021/jp055024c] [PMID: 16884240]
[44]
Almessiere, M.A.; Slimani, Y.; Korkmaz, A.D.; Guner, S.; Sertkol, M.; Shirsath, S.E.; Baykal, A. Structural, optical and magnetic properties of Tm3+ substituted cobalt spinel ferrites synthesized via sonochemical approach. Ultrason. Sonochem., 2019, 54, 1-10.
[http://dx.doi.org/10.1016/j.ultsonch.2019.02.022] [PMID: 30833194]
[45]
Goswami, P.P.; Choudhury, H.A.; Chakma, S.; Moholkar, V.S. Sonochemical synthesis, and characterization of manganese ferrite nanoparticles. Ind. Eng. Chem. Res., 2013, 52, 17848-17855.
[http://dx.doi.org/10.1021/ie401919x]
[46]
Komarneni, S.; Rajha, R.K.; Katsuki, H. Microwave-hydrothermal processing of titanium dioxide. Mater. Chem. Phys., 1999, 61(1), 50-54.
[http://dx.doi.org/10.1016/S0254-0584(99)00113-3]
[47]
Nalbandian, L.; Delimitis, A.; Zaspalis, V.T.; Deliyanni, E.A.; Bakoyannakis, D.N.; Peleka, E.N. Hydrothermally prepared nanocrystalline Mn-Zn ferrites: synthesis and characterization. Microporous Mesoporous Mater., 2008, 114, 465-473.
[http://dx.doi.org/10.1016/j.micromeso.2008.01.034]
[48]
Khollam, Y.B.; Dhage, S.R.; Potdar, H.S.; Deshpande, S.B.; Bakare, P.P.; Kulkarni, S.D.; Date, S.K. Microwave hydrothermal preparation of submicron-sized spherical magnetite (Fe3O4) powders. Mater. Lett., 2002, 56, 571-577.
[http://dx.doi.org/10.1016/S0167-577X(02)00554-2]
[49]
Fan, R.; Chen, X.H.; Gui, Z.; Liu, L.; Chen, Z.Y. A new simple hydrothermal preparation of nanocrystalline magnetite Fe3O4. Mater. Res. Bull., 2001, 36, 497-502.
[http://dx.doi.org/10.1016/S0025-5408(01)00527-X]
[50]
Nejati, K.; Zabihi, R. Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method. Chem. Cent. J., 2012, 6, 23.
[http://dx.doi.org/10.1186/1752-153X-6-23] [PMID: 22462726]
[51]
Yuksel, K. Structural, magnetic, electrical, and dielectric properties of MnxNi1− xFe2O4 spinel nano ferrites prepared by PEG assisted hydrothermal method. Ceram. Int., 2013, 39, 4221-4230.
[http://dx.doi.org/10.1016/j.ceramint.2012.11.004]
[52]
Tahir, A.A.; Wijayantha, K.G.U.; Mazhar, M.; McKee, V. ZnFe2O4 thin films from a single source precursor by aerosol assisted chemical vapor deposition. Thin Solid Films, 2010, 518, 3664-3668.
[http://dx.doi.org/10.1016/j.tsf.2009.09.104]
[53]
Xu, C.; Hampden-Smith, M.J.; Kodas, T.T. Aerosol-Assisted Chemical Vapor Deposition (AACVD) of binary alloy (AgxPd1-x, CuxPd1-x, AgxCu1-x) films and studies of their compositional variation. Chem. Mater., 1995, 7, 1539-1546.
[http://dx.doi.org/10.1021/cm00056a021]
[54]
Hou, X.; Choy, K.L. Processing and applications of aerosol‐assisted chemical vapor deposition. Chem. Vap. Depos., 2006, 12, 583-596.
[http://dx.doi.org/10.1002/cvde.200600033]
[55]
Salazar, K.V.; Ott, K.C.; Dye, R.C.; Hubbard, K.M.; Peterson, E.J.; Coulter, J.Y.; Kodas, T.T. Aerosol assisted chemical vapor deposition of superconducting YBa2Cu3O7−χ. Physica C, 1992, 198, 303-308.
[http://dx.doi.org/10.1016/0921-4534(92)90205-Q]
[56]
Marchand, P.; Hassan, I.A.; Parkin, I.P.; Carmalt, C.J. Aerosol-assisted delivery of precursors for chemical vapour deposition: Expanding the scope of CVD for materials fabrication. Dalton Trans., 2013, 42(26), 9406-9422.
[http://dx.doi.org/10.1039/c3dt50607j] [PMID: 23629474]
[57]
Arabi, H.; Moghadam, N.K. Nanostructure and magnetic properties of magnesium ferrite thin films deposited on a glass substrate by spray pyrolysis. J. Magn. Magn. Mater., 2013, 335, 144-148.
[http://dx.doi.org/10.1016/j.jmmm.2013.02.006]
[58]
Lebedev, M.; Akedo, J.; Iwata, A. NiZnCu ferrite thick film with nanoscale crystallites formed by the aerosol deposition method. J. Am. Ceram. Soc., 2004, 87, 1621-1624.
[http://dx.doi.org/10.1111/j.1551-2916.2004.01621.x]
[59]
Guo, Y.; Zhang, N.; Wang, X.; Qian, Q.; Zhang, S.; Li, Z.; Zou, Z. A facile spray pyrolysis method to prepare Ti-doped ZnFe2O4 for boosting photoelectrochemical water splitting. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5, 7571-7577.
[http://dx.doi.org/10.1039/C6TA11134C]
[60]
Sutka, A.; Strikis, G.; Mezinskis, G.; Lusis, A.; Zavickis, J.; Kleperis, J.; Jalovleves, D. Properties of Ni–Zn ferrite thin films deposited using spray pyrolysis. Thin Solid Films, 2012, 526, 65-69.
[http://dx.doi.org/10.1016/j.tsf.2012.11.017]
[61]
Kumar, P.; Chand, J.; Verma, S.; Singh, M. Micro-structural studies of gadolinium doped cobalt ferrites. Int. J. Theor. Appl. Sci., 2011, 3(2), 10-12.
[62]
Singh, J.P.; Kumar, H.; Singhal, A.; Sarin, N.; Srivastava, R.C.; Chae, K.H. Solubility limit, magnetic interaction and conduction mechanism in rare-earth-doped spinel ferrite Appl. Sci. Lett., 2016, 2(1), 03-11.
[63]
Bulai, G.; Trandaÿr, V.; Irimiciuc, S.A.; Ursu, L.; Focsa, C.; Gurlui, S. Influence of rare earth addition in cobalt ferrite thin films obtained by pulsed laser deposition. Ceram. Int., 2019, 45(16), 20165-20171.
[http://dx.doi.org/10.1016/j.ceramint.2019.06.284]
[64]
Lopez-Ortega, A.; Lottini, E.; Fernandez, C. de J.; Sangregorio, C. Exploring the magnetic properties of cobalt-ferrite nanoparticles for the development of rare-earth-free permanent magnet. Chem. Mater., 2015, 27(11), 4048-4056.
[http://dx.doi.org/10.1021/acs.chemmater.5b01034]
[65]
Bulai, G.; Gurlui, S.; Caltun, O.F.; Focsa, C. Pure, and rare-earth-doped cobalt ferrite laser ablation: space and time-resolved optical emission spectroscopy. Dig. J. Nanomater. Biostruct., 2015, 10(3), 1043-1053.
[66]
Yakubu, A.; Abbas, Z.; Ibrahim, N.A.; Hashim, M. Effect of temperature on structural, magnetic, and dielectric properties of cobalt ferrite nanoparticles prepared via co-precipitation method. Phys. Sci. Int. J., 2015, 8(1), 1-8.
[http://dx.doi.org/10.9734/PSIJ/2015/18787]
[67]
Orozco, C.; Melendez, A.; Manadhar, S.; Singamaneni, S.R.; Reddy, K.M.; Gandha, K.; Niebedim, I.C.; Ramana, C.V. Effect of molybdenum incorporation on the structure and magnetic properties of cobalt ferrite. J. Phys. Chem., 2017, 121(45), 25463-25471.
[http://dx.doi.org/10.1021/acs.jpcc.7b08162]]
[68]
Dascalu, G.; Durneata, D.; Caltun, O.F. Magnetic measurements of RE-doped cobalt ferrite thin films. IEEE Trans. Magn., 2013, 49(1), 46-49.
[http://dx.doi.org/10.1109/TMAG.2012.2220534]
[69]
Want, B.; Samad, R.; Rather, M.D. Effect of neodymium on the magnetic and dielectric properties of nickel-cobalt ferrite. J. Magn., 2017, 22(3), 450-462.
[http://dx.doi.org/10.4283/JMAG.2017.22.3.450]
[70]
Somaiah, N.; Jayaraman, T.V.; Das, D. Magnetic and magnetoelastic properties of Zn-doped cobalt-ferrites —CoFe2−xZnxO4(x = 0, 0.1, 0.2, and 0.3). J. Magn. Magn. Mater., 2012, 324(14), 2286-2291.
[http://dx.doi.org/10.1016/j.jmmm.2012.02.116]
[71]
Kumar, P.; Sharma, S.K.; Knobel, M.; Singha, M. Effect of La3+ doping on the electric, dielectric, and magnetic properties of cobalt ferrite processed by co-precipitation technique. J. Alloys Compd., 2010, 508, 115-118.
[http://dx.doi.org/10.1016/j.jallcom.2010.08.007]
[72]
Kumar, L.; Kar, M. Effect of Ho3+ substitution on the cation distribution, crystal structure, and magnetocrystalline anisotropy of nanocrystalline cobalt ferrite. J. Exp. Nanosci., 2012, 9(4), 362-374.
[http://dx.doi.org/10.1080/17458080.2012.661474]
[73]
Lopez-Santiago, A.; Grant, H.R.; Gangopadhyay, P.; Voorakaranam, R.; Norwood, R.A.; Peyghambarian, N. Cobalt ferrite nanoparticles polymer composites based all-optical magnetometer. Opt. Mater. Express, 2012, 2(7), 978-986.
[http://dx.doi.org/10.1364/OME.2.000978]
[74]
Rohilla, S.; Rani, P.; Kumari, N. Study of structural and optical properties of Nd-doped cobalt ferrite. Int. J. Sci. Res. (Ahmedabad), 2015, 4(10), 166.
[75]
Pervaiz, E.; Gul, I.H. Influence of rare earth (Gd3+) on structural, gigahertz dielectric and magnetic studies of cobalt ferrite. J. Phys., 2013, 439012015
[http://dx.doi.org/10.1088/1742-6596/439/1/012015]]
[76]
Priya, A.S.; Geetha, D.; Kavitha, N. Evaluation of structural and dielectric properties of Al, Ce co-doped cobalt ferrites. Mater. Res. Express, 2018, 5(6)066109
[http://dx.doi.org/10.1088/2053-1591/aacd1e]
[77]
Pillai, V.; Shah, D.O. Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions. J. Magn. Magn. Mater., 1996, 163, 243-248.
[http://dx.doi.org/10.1016/S0304-8853(96)00280-6]
[78]
Rajput, A.B.; Hazra, S.; Ghosh, N.N. Synthesis and characterization of pure single-phase CoFe2O4 nanopowder via a simple aqueous solution-based EDTA-precursor route. J. Exp. Nanosci., 2013, 8(4), 629-639.
[http://dx.doi.org/10.1080/17458080.2011.582170]
[79]
Ahsan, M.Z.; Khan, F.A. Structural and electrical properties of manganese doped cobalt ferrite nanoparticles. Mater Sci Nanotechnol, 2018, 2(2), 1-9.
[http://dx.doi.org/www.alliedacademies.org/journal-materials-science-researh-nanotechnology/]
[80]
Sugimoto, M. The past, present, and future of ferrites. J. Am. Ceram. Soc., 1999, 82(2), 269-280.
[http://dx.doi.org/10.1111/j.1551-2916.1999.tb20058.x]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy