Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

The Morphological Development of Ordered Nanotube Structure Due to the Anodization of Ti Foil with Axial and Radial Current Flow

Author(s): Kar Chun Lee, Khairul Arifah Saharudin and Srimala Sreekantan*

Volume 17, Issue 1, 2021

Published on: 29 May, 2020

Page: [109 - 119] Pages: 11

DOI: 10.2174/1573413716999200529115830

Price: $65

Abstract

Background: One-dimensional titania nanotubes (TNT) have attracted increasing scientific and technological attention due to their physical properties and their potential applications. Dimensionality and well-aligned ordered structure have a crucial role in determining the properties and performance of titania nanotubes. Therefore, an understanding of the transformation and growth mechanisms to explain the origin of this nanomaterial symmetry is of great importance.

Objectives: The relationship between the direction of current flow and the morphology of the anodized foil was investigated to understand the influence of a compact oxide layer formation on the growth of nanotubes.

Methods: To achieve the purpose, single (SA) and double-sided anodization (DA) were performed to control the direction of the current flow in this experiment by immersing one side and both sides, respectively in the electrolyte containing 0.6 wt% of NH4F, 1.0 wt% of H2O2, and 98.4 wt% of ethylene glycol (EG) at 60V.

Results: It was found that the channeling of current flow into axial and radial directions influenced the effectiveness of oxygen species in the formation of an initial oxide layer. The field-assisted dissolution of the compact oxide layer resulted in a low-symmetry nanotube arrangement, whereas the growth at the interface, which is governed by the plastic flow mechanism, resulted in high-symmetry nanotube arrangement in a hexagonal form. These findings offer an integrated perspective when determining whether the plastic flow mechanism or field-assisted dissolution occurs during anodization. Octahedral titania crystals were also found on the surface of the anodized film, indicating the possibility of forming facet structures via anodization.

Conclusion: This research successfully showed the influence of current flow via SA & DA on the growth of TiO2 nanotubes. An axial flow of current in Ti foil during SA resulted in disordered nanotubes, while the radial flow of current during DA stemmed the growth of nanotubes from the Ti-TiO2 interface to form well oriented hexagonal nanotube structures.

Keywords: TiO2 nanotubes, growth mechanism, axial, radial, current flow, Ti-TiO2 interface.

Graphical Abstract

[1]
Masuda, H.; Fukuda, K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science, 1995, 268(5216), 1466-1468.
[http://dx.doi.org/10.1126/science.268.5216.1466] [PMID: 17843666]
[2]
Macak, J.M.; Albu, S.P.; Schmuki, P. Towards ideal hexagonal self‐ordering of TiO2 nanotubes. Phys. Status Solidi Rapid Res. Lett., 2007, 1(5), 181-183.
[http://dx.doi.org/10.1002/pssr.200701148]
[3]
Prakasam, H.E.; Shankar, K.; Paulose, M.; Varghese, O.K.; Grimes, C.A. A new benchmark for TiO2 nanotube array growth by anodization. PhysChemComm, 2007, 111(20), 7235-7241.
[4]
Paulose, M.; Shankar, K.; Yoriya, S.; Prakasam, H.E.; Varghese, O.K.; Mor, G.K.; LaTempa, T.J.; Fitzgerald, A.; Grimes, C.A. Anodic growth of highly ordered TiO2 nanotube arrays to 134 microm in length. J. Phys. Chem. B, 2006, 110(33), 16179-16184.
[http://dx.doi.org/10.1021/jp064020k] [PMID: 16913737]
[5]
Albu, S.P.; Ghicov, A.; Macak, J.M.; Schmuki, P. 250 µm long anodic TiO2 nanotubes with hexagonal self-ordering. Phys. Status Solidi Rapid Res. Lett., 2007, 1(2), R65-R67.
[http://dx.doi.org/10.1002/pssr.200600069]
[6]
Paulose, M.; Prakasam, H.E.; Varghese, O.K.; Peng, L.; Popat, K.C.; Mor, G.K.; Desai, T.A.; Grimes, C.A. TiO2 nanotube arrays of 1000 μm length by anodization of titanium foil: phenol red diffusion. PhysChemComm, 2007, 111(41), 14992-14997.
[7]
Xie, Z.; Blackwood, D. Effects of anodization parameters on the formation of titania nanotubes in ethylene glycol. Electrochim. Acta, 2010, 56(2), 905-912.
[http://dx.doi.org/10.1016/j.electacta.2010.10.004]
[8]
Wang, J.; Zhao, L.; Lin, V.S-Y.; Lin, Z. Formation of various TiO2 nanostructures from electrochemically anodized titanium. J. Mater. Chem., 2009, 19(22), 3682-3687.
[http://dx.doi.org/10.1039/b904247d]
[9]
Sreekantan, S.; Lockman, Z.; Hazan, R.; Tasbihi, M.; Tong, L.K.; Mohamed, A.R. Influence of electrolyte pH on TiO2 nanotube formation by Ti anodization. J. Alloys Compd., 2009, 485(1-2), 478-483.
[http://dx.doi.org/10.1016/j.jallcom.2009.05.152]
[10]
Sreekantan, S.; Hazan, R.; Lockman, Z. Photoactivity of anatase–rutile TiO2 nanotubes formed by anodization method. Thin Solid Films, 2009, 518(1), 16-21.
[http://dx.doi.org/10.1016/j.tsf.2009.06.002]
[11]
Sreekantan, S.; Saharudin, K.A.; Lockman, Z.; Tzu, T.W. Fast-rate formation of TiO2 nanotube arrays in an organic bath and their applications in photocatalysis. Nanotechnology, 2010, 21(36)365603
[http://dx.doi.org/10.1088/0957-4484/21/36/365603] [PMID: 20705970]
[12]
Regonini, D.; Bowen, C.R.; Jaroenworaluck, A.; Stevens, R. A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Mater. Sci. Eng. Rep., 2013, 74(12), 377-406.
[http://dx.doi.org/10.1016/j.mser.2013.10.001]
[13]
Wei, W.; Berger, S.; Shrestha, N.; Schmuki, P. Ideal hexagonal order: Formation of self-organized anodic oxide nanotubes and nanopores on a Ti–35Ta alloy. J. Electrochem. Soc., 2015, 157(12), C409-C413.
[http://dx.doi.org/10.1149/1.3490424]
[14]
Yoo, H. Kim, M.; Kim, Y.T.; Lee, K.; Choi, J. Catalyst-doped anodic TiO2 nanotubes: Binder-free electrodes for (photo)electrochemical reactions. Catalysts, 2018, 8, 555.
[http://dx.doi.org/10.3390/catal8110555]
[15]
Sreekantan, S.; Wei, L.C.; Lockman, Z. Extremely fast growth rate of TiO2 nanotube arrays in electrochemical bath containing H2O2. J. Electrochem. Soc., 2011, 158(12), C397-C402.
[http://dx.doi.org/10.1149/2.020112jes]
[16]
Joseph, S.; Sagayaraj, P. A cost effective approach for developing substrate stable TiO2 nanotube arrays with tuned morphology: a comprehensive study on the role of H2O2 and anodization potential. New J. Chem., 2015, 39(7), 5402-5409.
[http://dx.doi.org/10.1039/C5NJ00565E]
[17]
Roy, P.; Berger, S.; Schmuki, P. TiO2 nanotubes: synthesis and applications. Angew. Chem. Int. Ed. Engl., 2011, 50(13), 2904-2939.
[http://dx.doi.org/10.1002/anie.201001374] [PMID: 21394857]
[18]
Lockman, Z.; Ismail, S.; Sreekantan, S.; Schmidt-Mende, L.; Macmanus-Driscoll, J.L. The rapid growth of 3 microm long titania nanotubes by anodization of titanium in a neutral electrochemical bath. Nanotechnology, 2010, 21(5)055601
[http://dx.doi.org/10.1088/0957-4484/21/5/055601] [PMID: 20023309]
[19]
Lv, K.; Cheng, B.; Yu, J.; Liu, G. Fluorine ions-mediated morphology control of anatase TiO2 with enhanced photocatalytic activity. Phys. Chem. Chem. Phys., 2012, 14(16), 5349-5362.
[http://dx.doi.org/10.1039/c2cp23461k] [PMID: 22422026]
[20]
Sopha, H.; Hromadko, L.; Nechvilova, K.; Macak, J.M. Effect of electrolyte age and potential changes on the morphology of TiO2 nanotubes. J. Electroanal. Chem. (Lausanne Switz.), 2015, 759, 122-128.
[http://dx.doi.org/10.1016/j.jelechem.2015.11.002]
[21]
Regonini, D.; Clemens, F.J. Anodized TiO2 nanotubes: Effect of anodizing time on film length, morphology and photoelectrochemical properties. Mater. Lett., 2015, 142, 97-101.
[http://dx.doi.org/10.1016/j.matlet.2014.11.145]
[22]
Lee, K.; Mazare, A.; Schmuki, P. One-dimensional titanium dioxide nanomaterials: nanotubes. Chem. Rev., 2014, 114(19), 9385-9454.
[http://dx.doi.org/10.1021/cr500061m] [PMID: 25121734]
[23]
Fu, Y.; Mo, A. Mo, A. A review on the electrochemically self-organized titania nanotube arrays: Synthesis, modifications, and biomedical applications. Nanoscale Res. Lett., 2018, 13(1), 187.
[http://dx.doi.org/10.1186/s11671-018-2597-z] [PMID: 29956033]
[24]
Chong, B.; Yu, D-L.; Gao, M-Q.; Fan, H-W.; Yang, C-Y.; Ma, W-H.; Zhang, S-Y.; Zhu, X-F. Formation mechanism of gaps and ribs around anodic TiO2 nanotubes and method to avoid formation of ribs. J. Electrochem. Soc., 2015, 162(4), H244-H250.
[http://dx.doi.org/10.1149/2.0721504jes]
[25]
Zhang, Y.; Cheng, W.; Du, F.; Zhang, S.; Ma, W.; Li, D.; Song, Y.; Zhu, X. Quantitative relationship between nanotube length and anodizing current during constant current anodization. Electrochim. Acta, 2015, 180, 147-154.
[http://dx.doi.org/10.1016/j.electacta.2015.08.098]
[26]
Mohan, L.; Anandan, C. Wear and corrosion behavior of oxygen implanted biomedical titanium alloy Ti–13Nb–13Zr. Appl. Surf. Sci., 2013, 282, 281-290.
[http://dx.doi.org/10.1016/j.apsusc.2013.05.120]
[27]
Grimes, C.A.; Mor, G.K. Fabrication of TiO2 nanotube arrays by electrochemical anodization: Four synthesis generations. TiO2 Nanotube Arrays; Springer: Boston, MA, 2009, pp. 1-66.
[http://dx.doi.org/10.1007/978-1-4419-0068-5_1]
[28]
Tupala, J.; Kemell, M.; Hyvönen, H.; Ritala, M.; Leskelä, M. Voltage-dependent properties of titanium dioxide nanotubes anodized in solutions containing EDTA. J. Electrochem. Soc., 2014, 161(4), E61-E65.
[http://dx.doi.org/10.1149/2.039404jes]
[29]
Ali, G.; Chen, C.; Yoo, S.H.; Kum, J.M.; Cho, S.O. Fabrication of complete titania nanoporous structures via electrochemical anodization of Ti. Nanoscale Res. Lett., 2011, 6(1), 332.
[http://dx.doi.org/10.1186/1556-276X-6-332] [PMID: 21711844]
[30]
Sopha, H.; Jäger, A.; Knotek, P.; Tesař, K.; Jarosova, M.; Macak, J.M. Self-organized anodic TiO2 nanotube layers: influence of the Ti substrate on nanotube growth and dimensions. Electrochim. Acta, 2016, 190, 744-752.
[http://dx.doi.org/10.1016/j.electacta.2015.12.121]
[31]
Habazaki, H.; Fushimi, K.; Shimizu, K.; Skeldon, P.; Thompson, G. Fast migration of fluoride ions in growing anodic titanium oxide. Electrochem. Commun., 2007, 9(5), 1222-1227.
[http://dx.doi.org/10.1016/j.elecom.2006.12.023]
[32]
Regonini, D.; Satka, A.; Jaroenworaluck, A.; Allsopp, D.W.; Bowen, C.R.; Stevens, R. Factors influencing surface morphology of anodized TiO2 nanotubes. Electrochim. Acta, 2012, 74, 244-253.
[http://dx.doi.org/10.1016/j.electacta.2012.04.076]
[33]
Berger, S.; Albu, S.P.; Schmidt-Stein, F.; Hildebrand, H.; Schmuki, P.; Hammond, J.S.; Paul, D.F.; Reichlmaier, S. The origin for tubular growth of TiO2 nanotubes: A fluoride rich layer between tube-walls. Surf. Sci., 2011, 605(19-20), L57-L60.
[http://dx.doi.org/10.1016/j.susc.2011.06.019]
[34]
Berger, S.; Kunze, J.; Schmuki, P.; Valota, A.T.; LeClere, D.J.; Skeldon, P.; Thompson, G.E. Influence of water content on the growth of anodic TiO2 nanotubes in fluoride-containing ethylene glycol electrolytes. J. Electrochem. Soc., 2010, 157(1), C18-C23.
[http://dx.doi.org/10.1149/1.3251338]
[35]
Wei, W.; Berger, S.; Hauser, C.; Meyer, K.; Yang, M.; Schmuki, P. Transition of TiO2 nanotubes to nanopores for electrolytes with very low water contents. Electrochem. Commun., 2010, 12(9), 1184-1186.
[http://dx.doi.org/10.1016/j.elecom.2010.06.014]
[36]
Lim, J.H.; Wiley, J.B. Controlling pore geometries and interpore distances of anodic aluminum oxide templates via three-step anodization. J. Nanosci. Nanotechnol., 2015, 15(1), 633-641.
[http://dx.doi.org/10.1166/jnn.2015.9245] [PMID: 26328416]
[37]
Lee, K.C.; Sreekantan, S.; Ahmad, Z.A.; Saharudin, K.A.; Taib, M.A.A. Nucleation of octahedral titanate crystals using waste anodic electrolyte from the anodization of TiO2 nanotubes. CrystEng-Comm, 2017, 19(43), 6406-6411.
[http://dx.doi.org/10.1039/C7CE01549F]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy