Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Mini-Review Article

Applications of Two Dimensional Material-MXene for Proton Exchange Membrane Fuel Cells (PEMFCs) and Water Electrolysis

Author(s): Chanchan Fan, Peng Zhang, Ranran Wang, Yezhu Xu, Xingrui Sun, Jian Zhang, Jigui Cheng and Chenxi Xu*

Volume 17, Issue 1, 2021

Published on: 14 June, 2020

Page: [2 - 13] Pages: 12

DOI: 10.2174/1573413716999200614140513

Price: $65

Abstract

A new kind of two-dimensional (2D) material MXene (early transition metal carbides, nitrides and carbonitrides) is obtained by selective etching the A element from the MAX phases. MXene exhibits both the metallic conductivity and the hydrophilic nature due to its metal layer structure and hydroxyl or oxygen terminated surfaces. This review provides an overview of the MXene used in the electrolytes and electrodes for the fuel cells and water splitting. MXene with functional groups termination could construct ion channels that significantly benefit ion conductivity through the electrolyte. The metal supported by MXene interaction offers electronic, compositional, and geometric effects that could enhance the catalytic activity and stability. MXene has already shown promising performance for fuel cells and water electrolysis. Herein, the etching and intercalation methods of MXene in recent years are summarized. The applications of MXene for fuel cells electrolyte, catalyst and water splitting catalyst are revealed to provide a more brief idea for MXene used as new energy materials.

Keywords: MXene, fuel cell, water electrolysis, catalyst, electrolyte, electrode.

Graphical Abstract

[1]
Haile, S.M. Fuel cell materials and components. Acta Mater., 2003, 51, 5981-6000.
[http://dx.doi.org/10.1016/j.actamat.2003.08.004]
[2]
Liu, X.; Dai, L. Carbon-based metal-free catalysts. Nat. Rev. Mater., 2016, 1, 16064.
[http://dx.doi.org/10.1038/natrevmats.2016.64]
[3]
Pukrushpan, J.T.; Stefanopoulou, A.G.; Peng, H. Control of Fuel Cell Power Systems: Springer-Verlag London, 2004.
[4]
Kirubakaran, A.; Jain, S.; Nema, R. A review on fuel cell technologies and power electronic interface. Renew. Sustain. Energy Rev., 2009, 13, 2430-2440.
[http://dx.doi.org/10.1016/j.rser.2009.04.004]
[5]
Wang, C.Y. Fundamental models for fuel cell engineering. Chem. Rev., 2004, 104(10), 4727-4765.
[http://dx.doi.org/10.1021/cr020718s] [PMID: 15669167]
[6]
Steele, B.C.; Heinzel, A. Materials for fuel-cell technologies. Nature, 2001, 414(6861), 345-352.
[http://dx.doi.org/10.1038/35104620] [PMID: 11713541]
[7]
Wang, M.; Chen, M.; Yang, Z.; Liu, G.; Lee, J.K.; Yang, W.; Wang, X. High-performance and durable cathode catalyst layer with hydrophobic C@ PTFE particles for low-Pt loading membrane assembly electrode of PEMFC. Energy Convers. Manage., 2019, 191, 132-140.
[http://dx.doi.org/10.1016/j.enconman.2019.04.014]
[8]
Liu, G.; Yang, Z.; Halim, M.; Li, X.; Wang, M.; Kim, J.Y.; Mei, Q.; Wang, X.; Lee, J.K. A gradient activation method for direct methanol fuel cells. Energy Convers. Manage., 2017, 138, 54-60.
[http://dx.doi.org/10.1016/j.enconman.2017.01.055]
[9]
Williams, M.V.; Begg, E.; Bonville, L.; Kunz, H.R.; Fenton, J.M. Characterization of gas diffusion layers for PEMFC. J. Electrochem. Soc., 2004, 151, A1173.
[http://dx.doi.org/10.1149/1.1764779]
[10]
Roen, L.M.; Paik, C.H.; Jarvi, T.D. Electrocatalytic corrosion of carbon support in PEMFC cathodes. Electrochem. Solid-State Lett., 2004, 7, A19.
[http://dx.doi.org/10.1149/1.1630412]
[11]
Sharma, S.; Pollet, B.G. Support materials for PEMFC and DMFC electrocatalysts-a review. J. Power Sources, 2012, 208, 96-119.
[http://dx.doi.org/10.1016/j.jpowsour.2012.02.011]
[12]
Taniguchi, A.; Akita, T.; Yasuda, K.; Miyazaki, Y. Analysis of electrocatalyst degradation in PEMFC caused by cell reversal during fuel starvation. J. Power Sources, 2004, 130, 42-49.
[http://dx.doi.org/10.1016/j.jpowsour.2003.12.035]
[13]
Jacobson, M.Z.; Colella, W.G.; Golden, D.M. Cleaning the air and improving health with hydrogen fuel-cell vehicles. Science, 2005, 308(5730), 1901-1905.
[http://dx.doi.org/10.1126/science.1109157] [PMID: 15976300]
[14]
Haile, S.M.; Boysen, D.A.; Chisholm, C.R.I.; Merle, R.B. Solid acids as fuel cell electrolytes. Nature, 2001, 410(6831), 910-913.
[http://dx.doi.org/10.1038/35073536] [PMID: 11309611]
[15]
Kannan, R.; Parthasarathy, M.; Maraveedu, S.U.; Kurungot, S.; Pillai, V.K. Domain size manipulation of perflouorinated polymer electrolytes by sulfonic acid-functionalized MWCNTs to enhance fuel cell performance. Langmuir, 2009, 25(14), 8299-8305.
[http://dx.doi.org/10.1021/la9005218] [PMID: 19594190]
[16]
Wu, W.; Li, Y.; Chen, P.; Liu, J.; Wang, J.; Zhang, H. Constructing ionic liquid filled proton transfer channels within nanocomposite membrane by using functionalized graphene oxide. ACS Appl. Mater. Interfaces, 2016, 8(1), 588-599.
[http://dx.doi.org/10.1021/acsami.5b09642] [PMID: 26666712]
[17]
He, Y.; Wang, J.; Zhang, H.; Zhang, T.; Zhang, B.; Cao, S.; Liu, J. Polydopamine-modified graphene oxide nanocomposite membrane for proton exchange membrane fuel cell under anhydrous conditions. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2, 9548-9558.
[http://dx.doi.org/10.1039/c3ta15301k]
[18]
Zhao, L.; Li, Y.; Zhang, H.; Wu, W.; Liu, J.; Wang, J. Constructing proton-conductive highways within an ionomer membrane by embedding sulfonated polymer brush modified graphene oxide. J. Power Sources, 2015, 286, 445-457.
[http://dx.doi.org/10.1016/j.jpowsour.2015.04.005]
[19]
Ye, F.; Xu, C.; Liu, G.; Yuan, M.; Wang, Z.; Du, X.; Lee, J.K. Effect of pulse electrodeposition parameters on electrocatalytic the activity of methanol oxidation and morphology of Pt/C catalyst for direct methanol fuel cells. Energy Convers. Manage., 2018, 160, 85-92.
[http://dx.doi.org/10.1016/j.enconman.2018.01.027]
[20]
Liu, G.; Ding, X.; Zhou, H.; Chen, M.; Wang, M.; Zhao, Z.; Yin, Z.; Wang, X. Structure optimization of cathode microporous layer for direct methanol fuel cells. Appl. Energy, 2015, 147, 396-401.
[http://dx.doi.org/10.1016/j.apenergy.2015.03.021]
[21]
Kim, J.; Kim, H.E.; Lee, H. Single-atom catalysts of precious metals for electrochemical reactions. ChemSusChem, 2018, 11(1), 104-113.
[http://dx.doi.org/10.1002/cssc.201701306] [PMID: 28895315]
[22]
Tao, Z.; Yu, M.; Zhang, H.; He, Z.; Chen, J.; Song, S. Fe/Fe3C@N-doped porous carbon hybrids derived from nano-scale MOFs: robust and enhanced heterogeneous catalyst for peroxymonosulfate activation. Catal. Sci. Technol., 2016, 7(2), 396-404.
[23]
Vishnyakov, V.M. Proton exchange membrane fuel cells. Vacuum, 2006, 80, 1053-1065.
[http://dx.doi.org/10.1016/j.vacuum.2006.03.029]
[24]
Debe, M.K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature, 2012, 486(7401), 43-51.
[http://dx.doi.org/10.1038/nature11115] [PMID: 22678278]
[25]
Topalov, A.A.; Cherevko, S.; Zeradjanin, A.R.; Meier, J.C.; Katsounaros, J.; Mayrhofer, K.J.J. Towards a comprehensive understanding of platinum dissolution in acidic media. Chem. Sci. (Camb.), 2014, 5, 631-638.
[http://dx.doi.org/10.1039/C3SC52411F]
[26]
Tada, M.; Murata, S.; Asakoka, T.; Hiroshima, K.; Okumura, K.; Tanida, H.; Uruga, T.; Nakanishi, H.; Matsumoto, S.; Inada, Y.; Nomura, M.; Iwasawa, Y. In situ time-resolved dynamic surface events on the Pt/C cathode in a fuel cell under operando conditions. Angew. Chem. Int. Ed. Engl., 2007, 46(23), 4310-4315.
[http://dx.doi.org/10.1002/anie.200604732] [PMID: 17479990]
[27]
Wang, C.; Wang, S.; Peng, L.; Zhang, J.; Shao, Z.; Huang, J.; Sun, C.; Ouyang, M.; He, X. Recent progress on the key materials and components for proton exchange membrane fuel cells in vehicle applications. Energies, 2016, 9, 603.
[http://dx.doi.org/10.3390/en9080603]
[28]
Zhang, W.; Chen, J.; Swiegers, G.F.; Ma, Z.F.; Wallace, G.G. Microwave-assisted synthesis of Pt/CNT nanocomposite electrocatalysts for PEM fuel cells. Nanoscale, 2010, 2(2), 282-286.
[http://dx.doi.org/10.1039/B9NR00140A] [PMID: 20644806]
[29]
He, D.; Cheng, K.; Li, H.; Peng, T.; Xu, F.; Mu, S.; Pan, M. Highly active platinum nanoparticles on graphene nanosheets with a significant improvement in stability and CO tolerance. Langmuir, 2012, 28(8), 3979-3986.
[http://dx.doi.org/10.1021/la2045493] [PMID: 22276697]
[30]
Lee, K.; Zhang, J.; Wang, H.; Wilkinson, D.P. Progress in the synthesis of carbon nanotube-and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis. J. Appl. Electrochem., 2006, 36, 507-522.
[http://dx.doi.org/10.1007/s10800-006-9120-4]
[31]
Zhang, K.; Yang, W.; Ma, C.; Wang, Y.; Sun, C.; Chen, Y.; Duchesne, P.; Zhou, J.; Wang, J.; Hu, Y.; Banis, M.N.; Zhang, P.; Li, F.; Li, J.; Chen, L. A highly active, stable and synergistic Pt nanoparticles/Mo2C nanotube catalyst for methanol electro-oxidation. NPG Asia Mater., 2015, 7e153
[http://dx.doi.org/10.1038/am.2014.122]
[32]
Wang, S.; Li, F.; Wang, Y.; Qiao, D.; Sun, C.; Liu, J. a superior oxygen reduction reaction electrocatalyst based on reduced graphene oxide and iron(II) phthalocyanine-supported sub-2 nm platinum nanoparticles. ACS Appl. Nano Mater., 2018, 1, 711-721.
[http://dx.doi.org/10.1021/acsanm.7b00173]
[33]
Wang, Y.; Wang, S.; Li, F.; Wang, Y.; Zhang, H.; Sun, C. Pt nanoparticles loaded on W18O49 nanocables−rGO nanocomposite as a highly active and durable catalyst for methanol electro-oxidation. ACS Omega, 2018, 3(12), 16850-16857.
[http://dx.doi.org/10.1021/acsomega.8b02942] [PMID: 30923778]
[34]
Zhang, J.; Wang, T.; Liu, P.; Liao, Z.; Liu, S.; Zhuang, X.; Chen, M.; Zschech, E.; Feng, X. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun., 2017, 8, 15437.
[http://dx.doi.org/10.1038/ncomms15437] [PMID: 28513620]
[35]
Cheng, Y.; Liao, F.; Shen, W.; Liu, L.; Jiang, B.; Li, Y.; Shao, M. Carbon cloth supported cobalt phosphide as multifunctional catalysts for efficient overall water splitting and zinc-air batteries. Nanoscale, 2017, 9(47), 18977-18982.
[http://dx.doi.org/10.1039/C7NR06859J] [PMID: 29182188]
[36]
Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K.C.; Uchimura, M.; Paulikas, A.P.; Stamenkovic, V.; Markovic, N.M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science, 2011, 334(6060), 1256-1260.
[http://dx.doi.org/10.1126/science.1211934] [PMID: 22144621]
[37]
Di, J.; Yan, C.; Handoko, A.D.; She, Z.W.; Li, H.; Liu, Z. Ultrathin two-dimensional materials for photo- and electrocatalytic hydrogen evolution. Mater. Today, 2018, 21, 749-770.
[http://dx.doi.org/10.1016/j.mattod.2018.01.034]
[38]
Liang, Z.; Lu, Y.C. Critical role of redox mediator in suppressing charging instabilities of lithium–oxygen batteries. J. Am. Chem. Soc., 2016, 138(24), 7574-7583.
[http://dx.doi.org/10.1021/jacs.6b01821] [PMID: 27228413]
[39]
Feng, J.X.; Xu, H.; Dong, Y.T.; Lu, X.F.; Tong, Y.X.; Li, G.R. Efficient hydrogen evolution electrocatalysis using cobalt nanotubes decorated with titanium dioxide nanodots. Angew. Chem. Int. Ed. Engl., 2017, 56(11), 2960-2964.
[http://dx.doi.org/10.1002/anie.201611767] [PMID: 28140498]
[40]
Cheng, N.; Stambula, S.; Wang, D.; Banis, M.N.; Liu, J.; Riese, A.; Xiao, B.; Li, R.; Sham, T.K.; Liu, L.M.; Botton, G.A.; Sun, X. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun., 2016, 7, 13638.
[http://dx.doi.org/10.1038/ncomms13638] [PMID: 27901129]
[41]
Li, M.; Ma, Q.; Zi, W.; Liu, X.; Zhu, X.; Liu, S.F. Pt monolayer coating on complex network substrate with high catalytic activity for the hydrogen evolution reaction. Sci. Adv., 2015, 1(8)e1400268
[http://dx.doi.org/10.1126/sciadv.1400268] [PMID: 26601247]
[42]
Tiwari, A.P.; Kim, D.; Kim, Y.; Lee, H. Bifunctional oxygen electrocatalysis through chemical bonding of transition metal chalcogenides on conductive carbons. Adv. Energy Mater., 2017, 71602217
[http://dx.doi.org/10.1002/aenm.201602217]
[43]
Popczun, E.J.; Read, C.G.; Roske, C.W.; Lewis, N.S.; Schaak, R.E. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem. Int. Ed. Engl., 2014, 53(21), 5427-5430.
[http://dx.doi.org/10.1002/anie.201402646] [PMID: 24729482]
[44]
Zhu, C.R.; Gao, D.; Ding, J.; Chao, D.; Wang, J. TMD-based highly efficient electrocatalysts developed by combined computational and experimental approaches. Chem. Soc. Rev., 2018, 47(12), 4332-4356.
[http://dx.doi.org/10.1039/C7CS00705A] [PMID: 29725691]
[45]
Nicolosi, V.; Chhowalla, M.; Kanatzidis, M.G.; Strano, M.S.; Coleman, J.N. Liquid exfoliation of layered materials. Science, 2013, 3401226419
[http://dx.doi.org/10.1126/science.1226419]
[46]
Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S.K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol., 2014, 9(10), 768-779.
[http://dx.doi.org/10.1038/nnano.2014.207] [PMID: 25286272]
[47]
Koppens, F.H.L.; Mueller, T.; Avouris, P.; Ferrari, A.C.; Vitiello, M.S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol., 2014, 9(10), 780-793.
[http://dx.doi.org/10.1038/nnano.2014.215] [PMID: 25286273]
[48]
Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun., 2014, 5, 5678.
[http://dx.doi.org/10.1038/ncomms6678] [PMID: 25517105]
[49]
Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater., 2017, 2, 16098.
[http://dx.doi.org/10.1038/natrevmats.2016.98]
[50]
Naguib, M.; Mochalin, V.N.; Barsoum, M.W.; Gogotsi, Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater., 2014, 26(7), 992-1005.
[http://dx.doi.org/10.1002/adma.201304138] [PMID: 24357390]
[51]
Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2. Adv. Mater., 2011, 23(37), 4248-4253.
[http://dx.doi.org/10.1002/adma.201102306] [PMID: 21861270]
[52]
Ghidiu, M.; Halim, J.; Kota, S.; Bish, D.; Gogotsi, Y.; Barsoum, M.W. Ion-exchange and cation solvation reactions in Ti3C2 MXene. Chem. Mater., 2016, 28, 3507-3514.
[http://dx.doi.org/10.1021/acs.chemmater.6b01275]
[53]
Ghidiu, M.; Lukatskaya, M.R.; Zhao, M.Q.; Gogotsi, Y.; Barsoum, M.W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 2014, 516(7529), 78-81.
[http://dx.doi.org/10.1038/nature13970] [PMID: 25470044]
[54]
Deysher, G.; Shuck, C.E.; Hantanasirisakul, K.; Frey, N.C.; Foucher, A.C.; Maleski, K.; Sarycheva, A.; Shenoy, V.B.; Stach, E.A.; Anasori, B.; Gogotsi, Y. Synthesis of Mo4VAlC4 MAX phase and two-dimensional mo4vc4 mxene with 5 atomic layers of transition metals. ACS Nano, 2020, 14(1), 204-217.
[http://dx.doi.org/10.1021/acsnano.9b07708] [PMID: 31804797]
[55]
Cockreham, C.B.; Zhang, X.; Li, H.; Hammond-Pereira, E.; Sun, J.; Saunders, S.R.; Wang, Y.; Xu, H.; Wu, D. Inhibition of AlF3•3H2O impurity formation in Ti3C2Tx MXene synthesis under a unique CoFx/HCl etching environment. ACS Appl. Energy Mater., 2019, 2, 8145-8152.
[http://dx.doi.org/10.1021/acsaem.9b01618]
[56]
Hu, C.; Lai, C.C.; Tao, Q.; Lu, J.; Halim, J.; Sun, L.; Zhang, J.; Yang, J.; Anasori, B.; Wang, J.; Sakka, Y.; Hultman, L.; Eklund, P.; Rosen, J.; Barsoum, M.W. Mo2Ga2C: a new ternary nanolaminated carbide. Chem. Commun. (Camb.), 2015, 51(30), 6560-6563.
[http://dx.doi.org/10.1039/C5CC00980D] [PMID: 25768789]
[57]
Halim, J.; Kota, S.; Lukatskaya, M.R.; Naguib, M.; Zhao, M.Q.; Moon, E.J.; Pitock, J.; Nanda, J.; May, S.J.; Gogotsi, Y.; Barsoum, M.W. Synthesis and characterization of 2D molybdenum carbide (MXene). Adv. Funct. Mater., 2016, 26, 3118-3127.
[http://dx.doi.org/10.1002/adfm.201505328]
[58]
Soundiraraju, B.; George, B.K. Two-dimensional titanium nitride (Ti2N) MXene: synthesis, characterization, and potential application as surface-enhanced Raman scattering substrate. ACS Nano, 2017, 11(9), 8892-8900.
[http://dx.doi.org/10.1021/acsnano.7b03129] [PMID: 28846394]
[59]
Liu, F.; Zhou, J.; Wang, S.; Wang, B.; Shen, C.; Wang, L.; Hu, Q.; Huang, Q.; Zhou, A. Preparation of high-purity V2C MXene and electrochemical properties as Li-ion batteries. J. Electrochem. Soc., 2017, 164, A709-A713.
[http://dx.doi.org/10.1149/2.0641704jes]
[60]
Li, T.; Yao, L.; Liu, Q.; Gu, J.; Luo, R.; Li, J.; Yan, X.; Wang, W.; Liu, P.; Chen, B.; Zhang, W.; Abbas, W.; Naz, R.; Zhang, D. Fluorine-free synthesis of high-purity Ti3C2Tx (T= OH, O) via alkali treatment. Angew. Chem. Int. Ed. Engl., 2018, 57(21), 6115-6119.
[http://dx.doi.org/10.1002/anie.201800887] [PMID: 29633442]
[61]
Xie, X.; Xue, Y.; Li, L.; Chen, S.; Nie, Y.; Ding, W.; Wei, Z. Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system. Nanoscale, 2014, 6(19), 11035-11040.
[http://dx.doi.org/10.1039/C4NR02080D] [PMID: 25142728]
[62]
Halim, J.; Lukatskaya, M.R.; Cook, K.M.; Lu, J.; Smith, C.R.; Näslund, L.A.; May, S.J.; Hultman, L.; Gogotsi, Y.; Eklund, P.; Barsoum, M.W. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater., 2014, 26(7), 2374-2381.
[http://dx.doi.org/10.1021/cm500641a] [PMID: 24741204]
[63]
Urbankowski, P.; Anasori, B.; Makaryan, T.; Er, D.; Kota, S.; Walsh, P.L.; Zhao, M.; Shenoy, V.B.; Barsoum, M.W.; Gogotsi, Y. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale, 2016, 8(22), 11385-11391.
[http://dx.doi.org/10.1039/C6NR02253G] [PMID: 27211286]
[64]
Pang, S.Y.; Wong, Y.T.; Yuan, S.; Liu, Y.; Tsang, M.K.; Yang, Z.; Huang, H.; Wong, W.T.; Hao, J. Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J. Am. Chem. Soc., 2019, 141(24), 9610-9616.
[http://dx.doi.org/10.1021/jacs.9b02578] [PMID: 31117483]
[65]
Mashtalir, O.; Naguib, M.; Mochalin, V.N.; Dall’Agnese, Y.; Heon, M.; Barsoum, M.W.; Gogotsi, Y. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun., 2013, 4, 1716.
[http://dx.doi.org/10.1038/ncomms2664] [PMID: 23591883]
[66]
Lian, P. Dong. Y.; Wu, Z.S.; Zheng, S.H.; Wang, X.H.; Wang, S.; Sun, C.L.; Qin, J.Q.; Shi, X.Y.; Bao, X.H. Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy, 2017, 40, 1-8.
[http://dx.doi.org/10.1016/j.nanoen.2017.08.002]
[67]
Naguib, M.; Unocic, R.R.; Armstrong, B.L.; Nanda, J. Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes”. Dalton Trans., 2015, 44(20), 9353-9358.
[http://dx.doi.org/10.1039/C5DT01247C] [PMID: 25912071]
[68]
Lukatskaya, M.R.; Mashtalir, O.; Ren, C.E.; Dall’Agnese, Y.; Rozier, P.; Taberna, P.L.; Naguib, M.; Simon, P.; Barsoum, M.W.; Gogotsi, Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 2013, 341(6153), 1502-1505.
[http://dx.doi.org/10.1126/science.1241488] [PMID: 24072919]
[69]
Rozmysłowska-Wojciechowska, A.; Wojciechowski, T.; Ziemkowska, W.; Chlubny, L.; Olszyna, A.; Jastrzębska, A.M. Surface interactions between 2D Ti3C2/Ti2C MXenes and lysozyme. Appl. Surf. Sci., 2019, 473, 409-418.
[http://dx.doi.org/10.1016/j.apsusc.2018.12.081]
[70]
Szuplewska, A.; Rozmysłowska-Wojciechowska, A.; Poźniak, S.; Wojciechowski, T.; Birowska, M.; Popielski, M.; Chudy, M.; Ziemkowska, W.; Chlubny, L.; Moszczyńska, D.; Olszyna, A.; Majewski, J.A.; Jastrzębska, A.M. Multilayered stable 2D nano-sheets of Ti2NTx MXene: synthesis, characterization, and anticancer activity. J. Nanobiotechnology, 2019, 17(1), 114.
[http://dx.doi.org/10.1186/s12951-019-0545-4] [PMID: 31711491]
[71]
Xu, C.; Liu, X.; Cheng, J.; Scott, K. A polybenzimidazole/ionic-liquid-graphite-oxide composite membrane for high temperature polymer electrolyte membrane fuel cells. J. Power Sources, 2015, 274, 922-927.
[http://dx.doi.org/10.1016/j.jpowsour.2014.10.134]
[72]
Fei, M.; Lin, R.; Deng, Y.; Xian, H.; Bian, R.; Zhang, X.; Cheng, J.; Xu, C.; Cai, D. Polybenzimidazole/Mxene composite membranes for intermediate temperature polymer electrolyte membrane fuel cells. Nanotechnology, 2018, 29(3)035403
[http://dx.doi.org/10.1088/1361-6528/aa9ab0] [PMID: 29135464]
[73]
Zhang, X.; Fan, C.; Yao, N.; Zhang, P. Hong. T.; Xu, C.; Cheng, J. Quaternary Ti3C2Tx enhanced ionic conduction in quaternized polysulfone membrane for alkaline anion exchange membrane fuel cells. J. Membr. Sci., 2018, 563, 882-887.
[http://dx.doi.org/10.1016/j.memsci.2018.06.059]
[74]
Zhang, J.; Liu, Y.; Lv, Z.; Zhao, T.; Li, P.; Sun, Y.; Wang, J. Sulfonated Ti3C2Tx to construct proton transfer pathways in polymer electrolyte membrane for enhanced conduction. Solid State Ion., 2017, 310, 100-111.
[http://dx.doi.org/10.1016/j.ssi.2017.08.013]
[75]
Liu, Y.; Zhang, J.; Zhang, X.; Li, Y.; Wang, J. Ti3C2Tx filler effect on the proton conduction property of polymer electrolyte membrane. ACS Appl. Mater. Interfaces, 2016, 8(31), 20352-20363.
[http://dx.doi.org/10.1021/acsami.6b04800] [PMID: 27430190]
[76]
Zhang, J.; Zhao, Y.; Guo, X.; Chen, C.; Dong, C.L.; Liu, R.S.; Han, C.P.; Li, Y.; Gogotsi, Y.; Wang, G. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal., 2018, 1, 985-992.
[http://dx.doi.org/10.1038/s41929-018-0195-1]
[77]
Zhu, B.; Zhang, L.; Cheng, B.; Yu, J. First-principle calculation study of tri-s-triazine-based g-C3N4: a review. Appl. Catal. B, 2018, 224, 983-999.
[http://dx.doi.org/10.1016/j.apcatb.2017.11.025]
[78]
Yang, X.; Gao, N.; Zhou, S.; Zhao, J. MXene nanoribbons as electrocatalysts for the hydrogen evolution reaction with fast kinetics. Phys. Chem. Chem. Phys., 2018, 20(29), 19390-19397.
[http://dx.doi.org/10.1039/C8CP02635A] [PMID: 30009291]
[79]
Bao, W.; Liu, L.; Wang, C.; Choi, S.; Wang, D.; Wang, G. Facile synthesis of crumpled nitrogen‐doped mxene nanosheets as a new sulfur host for lithium–sulfur batteries. Adv. Energy Mater., 2018, 81702485
[http://dx.doi.org/10.1002/aenm.201702485]
[80]
Ding, B.; Ong, W.J.; Jiang, J.; Chen, X.; Li, N. Uncovering the electrochemical mechanisms for hydrogen evolution reaction of heteroatom doped M2C MXene (M= Ti, Mo). Appl. Surf. Sci., 2020, 500143987
[http://dx.doi.org/10.1016/j.apsusc.2019.143987]
[81]
Yoon, Y.; Tiwari, A.P.; Lee, M.; Choi, M.; Song, W.; Im, J.; Zyung, T.; Jung, H.K.; Lee, S.S.; Jeon, S.; An, K.S. Enhanced electrocatalytic activity by chemical nitridation of two-dimensional titanium carbide MXene for hydrogen evolution. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6, 20869-20877.
[http://dx.doi.org/10.1039/C8TA08197B]
[82]
Yoon, Y.; Tiwari, A.P.; Choi, M.; Novak, T.G.; Song, W.; Chang, H.; Zyung, T.; Lee, S.S.; Jeon, S.; An, K.S. Precious-metal-free electrocatalysts for activation of hydrogen evolution with nonmetallic electron donor: Chemical composition controllable phosphorous doped vanadium carbide MXene. Adv. Funct. Mater., 2019, 291903443
[http://dx.doi.org/10.1002/adfm.201903443]
[83]
Le, T.A.; Bu, Q.V.; Tran, N.Q.; Cho, Y.; Hong, Y.; Kawazoe, Y.; Lee, H. Synergistic effects of nitrogen doping on MXene for enhancement of hydrogen evolution reaction. ACS Sustain. Chem.& Eng., 2019, 7, 16879-16888.
[http://dx.doi.org/10.1021/acssuschemeng.9b04470]
[84]
Min, S.; Xue, Y.; Wang, F.; Zhang, Z.; Zhu, H. Ti3C2Tx MXene nanosheet-confined Pt nanoparticles efficiently catalyze dye-sensitized photocatalytic hydrogen evolution reaction. Chem. Commun. (Camb.), 2019, 55(71), 10631-10634.
[http://dx.doi.org/10.1039/C9CC05489H] [PMID: 31429451]
[85]
Li, Z.; Qi, Z.; Wang, S.; Ma, T.; Zhou, L.; Wu, Z.; Luan, X.; Lin, F.Y.; Chen, M.; Miller, J.T.; Xin, H.; Huang, W.; Wu, Y. In situ formed Pt3Ti nanoparticles on a two-dimensional transition metal carbide (MXene) used as efficient catalysts for hydrogen evolution reactions. Nano Lett., 2019, 19(8), 5102-5108.
[http://dx.doi.org/10.1021/acs.nanolett.9b01381] [PMID: 31271283]
[86]
Ramalingam, V.; Varadhan, P.; Fu, H.C.; Kim, H.; Zhang, D.; Chen, S.; Song, L.; Ma, D.; Wang, Y.; Alshareef, H.N.; He, J.H. Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution. Adv. Mater., 2019, 31(48)e1903841
[http://dx.doi.org/10.1002/adma.201903841] [PMID: 31621970]
[87]
Xiu, L.; Wang, Z.; Yu, M.; Wu, X.; Qiu, J. Aggregation-resistant 3D MXene-based architecture as efficient bifunctional electrocatalyst for overall water splitting. ACS Nano, 2018, 12(8), 8017-8028.
[http://dx.doi.org/10.1021/acsnano.8b02849] [PMID: 30048117]
[88]
Xue, Q.; Pei, Z.; Huang, Y.; Zhu, M.; Tang, Z.; Li, H.; Huang, Y.; Li, N.; Zhang, H.; Zhi, C. Mn3O4 nanoparticles on layer-structured Ti3C2 MXene towards the oxygen reduction reaction and zinc–air batteries. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5, 20818-20823.
[http://dx.doi.org/10.1039/C7TA04532H]
[89]
Yu, M.; Zhou, S.; Wang, Z.; Zhao, J.; Qiu, J. Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene. Nano Energy, 2018, 44, 181-190.
[http://dx.doi.org/10.1016/j.nanoen.2017.12.003]
[90]
Tian, M.; Jiang, Y.; Tong, H.; Xu, Y.; Xia, L. MXene-supported FeCo-LDHs as high efficient catalyst for enhanced electrocatalytic oxygen evolution reaction. ChemNanoMat, 2020, 6(1), 154-159.
[http://dx.doi.org/10.1002/cnma.201900613]
[91]
Yu, M.; Wang, Z.; Liu, J.; Sun, F.; Yang, P.; Qiu, J. A hierarchically porous and hydrophilic 3D nickel–iron/MXene electrode for accelerating oxygen and hydrogen evolution at high current densities. Nano Energy, 2019, 63103880
[http://dx.doi.org/10.1016/j.nanoen.2019.103880]
[92]
Li, Z.; Yu, L.; Milligan, C.; Ma, T.; Zhou, L.; Cui, Y.; Qi, Z.; Libretto, N.; Xu, B.; Luo, J.; Shi, E.; Wu, Z.; Xin, H.; Delgass, W.N.; Miller, J.T.; Wu, Y. Two-dimensional transition metal carbides as supports for tuning the chemistry of catalytic nanoparticles. Nat. Commun., 2018, 9(1), 5258.
[http://dx.doi.org/10.1038/s41467-018-07502-5] [PMID: 30531995]
[93]
Xiao, Z.; Yang, Z.; Li, Z.; Li, P.; Wang, R. Synchronous gains of areal and volumetric capacities in lithium–sulfur batteries promised by flower-like porous Ti3C2Tx matrix. ACS Nano, 2019, 13(3), 3404-3412.
[http://dx.doi.org/10.1021/acsnano.8b09296] [PMID: 30790514]
[94]
Chen, J.; Yuan, X.; Lyu, F.L.; Zhong, Q.; Hu, H.; Pan, Q.; Zhang, Q. Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7, 1281-1286.
[http://dx.doi.org/10.1039/C8TA10574J]
[95]
Zhao, L.; Dong, B.; Li, S.; Zhou, L.; Lai, L.; Wang, Z.; Zhao, S.; Han, M.; Gao, K.; Lu, M.; Xie, X.; Chen, B.; Liu, Z.; Wang, X.; Zhang, H.; Li, H.; Liu, J.; Zhang, H.; Huang, X.; Huang, W. Interdiffusion reaction-assisted hybridization of two-dimensional metal-organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. ACS Nano, 2017, 11(6), 5800-5807.
[http://dx.doi.org/10.1021/acsnano.7b01409] [PMID: 28514161]
[96]
Wang, Z.; Yu, K.; Feng, Y.; Qi, R.; Ren, J.; Zhu, Z. Stabilizing Ti3C2Tx-MXenes with TiOF2 nanospheres intercalation to improve hydrogen evolution reaction and humidity-sensing performance. Appl. Surf. Sci., 2019, 496143729
[http://dx.doi.org/10.1016/j.apsusc.2019.143729]
[97]
Yue, Y.; Liu, N.; Ma, Y.; Wang, S.; Liu, W.; Luo, C.; Zhang, H.; Cheng, F.; Rao, J.; Hu, X.; Su, J.; Gao, Y. Highly self-healable 3D microsupercapacitor with Mxene-graphene composite aerogel. ACS Nano, 2018, 12(5), 4224-4232.
[http://dx.doi.org/10.1021/acsnano.7b07528] [PMID: 29648800]
[98]
Zhang, X.; Zhang, J.; Cao, H.; Li, Y. Preparation of Pt/(Ti3C2Tx)y-(MWCNTs)1-y electrocatalysts via a facile and scalable solvothermal strategy for high-efficiency methanol oxidation. Appl. Catal. A Gen., 2019, 585117181
[http://dx.doi.org/10.1016/j.apcata.2019.117181]
[99]
Yang, C.; Jiang, Q.; Li, W.; He, H.; Yang, L.; Lu, Z.; Huang, H. Ultrafine Pt nanoparticle-decorated 3D hybrid architectures built from reduced graphene oxide and MXene nanosheets for methanol oxidation. Chem. Mater., 2019, 31, 9277-9287.
[http://dx.doi.org/10.1021/acs.chemmater.9b02115]
[100]
Zhang, P.; Fan, C.; Wang, R.; Xu, C.; Cheng, J.; Wang, L.; Lu, Y.; Luo, P. Pd/MXene(Ti3C2Tx)/reduced graphene oxide hybrid catalyst for methanol electrooxidation. Nanotechnology, 2019, 31(9)09LT01
[http://dx.doi.org/10.1088/1361-6528/ab5609] [PMID: 31711050]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy